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ABSTRACT

This paper describes our views on how to detect faults
in low testability analog or mixed mode (analog
electro-mechanical) system. A new method is
developed to identify a minimum number of faulty
parameters in the system with ambiguities. From
sensitivity analysis of the system, we can extract
solution invariant matrix and identify singular
cofactors of this matrix. The approach can be extended
to the electro-mechanical systems, which combine
electronic circuits with mechanical components.

1.  INTRODUCTION

Testing issues are becoming more and more important
with the quick development of both digital and analog
circuit industry [1]. Among them, fault diagnosis and
fault location are important parts of analog circuit
testing and a lot of efforts are put to the automate fault
diagnosis procedure [2][3][4][5][6].

Testability is strictly tied to the concept of network-
element-value-solvability, which was first introduced
by Berkowitz [7]. Successively, a very useful
testability measure was introduced by Saeks et al.
[8][9][10]. Although other definitions exist [11][12],
the Saeks definition is still popular. In fact, it gives a
measure of solvability of nonlinear fault diagnosis
equations, and indicates the ambiguity, which will
result from an attempt to solve such equations in a
neighborhood of almost any failure. Another concept
which is strictly related to testability and which is
extremely useful, particularly in case of a system with
low testability value, is that of canonical ambiguity
group. Although the concept of testability and
canonical ambiguity group are important in a fault
location method, test results are severely limited [13]
without using them properly.

In this paper, we focus on a new method for low
testability systems. Our method provides the minimum
form solution under the assumption that the number of
faulty parameters in VLSI circuits is small. First, we
obtain system test equation by sensitivity analysis and
find ambiguity groups. Then, for each ambiguity
group, the equivalent fault vector is obtained based on
the linear combination matrix. Although the system
test equations usually have various solutions, the
solution for the equivalent fault vector is unique. So it
is possible to construct the solution invariant matrix to

find the final detectable faults by our new
methodology.

Especially, we developed integration method to find
faults in electro-mechanical circuits, which usually
have complicated high order differential equation
models for the mechanical parts. By means of
integration of system equation and sensitivity analysis
for the system in time domain, we can extend our
approach to detect faults in such system.

In addition, the weak dependence phenomenon is
described and dealt with the NPN transistor circuit
example. In such a case, we use decreased rank to get
minimum linear combination matrix and find faults
efficiently.

Our goal is to develop an efficient computer-aided
fault diagnosis method. A block diagram of our
approach can be seen in Fig. 1. The left part of the
diagram basically get the parameter value and location
information from the spice format description of the
circuit system, whereas the right part corresponds to
the set of ideas we developed for fault detection of
analog low testability system. Sensitivity analysis is
needed to construct system test equation from the
system modified admittance matrix.
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Fig. 1. Block diagram of our program MASTA
(mixed-mode ambiguous system testability analysis
program)

This paper is organized as follows. In section 2 we
discuss our methodology for fault identification in low



testability systems. In section 3, we list two test
examples. Finally, we summarize our major research
results in section 4.

2. FAULT IDENTIFICATION IN LOW
TESTABILITY SYSTEMS

2.1 System test equations:

Let us consider the modified system admittance
equation [14] first:

T X W× =   (1)
∂ ∂ × + × ∂ ∂ = ∂ ∂T h X T X h W h/ / /   (2)

∂ ∂ = − × ∂ ∂ × + × ∂ ∂− −X h T T h X T W h/ / /1 1   (3)

Here, matrix T and vector W include not only the
effects of admittance and current source, but also that
of extra rows added for some components like voltage
source.  Matrix X is composed of node voltage and
extra branch currents. h represents circuit parameter.
Usually we may be more concerned with only several
necessary node voltages

Y d Xt= ×                                                    (4)
Next we define adjoint vector

Xa T dt= − ×−( ) 1                                                    (5)
Combining equations (3)(4)(5), we can get

∂ ∂ = × ∂ ∂ × − × ∂ ∂Y h X T h X X W ha
t

a
t/ / /b g b g   (6)

Moreover, sensitivity matrix
B Y h

i j
= ∂ ∂/                                                  (7)

where Y
i

 represents the set of node voltages and

branch currents which may be obtained under different
frequency,  and h j  represents different parameters.

Then we can get the nominal solution X T W= ×−1

and comparing with the actual measurement X error ,

the measurement matrix is M X Xerror= − . So the

system test equation is 

B P M× =                                                   (8)

2.2 INTEGRATION METHOD IN ELECTRO-
MECHANICAL SYSTEM

Usually, the electro-mechanical system can be
modeled in the state-space form by choosing the
mechanical parameters and electrical parameters as the
state variables. Suppose that the electro-mechanical
state-space form equation is dZ dt G Z C V/ = × + × ,
where Z is the state variable matrix, V is voltage input,
G and C are constant matrix composed of electrical
and mechanical parameters. In order to get system
characteristics, integral method is implemented so that
Z G Z C V Z

n n nt
+

= × + × × +
1 b g ∆ , where Z 0  is initial

state variable, ∆t  is sufficient small time interval,
n ≥ 0 , and n is integer. As a result, we can get

dZ dZ
n ndh dh

+
= +

1
/ /

G d Z dh dG dh Z dC dh V tn n× + × + × ×b gd i/ / / ∆  (9)

If we define matrix B dZ dhn= /  and matrix

M Z Zerror= − , which are calculated for different

integer n at each time interval, the system test equation
B P M× =  can be obtained, where h represents

different mechanical and electrical parameters and P
corresponds to parameter faults.

2.3 FAULT DIANOSIS METHOLODGY

For the system test equation B P M× = , we assume
the number of faulty parameters is small as a result of
the uniform environment in the VLSI fabrication
process and the number of the measurements M is
greater than the number of parameters P.

The rank of testability matrix B determines a
maximum number of the circuit parameters that can be
uniquely identified by solving the test equations. If B
does not have the full column rank, then it can be
written as following:
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As a result, 
$P P C P= +1 1 2                                          (11)

and
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with disjoint subsets of parameters representing
ambiguity groups or testable components, where
$P P C Pi i i i= +1 1 2  (13)

$Pi  is an equivalent set of parameter deviations in i-th

ambiguity group and is called the equivalent fault
vector. Since matrix B i1  has the full column rank, the

equivalent fault vector is unique. However, in general,
a solution for P and Pi i1 2  is not unique. Since our

aim is to solve the test equations with a minimum

number of faulty components, we can obtain $Pi  by

forcing all P i2  to zero, therefore the largest number

of faults we will consider equals to the size of P i1

which is equal to the rank of its ambiguity group. The
following results are useful to find faults in the
ambiguity groups.

Lemma 1: if i-th row of the linear combination matrix
C i1  obtained by solving equation (11) is zero then i-th

element of P i1  is uniquely identified.

Lemma 1 permits identification of all parameters that
do not belong to any ambiguity group. All other
parameters cannot be identified uniquely. Our
objective is to identify a minimum number of faulty
parameters that can satisfy test equations.



Lemma 2: if an element $ $p Pi∈  of the equivalent fault

vector obtained by solving equation (11) equals zero,

with $p p k kjc p j
j

= + ∑1 2
, where p Pk i1 1∈

and p Pj i2 2∈ , then p pk j1 2 0= =  with

probability equal to one (excluding a singular
subspace in the solution space).

Even if conditions of Lemma 2 are not satisfied, a
number of parameter deviations can be set to zero
depending on the cofactors of the solution invariant
matrix. For the i-th ambiguity group, we define

solution invariant matrix S P Ci i i=[ $ ]1 . If a cofactor of

Si  contains elements of $P
i
 as its first column and its

remaining columns are linearly independent, we call it
a proper cofactor. Since a proper cofactor must

include at least one element of $Pi , its minimum size

is one. In addition, it cannot have zero columns except

the first one. If a proper cofactor is zero, then $Pi  can

be expressed by smaller number of nonzero
parameters P

i1
and P

i2
 than its size, which means

that the number of nonzero parameters in the
ambiguity group is less than its rank. We call such
proper cofactor a nullifying cofactor.

Lemma 3: if none of nullifying cofactor of solutions
of the invariant matrix Si  exists, and there is the m-th

row of C1  that has only one nonzero element in its nth

column, then P m1 0b g = , and P P C
n m mn2 1b g b g= $ / .

3.  Test Examples

3.1 Negative phase NPN transistor

For this example, we can get modified admittance
matrix T at different frequency using c++
program. For simulation purpose, we set only

Fig. 2. Negative phase amplifier and transistor model

two faults ∆Gs =−0 0050.  and ∆Gbb' .=−0 0166 .

After we obtain system test equations, we can find that
there is only one ambiguity group in this system:

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆G C G G G C C G GS b bb b e pai u m c, , , , , , , ,' '1e j .

Although rank of B is 8, we still find weak
dependence. If weak dependencies are removed, then
we can reduce the rank B to 4 by using singular value

decomposition method as B U S V= × × ' , where S is
a diagonal matrix of the same dimension as B and with
nonnegative diagonal elements in decreasing order,
and matrices U and V are unitary. So, we adjust the
linear combination matrix C1 to relate both dependent

and weak dependent columns of matrix B. Then,
following fault diagnosis methodology described in
section 2.3, we can correctly identify faults and their
values.

3.2 Open loop DC motor

As the second example, consider electro-mechanical
system illustrated by fig. 3.

Fig. 3. Electronic circuit with open loop DC motor

This system can be described by the equation:
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J is moment of inertia of the rotor, b is the damping
ratio of the mechanical system, and K is the
electromotive force constant. Here, we use
J=0.01 k g m s•

2 2/ , b=0.1Nms, K=0.01Nm/Amp,

R=1ohm, L=0.5H, V=1v. For simulation purpose, we
set one fault �b=0.001. The system test equation is
constructed in the following way:
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where h is a group of parameters b K J R L, , , ,a f .

We iterate equation (14) and (15) for different values
of n. As a result, system test matrix B consists of
solutions of equation (15). Moreover, we can get
measurement matrix M by deducting,

i d dt
T

, /θ from [ ,ierror  d dt
error

T
θ / ] . Then,

we find only one ambiguity group ( , , , , )∆ ∆ ∆ ∆ ∆K R L J b .
Finally, using our fault diagnosis method, program
MASTA can successfully find fault in the damping
ratio parameter.

4.  Summary

New method of fault detection in mixed-mode low
testability system has been proposed. The method is
based on sensitivity analysis to obtain system test
equations and then find minimum faulty solution
under the assumption that the number of faulty
parameters is limited because of the uniform deviation
of VLSI process.

For each ambiguity group in the analog system, the
equivalent fault vector has unique solution. Based on
this idea, we introduce several useful concepts such as
linear combination matrix, solution invariant matrix,
proper cofactor, and nullifying cofactor. Then, we
prescribe 3 lemmas to further describe our fault
diagnosis methodology. In addition, weak dependence
phenomenon and a solution method is described in the
example. By combining state equations of mechanical
components with electrical system through interface
equations, we extend our fault testability approach to
electro-mechanical systems. Integral sensitivity and
regularization approach can described in [15] can be
added to this method in future work. Furthermore, if
efficient ways to get access to testing points in MEMS
(Microelectromechanics Systems) exist, which remain
to be the challenging issues because of the complex
machine structure with micron feature sizes in such
systems, the measurements can be combined with our
system approach to find faults.
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