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ABSTRACT 

 
In this paper, fault location in large analog networks by 
decomposition method is generalized to include subnetworks not 
explicitly testable. Assume that the network topology and nominal 
values of network components are known and the network-under-
test is partitioned into subnetworks once for all. The decomposition 
nodes could be either the accessible nodes whose nodal voltages 
can be measured or the inaccessible nodes whose nodal voltages 
under faulty condition can be computed by a new method proposed 
in this paper. The new method reduces the test requirements for the 
number of accessible nodes and increases the flexibility of 
decomposition. Location of faulty subnetworks and subsequent 
location of faulty components are implemented based on checking 
consistency of the KCL equations for the decomposition nodes and 
using ambiguity group location techniques. This method can be 
applied to linear or non-linear networks, and is particularly 
effective for the large scale analog networks. An example circuit is 
provided to illustrate the efficiency of the proposed method.  
 
 

1. INTRODUCTION 
 
With the development of modern computer-aided design and 
semiconductor integration techniques, such products as mixed-
signal systems and system-on-chip (SoC) gained widespread 
applications in the area of multimedia, real-time control, wireless 
communication, and neural networks. Consequently, efficient and 
highly automated test paradigms are expected to benefit the design 
process and manufacturing yield. Traditionally, testing of mixed-
signal system and SoCs adopt the decomposition method to 
partition the whole system into mechanical, software, analog, and 
digital subsystems in order to apply their domain specific test 
techniques. Finally system level test and interconnection test are 
applied to fulfill the testing task for the whole system. 
    Among these subsystem testings, analog testing is the bottleneck 
due to the inherited features of analog networks such as component 
tolerance, nonlinearity and lack of efficient fault models. Research 
efforts on analog test and fault diagnosis were summarized in [1-3]. 
Many testing techniques were developed and can be classified as 
verification, approximation, parameter identification and dictionary 
methods [1]. Facing up the practice of increasing scale of today’s 
analog networks, design verification based on decomposition 
method is the best candidate for verification of large-scale analog 
networks. The most promising advantage of the decomposition 
method is that there is no upper bound for the number of faulty 
components in the network which exists in other verification 
methods. Another advantage is to reduce the test cost for large-
scale network because only very limited number of faults occur in 
practice. After decomposition, fault-free subnetworks usually 

occupy a large portion of the complete system. Therefore the entire 
testing effort can be devoted to the faulty subnetworks. In [4], a 
method was designed to identify the faulty subnetworks under a 
nodal decomposition strategy. It is based on checking the voltage 
consistency of internal nodes in analyzed subnetworks. In 
decomposition method described in [5], faults are localized to 
within the smallest possible subnetworks according to the 
hierarchical decomposition structure. Because the measurement 
nodes are chosen as the nodes of decomposition, many accessible 
nodes are needed in order to locate the faulty components or faulty 
regions within the small subnetworks. Simultaneously, the fact that 
only accessible nodes could be decomposition nodes restricts the 
decomposition flexibility. Such requirement is not acceptable for 
today’s analog networks whose scale is steadily increasing while 
the accessibility of the network nodes is decreasing. To achieve 
more information about the faulty components or faulty regions, 
there must be a compromise between the number of accessible 
nodes and the size of subnetworks. A new method is proposed in 
this paper to alleviate this problem in order to face up today’s 
practice. Based on the network topology and checking consistency 
of the KCL equations, the nodal voltages of part of inaccessible 
nodes under faulty conditions could be computed. Hence, these 
computed nodal voltages can be treated as measurements and 
subsequently be used for decomposition. For the analog networks 
with sufficient accessibility, this method can reduce the 
measurement cost. For the analog networks with limited 
accessibility, this method can create more decomposition nodes and 
can increase the decomposition flexibility.  An efficient solution to 
verification of decomposed subnetworks is based on recently 
developed method for finding ambiguity groups and solving 
ambiguous equations [6-7]. 

 
2. LOCATION OF FAULTY SUBNETWORKS  

IN ANALOG NETWORKS  
 
There are two assumptions for the proposed method. The first one 
is that network topology and nominal values of network 
components are known, thus all the nodal voltages, branch currents 
and network parameters information are known before testing and 
such computations can be carried out off-line. The second one is 
that all of the partitioned subnetworks should be mutual coupling 
free. Let us begin with an important assumption used by 
decomposition method presented in [5] which will be alleviated by 
the method proposed in this paper: all the decomposition nodes 
should be accessible to voltage measurements . For the network-
under-test some subnetworks are fault-free, some are faulty. It is 
easier to locate the fault-free subnetworks than the faulty 
subnetworks according to Lemma 1-3 in [5]. The first step of our 
method is to locate as many as possible fault-free subnetworks 
based on the following corollary which is derived from Lemma 2 in 



  

[5].  In this paper a common node is defined as a node incident to 
several subnetworks in decomposed network or a voltage 
measurement node. 
 
Corollary 1: 
Suppose that a common node c is connecting k subnetworks Si (i=1, 
2, …, k). If all the currents incident to the common node c 
computed by the measured voltages and the nominal parameter 
values satisfy the KCL equations, i.e.,  
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where i
cI  is the current incident to node c from subnetwork Si, Mi 

is the measurement set consisting of measurement nodes, iMv  are 
the measured nodal voltages in subnetwork Si, 0

iφ are the nominal 
component values of subnetwork Si, then all subnetworks Si (i=1, 2, 
…, k) are fault-free. 
    Such common node is called fault-free node . If equation (1) is 
not satisfied then at least one subnetwork Si is faulty. In this 
corollary, all decomposition nodes are measurement nodes. 
    Suppose now that one decomposition node x in subnetwork Si is 
inaccessible, i.e., the node x is still the decomposition node but its 
nodal voltage Vx is unknown. Thus, the decomposed subnetwork 
topology remains unchanged, while the measurement set of Si is 
changed by removing node x. We can still compute i

cI  in (2) by 

changing the measurement set as above. The Corollary 1 is still 
valid to locate the fault-free subnetworks.  
 
Corollary 2: 
Suppose an subnetwork Si has two fault-free nodes y and z and one 
of the voltages Vx in this subnetwork is unknown. If the currents 
incident to these common nodes satisfy the KCL equations, i.e.,  
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where kc is the number of subnetworks incident to common node c, 
then all subnetworks incident to nodes y and z are faul- free. 
    Here, the measurement set Mi is appended by node x. Since there 
is only one unknown variable Vx in (4), Vx can be determined 
uniquely because we know such solution exists in network-under-
test. As a generalization of Corollary 2 we can formulate the 
following lemma. 
 
Lemma 1: 
Consider a subset of fault-free nodes in subnetworks Si with p 
inaccessible decomposition nodes. All p nodes are appended to the 
measurement set, thus leading to p unknown variables Vx1, Vx2, …, 
Vxp. If there are m fault-free nodes and pm ≥ , then by using m 
KCL equations  
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where kx is the number of subnetworks incident to node x. We can 
determine all the voltages Vx1, Vx2, …, Vxp and verify that all the 
subnetworks incident to fault-free nodes are fault-free.  
    Using Corollaries 1 and 2 and Lemma 1 fault free subnetworks 
can be sequentially verified and internal voltages determined. The 
network in Figure1 is used to illustrate the process. 
 
Example 1 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 Decomposed network for example 1. 

 
The network is decomposed into 4 subnetworks S1, S2, S3, and S4. 
Assume that S4 (illustrated by the hashed area) is the only faulty 
subnetwork. Thus, nodes {0, 1, 2, 3, x1, x3, x5} are fault-free 
nodes whose node indexes are circled in Fig.1. Nodes 0 to 4 are 
accessible nodes and nodes x1 to x5 are inaccessible. Apply (3) to 
nodes 0 and 3 to compute the currents IS1: 

( )0
1

11
0

1
0 ),(11

S
XMXM

node
S
node tvhI SS φ++=          (7) 

( )0
1

11
3

1
3 ),(11

S
XMXM

node
S
node tvhI SS φ++=          (8) 

where the measurement set is Ms1 =[node0, node1, node3, node4]. 
Currents computed from (7) and (8) should be either zero or equal 
to external current excitations at these nodes.  Then S1 is concluded 
as fault-free by Corollary 2 and internal voltage Vx1 is calculated.  
    Subsequently by applying Lemma 1 to fault-free nodes in 
subnetworks S2 and S3, (nodes 1, 2, x1, x3, x5) with inaccessible 
decomposition nodes x2, x3, x4, and x5, 5 equations are obtained 
with 4 unknown voltages. We can determine the unknown voltages 
Vx2, Vx3, Vx4, and Vx5, as well as verify that S2 and S3 are fault-free.  
    The results obtained by using Lemma1 require knowledge (or a 
guess) of fault-free nodes, since only KCL equations in these nodes 
can be used to formulate the verification equations.  Instead of this 
ad-hoc approach, subnetwork verification can proceed efficiently 
using recently developed methods for finding ambiguity groups and 
solving ambiguous equations. 
 

3. FAULT LOCATION AND VERIFICATION 
We propose a method for the location of fault-free nodes and their 
verification for a linear network with N nodes, M measurement 
nodes and F faulty nodes. We assume that M>F. The network 
nodal equations can be formulated as follows 
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where T0 is the nominal multiterminal matrix of the decomposed 
network (size equal to the number of decomposition nodes) , VM  
and VN-M are measured and unknown decomposition node voltages 
respectively, W0 is known excitation vector,  and WF is unknown 
vector of faulty sources at faulty nodes. 
    Since, in general, location of fault-free nodes is unknown we 
need to determine the unknown voltages, identify fault-free nodes 
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and verify fault-free equations.  To this end let us first modify (9) 
as follows 
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 [ ]21 TTT =           (11) 
and move the first term from the left-hand side to the right-hand 
side and combine it with the right-hand side vector to get 
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is a known vector. Let us formulate the ambiguity group matrix 
[ ]02 ŴTB =           (14) 

This matrix has N rows and N-M+1 columns. 
    Since the entries in vector WF corresponding to faulty nodes are 
nonzero while the entries corresponding to fault-free nodes are 
zeroes, N-F equations can be obtained from (12) with N-M 
unknowns if we know the exact location of faulty nodes. Hence, the 
unique solution to all VX can be determined. To avoid a 
combinatorial search for faulty nodes, a recently developed 
ambiguity groups locating technique can be utilized to efficiently 
locate all fault-free nodes [6-7]. It is based on QR factorization to 
find a numerically stable solution of over determined system. The 
primary idea is to find dependent relationship among the rows of 
matrix B, that is, to identify the ambiguity groups in (12) with the 
maximum size. The QR factorization and swapping is applied 
together with corresponding theoretical results described in [6-7]. A 
new lemma is proposed below to locate the maximum number 
fault-free nodes. 
 
Lemma 2: 
If M>F and matrix B has full column rank ambiguity group then 
the row indices of the submatrix which form this ambiguity group 
are fault-free nodes and all the subnetworks incident to these nodes 
are fault free. 
 
Example 2 
 
 
 
 
 
 
 
 

Figure 2 decomposed network for example 2 
 
    Example 2 is provided to illustrate the location of fault-free 
nodes. The network has 6+1 nodes with one of nodes being 
reference. The measurements are taken on nodes {1, 3, 6} which 
are black points in Figure 2 and the fault-free nodes are nodes {1, 
4, 5, 6} whose indexes are circled. The parameters are as below: 

























=

 6  7  8  0  3 6  
7  5  7  0  9 0  
8  7  4  1- 7 2-

0  0  1- 3  0 5 
3  9  7  0  2 0
6  0  2- 5  0 1

0T

























−

−

=

























=

0

0

0
3

2

0

0

0

0
0

0

1

0 FJW

 
















−

−
=
















=

7245.0
4437.0
2455.0

6

3

1

V

V
V

VM

 

By (14), 6x4 matrix B is obtained for analysis. Applying the 
ambiguity group locating techniques in [6-7], a 4x2 linear 

combination matrix C is obtained after QR factorization and 
column swapping as follows 
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with its basis including nodes {5, 1, 4, 3} and co-basis nodes {2, 
6}. The unique zero entry in C indicates that the ambiguity group 
{5, 1, 4, 6} is located and according to Lemma 2 contains fault-free 
nodes. 
    The above method to locate the fault-free nodes is based on 
linear nodal analysis, thus is only applicable to linear network. For 
nonlinear network, Lemma 2 can be used to implement the location 
of fault-free nodes with the incident current i

cI  computed by (2). 

Note that only measurement nodes should partition the nonlinear 
networks.  
    After location of fault-free nodes and faulty subnetworks, the 
computation efforts required by faulty component location are 
limited. Since there is no strict requirement for the memory and 
testing time in today’s medium or small scale analog test, the 
choice for faulty component location techniques inside the faulty 
subnetwork is versatile such as the techniques provided in part V of 
[5] or the techniques provided by other references for linear analog 
networks [7-8] and for nonlinear analog networks [9]. 
    For the linear network, equation (30) in [5] can be utilized to 
compute the external current. For the network with faulty nonlinear 
components, faulty model of nonlinear components can be utilized 
to locate the faulty nonlinear components. For the network with 
faulty linear components and fault-free nonlinear components, 
utilize nonlinear network solver such as Pspice to locate the faults. 
 

4. EXAMPLE CIRCUIT 
 
To illustrate the efficiency of the proposed approach and to 
compare the proposed method and the method in [5], the Example 
5 in [5] is selected. Figure 3a is the first stage of the analog filter 
example circuit. The equivalent circuit for the operational amplifier 
is outlined in Figure 3b. The nominal circuit component values, the 
decomposition structure and indexes of subnetworks are the same 
as that illustrated in Figure 9 of [5]. 
    The faulty components are R15=0.2kΩ, R17=2.0kΩ, R27=11.14 
kΩ, and C18=0.1µF which lead to faulty nodes {8, 9, 10, 11, 12}. 
Measurement set is nodes {1, 3, 5, 10, 14, 17, 19, 37}. The 
unknown nodal voltages at nodes {6, 8, 12, 15} are to be solved by 
the proposed method and fault-free nodes determined. Hence, 
N=37, M=8, F=5 and M>F. The sinusoidal current source to node 
1 is ( ) Attj 2000cos01.0)( = . Notice that with these limited 
measurements the method presented in [5] would not apply since 
there is no single fault free node with all incident subnetwork 
voltages measured. 
    The first step is to locate the fault-free nodes by the methods in 
Part 3. The 37x31 matrix B is constructed by network nominal 
values and measurement vector VM. After QR factorization and 
swapping operations, a 31x6 linear combination matrix C is 
obtained. The ambiguity group located is {1--7, 13--37} which 
matches the fault-free nodes in real case. The second step is to 
decompose the network into subnetworks  by measurement nodes 
plus nodes {6, 8, 12, 15}. 
    Applying Lemma 1 to fault-free nodes {1, 3, 5}, we can obtain 3 
equations with 2 variables V6 and V8 as follows 
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Figure 3a. Active low-pass filter 

 

 
 
Figure 3b Model of OPAMP. 
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After solving and verifying, the solution vector is  
[ ] [ ]i0.54964+ 6.5672-i2.0362+ 24.329-86 =VV  

    Similarly, by applying Lemma 1 to fault-free nodes {14, 17, 19} 
we can obtain 3 equations with 2 variables V12 and V15 and the 
solution vector is  

[ ] [ ]1i-1.522e- 1.4292-6.629e+ 3-6.912e   1512 =VV  
According to Lemma 1, subnetworks {S9, S16} are declared as 
faulty. To locate and verify the faulty components, we utilize the 
techniques in [7]. The faulty components are declared as {R15, 
R17, R27, C18} which are the exact answer. 
 

5. SUMMARY 
 
Analog test and fault diagnosis is an important topic in the area of 
test and testability. To address the testing problem in large-scale 
analog networks that dominate the market of mixed-signal products 
or SoC products in recent years, fault location by decomposition 
method is generalized in this paper. The network topology and 
nominal component values are available before testing. The 
decomposition of the network into subnetworks is implemented and 
ambiguity group finding technique is used to locate fault-free 
decomposition nodes. While in the former research only the 
accessible nodes can be the decomposition nodes and 
decomposition is hierarchical,    in this paper the inaccessible nodes  

 
can be the decomposition nodes as well and decomposition is 
implemented all at once.  A new method proposed in this paper 
computes their nodal voltages under faulty condition. The benefits 
resulting from this work include reduction of the test requirements 
for the number of accessible nodes and increase in the flexibility of 
decomposition. By checking consistency of KCL equations for the 
decomposition nodes, faulty subnetworks and the subsequently 
faulty components can be located. Testing conditions are 
independent of the network and excitation types, thus the method is 
applicable to both linear and nonlinear networks, and to both time 
domain and frequency domain. The proposed method is particularly 
effective for the large-scale analog networks. The same example 
circuit as that in former research is utilized to demonstrate the 
efficiency of the proposed method. 
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