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Abstract—Timebase distortion causes nonlinear distortion of
waveforms measured by sampling instruments. When such instru-
ments are used to measure the rms amplitude of the sampled wave-
forms, such distortions result in errors in the measured root-mean
squared (rms) values. This paper looks at the nature of the er-
rors that result from nonrandom quantization errors in an instru-
ment’s timebase circuit. Simulations and measurements on a sam-
pling voltmeter show that the errors in measured rms amplitude
have a nonnormal probability distribution, such that the proba-
bility of large errors is much greater than would be expected from
the usual quantization noise model. A novel timebase compensa-
tion method is proposed which makes the measured rms errors
normally distributed and reduces their standard deviation by a
factor of 25. This compensation method was applied to a sampling
voltmeter and the improved accuracy was realized.

Index Terms—Compensation, correction algorithm, quantiza-
tion, sampling, timebase, voltmeter.

I. INTRODUCTION

NOMINALLY uniformly-spaced sample intervals are fun-
damental for modern sampling instruments. This is true

whether the samples are taken in real time or equivalent time.
The deviations away from uniform time intervals have two com-
ponents: a random part called time jitter that is not the subject
of this paper, and a deterministic part called timebase distortion.
Uncorrected timebase distortion causes nonlinear distortion of
the sampled waveforms. Several papers have been written on
techniques for measuring and correcting for deterministic time-
base distortion [1]–[6]. These correction techniques usually de-
pend on resampling the recorded waveform to produce a new
waveform that represents the signal sampled uniformly. Here
we present an alternative correction method that does not rely
on recalculation of the waveform if the quantity of interest is the
root-mean squared (rms) amplitude of the sampled signal.

Not all instruments have the type of timebase error discussed
in this paper, although most equivalent-time types do. The fol-
lowing describes the type of timebase error under discussion.
The timebase on many instruments uses a clock circuit that
runs independent of the signals being sampled. This clock cir-
cuit usually has a smallest time resolution unit that can be pro-
grammed. This time unit is the quantization resolution of the
timebase. If the instrument makes a measurement that requires
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sample intervals that are not integer multiples of this unit, the re-
alized sample times will have a quantization error. Such an error
can occur when the measurement requires an integral number of
samples over one or more periods of the signal being sampled.
In this case, the timebase will have quantization errors that are
dependent on the frequency of the signal being sampled.

When designing sampling instruments, the timebase quanti-
zation resolution is usually selected such that its effects on the
accuracy of the instrument are below the random noise level of
the sampling process. To do this requires estimates of the effects
of such an error process. The traditional method employed is to
treat the quantization as a random noise process [7]–[10]. For an
instrument used to measure the rms amplitude of the sampled
signal, such a model leads to an error estimate for the calcu-
lated rms values characterized by a normal probability density
error distribution. The timebase quantization, however, violates
the assumptions necessary for use of the random noise model.
To use that model, the errors must be independent and identi-
cally distributed (i.i.d.). As will be shown in this paper, certain
timebase quantization processes can cause the quantization er-
rors to be correlated with each other and with the signal being
measured. This causes the errors in the calculated rms values to
be nonnormally distributed. A consequence of using the wrong
error model is that it underestimates the probability of large er-
rors. The timebase also can have other significant error sources,
for example, due to the nonlinearity of the timebase ramp. This
paper does not address these errors.

This paper examines the nature of the sampled waveform er-
rors that arise from timebase quantization. A unique method of
correcting the sampling process is described that significantly
reduces the errors in the calculated rms amplitudes of such sam-
pled waveforms and results in a normal error distribution. This
modified sampling technique requires only a very small change
in the way that sample times are calculated and no change in the
basic design of the quantized timebase.

Timebase quantization errors were encountered at the Na-
tional Institute of Standards and Technology (NIST) during the
development of a high accuracy sampling voltmeter [11]. The
NIST wideband sampling voltmeter (WSV) measures the rms
amplitude of periodic signals by sampling the signal’s wave-
form using equivalent-time sampling. The design for this time-
base and how it interacts with the signals being sampled are de-
scribed in Section II. Results from a simulation model of the
voltmeter indicated the differences between the correct error
model and a random error model as described in Section III. A
modified quantization scheme, which significantly reduces the
errors caused by this type of timebase distortion, is described in
Section IV. In addition to the simulation studies, measurements
on the NIST WSV verified the accuracy of the simulations and
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Fig. 1. Example of timing relation between quantized time, ideal sample time, quantized sample times, quantization error, and sample intervals.

the improvements possible by use of the modified quantization
scheme as described in Section V.

II. RAMP QUANTIZATION

The NIST WSV adjusts the sampling rate to be an integer
multiple of the signal frequency. However, because the timebase
is quantized, the actual sample times are not precisely uniformly
spaced. The following is a simplified description of the way the
sample times are generated to help the reader understand how
the time quantization process interacts with the signal frequency
and results in an error in the measured rms value.

The timebase generator makes use of a voltage ramp, a ref-
erence DAC, and a comparator. Because of the large frequency
range covered by the voltmeter, 10 Hz to 200 MHz, multiple
ramp slopes are used. Twenty-two slopes are used altogether;
three are used to cover each decade of frequency. During the
measurement process, the frequency of the input signal is de-
termined and used to select the fastest ramp such that for one
signal period the ramp voltage changes by less than the DAC full
scale voltage range. The ramp start time is synchronized with
the input signal. The ideal sample intervalis calculated by di-
viding the signal period by the number of samples to be taken
over one period. Selecting a start delay and adding multiples
of the ideal sample interval generates the ideal sample times.
From the known slope of the ramp the reference voltage cor-
responding to each sample time is determined and rounded to
the nearest DAC level. This rounding is the cause of the time-
base quantization and from the computations the timebase quan-
tization error for each sample time is known. For each sample
time the DAC is set to the corresponding voltage level and a
sample strobe is generated when the comparator detects the
ramp crossing the DAC voltage level. The signal amplitude at
each sample time is measured and the signal’s rms value is cal-
culated as the rms of all the measured sample values.

The time intervals are quantized by the resolution of the ref-
erence DAC. The weight (in volts) of the least significant bit
(lsb) of the DAC and the ramp slope(in volts per second) de-
termine the timebase resolution ; therefore, the smallest
time interval that can be realized for the selected slopeis
given by . The actual time intervals are limited to
multiples of this unit of time. Since the ideal sample times are
rounded up or down to the nearest quantized time, the quantized

sample sequence will have two sample intervals and
, such that

(1)

where is the integer number of quantization intervals in the
ideal sample interval andis the fractional ideal sample-interval
quantization factor. Fig. 1 shows an example of the relation be-
tween the quantized times, the ideal sample times, and the quan-
tized sample intervals.

If is close to 0.5, then, in general, the quantized sample in-
tervals will alternate between the two quantized sample inter-
vals. Occasionally, two sample intervals of the same size will
occur together. For close to 0.5 the sequence of quantization
errors will be negatively correlated. However, ifis very close
to 0 or 1, the pattern is different. Then, the quantization intervals
are primarily of one size with an occasional interval of the other
size. In these cases, the sequence of quantization errors will be
positively correlated. Thus the pattern of quantization interval
is determined by .

When used as the timebase for measuring the rms value of
a sinewave, the errors caused by this quantization process vary
with the value of . Since the value of is a function of the
period of the signal being measured, the errors in the rms mea-
surement vary with the signal frequency. The rms measurement
errors can become large if the quantization errors are correlated
with the signal being measured. Since this timebase increases
the probability of having correlated quantization errors relative
to a random error process, the probability of large measurement
errors is increased at select frequencies.

For purposes of this paper, the important features of the time-
base being described are first that the quantization resolution
of the timebase remains fixed for a range of input signal fre-
quencies, and second that the sampling process is adjusted to
the signal frequency. This type of timebase process is hereafter
referred to as a ramp timebase. In examining the errors caused
by this timebase error process, it is important to keep in mind the
differences in its behavior relative to the behavior for a random
timebase error process. First, for the ramp timebase the quan-
tization errors are not random. Rather, they are a function of
the measurement and signal parameters. Thus, averaging repeat
measurements can not reduce the size of these errors caused by
this process. They cause a bias in the measured values. Second,
the probability distribution of the errors in the measured quan-
tities is changed. These effects are examined using a simulation
model.
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Fig. 2. RMS measurement error for ramp quantization (gray squares) is
nonnormally distributed, and rms measurement error for random quantization
(dark diamonds) is normally distributed.

III. SIMULATION MODEL

A simulation model of the NIST WSV was developed to ex-
amine the effects of timebase errors on the rms measurement
process. The simulations allowed either a truly random time-
base quantization or the nonrandom ramp-dependent quantiza-
tion patterns. The random time base errors used a uniformly
distributed random timebase error of amplitude0.5 . For
both timebase error types, the resultant rms measurement errors
were determined for a large number of input signal frequencies,
phases, and other parameters.

Fig. 2 shows the cumulative normal distribution plots of the
rms measurement errors for both timebase error types. For this
plot, the rms measurement errors are sorted, the inverse normal
probabilities of the sample number in units of standard devia-
tion are plotted on the vertical axis, and the rms error values
are plotted on the horizontal axis. Thus, if the errors are nor-
mally distributed this plot will show a straight line. The plot
for the random timebase errors is a straight line showing that
the errors in these rms measurements are normally distributed.
The line for the ramp-timebase errors is not straight. The line
deviates significantly from a straight line before reaching2
standard deviations. Thus, about 5 percent of the errors are sig-
nificantly larger than would be expected from a normally dis-
tributed random error mechanism. Conversely, almost 95 per-
cent have an error significantly less than expected.

Since many of the errors for the ramp-quantization timebase
are less than expected, is there some way of modifying the quan-
tization error patterns to take advantage of this and eliminate the
large errors? The next section shows how this can be done and
how it should not be done.

IV. M ODIFIED RAMP QUANTIZATION

Looking at the timebase quantization, errors associated with
the largest rms measurement errors shows that these errors are
associated with positively correlated quantization errors. These
result from the fractional quantization factorbeing close to 0
or 1. A useful quantity for understanding how this correlation
affects the measured rms values is the cumulative sum of the

Fig. 3. Example of quantization errors (dark diamonds) and cumulative sum
quantization errors (gray squares) showing correlation of quantization errors and
large cumulative sum values.

Fig. 4. RMS measurement error for ramp quantization plus random dither of
0.5 lsb amplitude gives normal distribution.

quantization errors from the first sample to sample, .
This quantity is given by

(2)

where is the timebase quantization error for time sample.
This quantity plays an important role in the modified quanti-
zation scheme that reduces this effect. The ramp-quantization
process holds the magnitude of each quantization errorto
less than half the timebase resolution, i.e., . If
the quantization errors were random the standard deviation of

would be proportional to . Fig. 3 shows a plot of
for a frequency with large error whereis close to 0. Be-

cause the quantization errors are correlated, become large
compared to much more quickly than would be expected
in a random model.

One not-so-good way to break up this correlation is to add a
random dither to the ideal sample times before quantizing them.
Fig. 4 shows the cumulative error distribution for rms measure-
ments taken with a uniformly distributed random time dither of
amplitude 0.5 added to each ideal sample time before
being quantized. The resultant distribution is now normal but at
the expense of being larger.

A better way of breaking up this correlation is to restrict the
size of the cumulative sum of quantization errors, . This
can be accomplished by adding the cumulative sum of previous
errors, , to the ideal sample time before quantization.
The value of is taken to be zero. The new set of values for
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Fig. 5. Cumulative sum limited quantizer; the quantization error from
quantizerQ is fed back to an adder via a unit sample delay to limit the
cumulative sum of quantization errors.

Fig. 6. RMS measurement error for CSL quantization is normally distributed
and much smaller than errors shown in Figs. 2 and 4.

will be between 0.5 . Fig. 5 shows a simple feed-
back computation that performs this operation without the need
to calculate the cumulative sums. This quantization method is
referred to as the cumulative-sum-limited (CSL) quantization
scheme. The distribution of rms errors that results from the use
of the CSL quantization scheme is shown in Fig. 6. The rms er-
rors are now normally distributed and have a standard deviation
of about 1/25 of the standard deviation from the ramp timebase.
The next section shows that this improvement was realized in
the NIST WSV.

During the simulations each of the parameters that affect the
rms error was varied to determine their effects. The primary fac-
tors that determine the rms error caused by timebase quantiza-
tion are: the number of bits used in the timebase DAC; the
number of samples used in the rms computation, the number
of cycles of the signal that are sampled; the quantization error
for the first sample and the fraction of the DAC range that
represents one signal period. For the data given above and in
much of this paper, the parameters are often chosen as 128 sam-
ples, over one cycle of the signal, with the timebase DAC res-
olution set at 10 bits, the signal phase at 0 degrees, the initial
quantization value as zero, and the fraction of the DAC range
that represents one signal period between 0.5 and 1.0. Based on
a large number of simulations, varying each of these factors over
a wide range, the rms error data were fitted to a functional rela-
tion for each quantization method. The empirical relation for the
dependence of the rms error for the ramp-quantization method
is given as

rms (3)

and for the modified CSL quantization is given as

rms (4)

Fig. 7. Predicted rms error range for ramp quantization (maximum-upper
solid line, minimum-lower solid line) and measurement rms error for ramp
quantization (dark diamonds), and for CSL quantization (gray squares).

Note how the error with the CSL quantization, rms , drops
much more rapidly as a function of the number of samples,
and has a dependence on the number of cycles of the measured
signal, which is not present in the ramp-quantization timebase
induced error.

The functional dependence of the rms error versus signal
phase is the same for both timebase quantization schemes.
When plotted versus signal phase angle at the start of the sam-
pling interval, the error is a sinewave with a period of 180. The
amplitude of this sinewave is called the phase maximum error,
PME. This is the largest error possible for a given frequency
while varying the signal phase relative to the sample interval
and holding the other measurement parameters constant.
Because the period of this phase dependent error is 180, the
PME can be determined by simulating or measuring the rms
error for two signal phases separated by 45and calculating the
root-sum-square of the two error values. The values of PME
versus frequency were simulated and compared to PME values
measured on the NIST WSV, as described in the next section.

V. EXPERIMENTAL VERIFICATION

The validity of the simulation model and the value of the CSL
quantization scheme compared to the traditional ramp-quantiza-
tion scheme are shown with measurements taken on the NIST
WSV. The DAC resolution for the WSV was reduced to 10 bits
for this experiment to accentuate the errors. With the traditional
ramp-quantization scheme, the rms errors become very large
around certain frequencies. One such peak occurs for signal fre-
quencies around 77 kHz. Fig. 7 shows the measured and simu-
lated PME results for frequencies from 75 kHz to 80 kHz. The
two solid lines show the results of simulations of the rms error
using the traditional ramp-quantization scheme. The top line
shows the largest predicted PME for each frequency varying
all the other parameters. The lower line shows the smallest pre-
dicted PME for each frequency. Thus, if the voltmeter performs
the same as the simulation model, the measured PMEs for ramp
quantization should fall between the two curves. The series of
points with diamonds shows the measured PME for the NIST
WSV using the traditional quantization scheme. All values fall
between the two curves predicted by the simulation model.

The CSL quantization scheme was implemented on the NIST
WSV. This was done by a simple software change to the sample
time computation. The lower curve of squares in Fig. 7 shows
the measured PME using the CSL quantization scheme. These
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values are (as predicted by the simulation) much lower and do
not show the presence of large deviations around certain fre-
quencies.

VI. CONCLUSION

The unexpected effects of nonrandom timebase quantized
errors on the measurement accuracy of the NIST WSV were
modeled and verified. A new scheme for quantizing the
timebase, CSL quantization, was described that decreases
the quantization-related errors by a factor of 25. The CSL
quantization scheme was demonstrated on the NIST WSV and
the results showed that the instrument’s accuracy could be
improved significantly using this easy-to-implement procedure.
In the present NIST WSV design, the instrument’s timebase
related errors were reduced to less than the noise level by using
a higher resolution newly designed timebase [12].
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