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An Energy Difference of Multiresolution Analysis (EDMRA) method for power quality (PQ) disturbances
analysis has been proposed in this paper. At each wavelet decomposition level, the squared value of
the detail information is calculated as their energy to construct the feature vector for analysis. Following
the criteria proposed in this paper, different kinds of power quality disturbances can be detected, local-
ized, and classified effectively. The choice of the decomposition levels of appropriate wavelets are of the
critical importance for the EDMRA method, since they will influence quality of the reconstructed signal as
well as the computational cost. It is presented in this paper that the Minimum Decomposition Level
(MDL) is related to the sampling frequency by the proposed function. The comparison study among dif-
ferent kinds of wavelets for the EDMRA method is presented in details. The EDMRA method is scalable
and has robustness characteristics in common design paradigm. It can be realized economically using
wavelets with shortest length, such as Harr, Db2, Sym2 or Coif 1. Two types of noise, namely, Gaussian
white noise and band limited spectrum noise are considered in this paper to show the effectiveness of
the proposed method in noisy environment.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This paper aims to develop an effective method for power qual-
ity (PQ) disturbances detection, localization and classification.
With the fast expansion of power electronics and other nonlinear,
time-variant loads in the power distribution network, power qual-
ity has become a critical issue and attracted growing attention in
power industry and academic. For example, according to the sur-
vey by IEEE Transactions on Industrial Applications (IAS) for 210
large commercial and industrial customers, the average cost for a
4-h outage and a momentary outage are $74,835 and $11,027,
respectively [1]. Also, according to the data investigated by Electri-
cal Power Research Institute (EPRI), the US economy is losing be-
tween $104 billion and $164 billion a year to outages, and
another $15 billion to $24 billion for PQ phenomena [2]. For in-
stance, the power outage in North America in August, 14, 2003
influenced the vast area from east of New York, north to Toronto
and west to Detroit, Michigan – an area that is home to about 50
million people. It leads to losses of $4 billions to $10 billions in
the USA alone [3]. Therefore, the research of power quality issues
has captured ever increasing attention in the power engineering
society.
ll rights reserved.
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Recent advances in the wavelet transforms provide a powerful
tool for power quality analysis. In the wavelet based PQ analysis,
there are two major categories of techniques. The first one is the
wavelet based data compression for power quality disturbances.
For instance, Hamid and Kawasaki proposed the power quality
disturbances data compression techniques via discrete wavelet
transform and wavelet packet transform [4]. In [5], compression
techniques using spline wavelet are performed through signal
decomposition, thresholding of wavelet coefficients, and signal
reconstructions. A modified wavelet transform, known as S-trans-
form, has been used for such analysis. Panda et al. used the Slantlet
Transform (SLT) for data compression of power quality events [6].
The SLT can design different filters for different scales unlike iter-
ated filter bank approaches for conventional discrete wavelet
transform (DWT). The second category is the wavelet based detec-
tion, localization, and classification of the power quality problems.
For instance, Poisson et al. presented a good comparison among the
continuous wavelet transform, the multiresolution analysis (MRA)
and the quadratic transform for power quality analysis [7]. The
same authors proposed a recursive algorithm based on continuous
wavelet transform to detect and analyze voltage sags and tran-
sients [8]. The comparison between measured characteristics and
benchmark values are used to detect the presence of disturbances
in analyzed signals and characterize the type of disturbances.
Santoso et al. presented the characterization analysis of distribu-
tion power quality events with Fourier and Wavelet Transform
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Fig. 1. Time–frequency characteristics of STFT and Wavelet [7].
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[9]. S-transform is used in [10] for detecting, localizing, and classi-
fying PQ problems. Wavelet based online disturbance detection for
power quality applications are discussed in details in [11,12]. For
the type of transient event, it has been shown that the method
has advantages of being faster and more precise in discrimination
than conventional approaches. A two-stage system that employs
the wavelet transform and the adaptive neuro fuzzy networks for
power quality identification is proposed in [13]. In this method,
the wavelet multiresolution signal analysis is exploited to reduce
noise and then decompose the monitored signals of the power
quality events to extract its detailed information. A new optimal
feature-vector is suggested and adopted in learning the neurofuzzy
classifier. Gaouda et al. proposed an effective wavelet multiresolu-
tion signal decomposition method for analyzing the power quality
transient events in [14,15]. Several typical power quality distur-
bances were correctly localized and classified. Santoso et al. uti-
lized the squared wavelet transform coefficients to detect and
localize the PQ disturbances in [16]. Liao and Lee proposed a fuz-
zy-expert system for automated detection and classification of
power quality disturbances, in which wavelet transform was used
to obtain the features for the analyzed signal [17]. Since the signal
under investigation is often corrupted by noise, a de-noising
scheme for enhancing wavelet based power quality monitoring
systems is presented in [18]. In this scheme, the threshold for elim-
inating the noise influence is processed adaptively according to the
background noise. Recently, a self organizing learning array (SO-
LAR) system based on wavelet transform is proposed for power
quality disturbances classification [19]. Comparison research of
this method with support vector machine (SVM) method on sev-
eral typical PQ disturbance classifications shows that the proposed
method can provide accurate classification results [19].

Although lots of research achievements have been reported in
recent literature, the objective of detecting, localizing and classify-
ing different kinds of power quality disturbances is still both chal-
lenging and time-consuming. This paper aims to develop a novel
wavelet based scheme for PQ problems – Energy Difference of Mul-
tiresolution Analysis (EDMRA). The rest of this paper is organized
as follows. In Section 2, a brief description of the wavelet transform
and MRA is presented. Section 3 discusses in detail the proposed
EDMRA method. Wavelet MRA is used to decompose the sampled
waveform to several levels. At each decomposition level, the en-
ergy (squared value) of the detail information is used to construct
the feature vector for analysis instead of the standard deviation
[14] and the root mean square value [15]. The advantages of this
method are lower computational cost and better anti-noise perfor-
mance. To avoid unnecessary computation cost, an efficient ap-
proach to find the Minimum Decomposition Level (MDL) for the
EDMRA method is discussed in detail in this section. Since different
wavelets have different characteristics and different computational
cost, the selection of appropriate wavelets is also discussed in this
section. Section 4 discusses the performance of the EDMRA method
in different noisy environments. Gaussian white noise and band
limited spectrum noise are taken into account for analysis and
Monte-Carlo methods are used. Finally, a conclusion is given in
Section 5.
Fig. 2. Nested subspaces of MRA.
2. Wavelet transform and MRA

Mathematics of the wavelet transform was extensively studied
and can be referred in [20,21]. Unlike the Short Time Fourier Trans-
form (STFT) with a fixed window function, the wavelet transform
involves a varied time–frequency window and can provide good
localization property in both time and frequency domain, which
yields nice performance in analyzing PQ disturbances. Fig. 1a and
b gives the time–frequency characteristic of STFT and wavelet
transform, respectively [7]. From Fig. 1a we can see, that the STFT
has a fixed time–frequency window (Dt and Df), which means it is
lacking flexibility. However, the wavelet transform can provide
varied time–frequency windows at different scales (Fig. 1b). This
enables users to choose a proper window to see signals at different
resolutions. This is the main advantages of wavelet transforms
comparing with the STFT.

The MRA was introduced by Mallat in [22]. Define Vj; j 2
ZðintegersÞ as a sequence of linear subspaces. The MRA can be
described through a nested subspaces spanned by a single scaling
function / together with its translates and dilates /ð2mt � kÞ,

� � � � V�2 � V�1 � V0 � V1 � V2 � � � � � L2 ð1Þ

or Vj � Vjþ1 for all j 2 Z and [jV j ¼ L2 and \jV j ¼ f0g.
From Eq. (1) we can see that, as j goes to infinity, Vj enlarges to

become all energy signals (L2), as j goes to negative infinity, Vj

shrinks down to only zero.
For every j 2 Z, define Wj to be the orthogonal complement of Vj

in Vj+1, then

Vjþ1 ¼ Vj �Wj and Wj ?Wj0 if j – j0: ð2Þ

The above Eqs. (1) and (2) can be visualized in Fig. 2. In MRA,
any time series x(t) can be completely decomposed in terms of
the approximations, provided by scaling functions /m;nðtÞ and the
details, provided by the wavelets wm;nðtÞ, where
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/m;nðtÞ ¼ 2�m=2/ð2mt � nÞ; ð3Þ
wm;nðtÞ ¼ 2�m=2wð2mt � nÞ: ð4Þ

The approximations are the low-frequency components of the
time series and the details are the high-frequency components.
MRA leads to a hierarchical fast scheme. This can be implemented
by a set of successive filter banks as described in [20]. In this way,
the decomposition of signal x(t) can be expressed as

xðtÞ ¼ A1ðtÞ þ D1ðtÞ
¼ A2ðtÞ þ D2ðtÞ þ D1ðtÞ
¼ A3ðtÞ þ D3ðtÞ þ D2ðtÞ þ D1ðtÞ ð5Þ
¼ � � �

where AmðtÞ ¼
Pm

n¼�1amn/mnðtÞ, and DmðtÞ ¼
Pm

k¼0

P1
n¼�1bknwknðtÞ,

are called the approximation and detail at level m, respectively.
anm ¼

R1
�1 f ðtÞ/mnðtÞdt and bmn ¼

R1
�1 f ðtÞwmnðtÞdt are called scaling

and wavelet coefficients, respectively.

3. The proposed EDMRA approach: method, performance and
cost

3.1. Energy difference of MRA (EDMRA) method

From the above analysis we can see, the characteristics of the
original waveform can be reflected in different scales after the
MRA decomposition. Based on this observation, we can construct
the feature vector to detect different kinds of PQ disturbances. This
idea is shown in Fig. 3. The sampled waveform was decomposed
into different resolution levels (i) according to MRA. Then the en-
ergy of the detail information at each decomposition level i is cal-
culated according to the following equation:

Ei ¼
XN

j¼1

jDijj2; i ¼ 1; . . . ; l ð6Þ

where Dij ¼ bij; i ¼ 1; . . . ; l is the wavelet (detail) coefficients in
wavelet decomposition from level 1 to level l. N is the total number
of the coefficients at each decomposition level and Ei is the energy
of the detail at decomposition level i. In order to identify different
kinds of PQ disturbances, the energy difference (ED) at each decom-
position level is calculated, which is the difference of the energy Ei

with the corresponding energy of the reference (normal) waveform
at this level Eref ðiÞ,

EDi ¼ Ei � Eref ðiÞ ð7Þ

By observing this EDi feature vector at different resolution levels
and following the criterion proposed later in this section, one can
effectively detect, localize and classify different kinds of PQ
disturbances. This method is named as Energy Difference of MRA
Fig. 3. EDMRA syste
(EDMRA) method. The major advantages of this method include
two aspects. The first one is that by using this method, one can sig-
nificantly reduce the dimensionality of the analyzed data. As we
can see from Fig. 3, for a l levels multiresolution decomposition,
only a l-dimensional feature vector need to be observed. This is a
significant reduction compared to the original sampled waveform.
The second advantage is that this method keeps all the necessary
characteristics of the original waveform for analysis. Different PQ
characteristics are represented by the energy difference at different
resolution scale, which provides an effective way for different
types of PQ detection.

Fig. 4 shows a normal pure sine wave (60 Hz) and its four types
of typical PQ disturbances: low frequency distortion, high fre-
quency distortion, voltage sag and voltage swell. Sampling fre-
quency used is 5 kHz. These PQ disturbance models are based on
the IEEE Standard 1159-1995 (IEEE Recommended Practice for
Monitoring Electric Power Quality) [26], which are widely adopted
in the academic and industry community [15,19]. Specifically, for
the short duration variations, the typical duration for voltage sag
is from 0.5 to 30 cycles with the voltage magnitude between 0.1
and 0.9 pu, while the typical duration for voltage swell is from
0.5 to 30 cycles with the voltage magnitude between 1.1 and
1.8 pu. For the frequency distortions, the typical spectral content
for low frequency distortion is less than 5 KHz with the voltage
magnitude of 0–4 pu, while for the high frequency distortions,
the typical spectral content is between 0.5 and 5 MHz with the
voltage magnitude of 0–4 pu. A detailed discussion of these typical
PQ characteristics can be found in [26] and detailed mathematical
models can also be found in [19]. In our current study, we use the
Daubechies 4 (Db4) wavelets and 12 levels decomposition for anal-
ysis. Since it is well known that wavelet transform can localize the
time information for PQ disturbances, we will focus on the charac-
teristics analysis and performance evaluation of the proposed
EDMRA method. Interested audiences can refer to paper [14,18]
for the detection of the beginning and ending time of the power
quality disturbance. Fig. 5 give the EDMRA analysis result to the
signals in Fig. 4a–d, where the horizontal axis represents the
decomposition level (scale) and the vertical axis is the energy dif-
ference as defined in Eq. (7).

Based on the analysis result in Fig. 5, the following criteria are
proposed for detecting and classifying different kinds of PQ
disturbances.

Conjecture 1:

(1) If the peak-value of the ED is located at scale 6 (curve c and
d), it is an amplitude distortion, which means either swell or
sag disturbance. Otherwise, it is a frequency distortion.

(2) If the triangle (peak-value) is concave downward (curve d,
negative ED), the distortion is a swell. If the triangle is con-
cave upward (curve c, positive ED), the distortion is a sag.
m architecture.



Fig. 5. EDMRA analysis result for the signal in Fig 4.

Fig. 4. Original normal waveform and its distortion signal. (a) Low frequency distortion; (b) high frequency distortion; (c) voltage sag from 0.08 s to 0.196 s; (d) voltage swell
from 0.104 s to 0.24 s.
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(3) If the peak-value is at scale smaller than 6 (curve b), it is a
high-frequency disturbance.

(4) If the peak-value is at scale higher than 6 (curve a), it is a
low-frequency disturbance.

One thing should be noted here is that the reference scale 6 is
related to the sample frequency fs and normal frequency of the
power signal (50 Hz or 60 Hz), this will be discussed in detail in
Section 3.3.

3.2. Study of Joint impact of the frequency distortion and amplitude
distortion

In the above Section 3.1, we consider the frequency distortion
and amplitude distortion separately. In practical electrical distribu-
tion network, the distorted signal may contain both of these two
kinds of distortions. In this part, we study the joint impact of these
two distortions for the proposed EDMRA method.

Fig. 6 shows the joint impact of the frequency and amplitude
distortions. The upper part of Fig. 6 is the signal sag during 0.08–
0.196 s combined with a low frequency distortion. The lower part
of Fig. 6 is the signal swell during 0.104–0.24 s with a high fre-
quency distortion. To illustrate the effectiveness of the wavelet
transform for detection of the beginning and ending time of the
sag and swell in this situation, we use the first level detail informa-
tion of the wavelet decomposition to localize the time information.
Fig. 7 shows the analysis results and we can see the beginning and
ending time of the sag and swell are effectively detected in this
case.

Fig. 8 shows the analysis results for the proposed EDMRA meth-
od with wavelet decomposition at level 12. Comparing Figs. 8 and
5, we conclude that the EDMAR method still maintains all the



Fig. 6. Joint impact of the frequency distortion and amplitude distortion.

Fig. 7. First level detail information of the signal in Fig. 6.
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characteristic points to correctly classify different kinds of PQ
disturbances. Based on the justification criteria proposed in this
paper, we can say that curve 1 represents the sag in a low fre-
quency distortion and curve 2 is the swell in a high frequency
distortion.

3.3. Determination of the MDL

Using the methodology presented so far, we can detect, localize
and classify different kinds of PQ disturbances based on the EDM-
Fig. 8. EDMRA analysis result for the joint
RA method. However, how many levels of decomposition are en-
ough for the EDMRA method to be effective? Obviously, more
levels of decomposition will increase the computational cost. In
this part, we aim to find the Minimum Decomposition Level
(MDL) for the proposed method and modify the above evaluation
criterions to be universal.

In MRA, since both the high pass filter and the low pass filter are
half band, the decomposition in frequency domain for a signal
sampled with the sample frequency fs can be demonstrated in
Fig. 9. Assuming the total decomposition levels for EDMRA method
distortion of frequency and amplitude.



Fig. 9. The wavelet decomposition in the frequency domain.

Table 1
Frequency range of the MRA decomposition.

Decomposition level (l) Frequency range

Approximation information (A) Detail information (D)

1 0 � fs/22 fs/22 � fs/21

2 0 � fs/23 fs/23 � fs/22

. . . . . . . . .

n 0 � fs/2n+1 fs/2n+1 � fs/2n
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is l, Table 1 shows the frequency range at each decomposition level
based on the frequency decomposition shown in Fig. 9.

In the proposed EDMRA method, only the detail information at
each decomposition level is needed. Assuming that the normal ref-
erence frequency of the power signal is fref (50 Hz or 60 Hz) and we
want to locate the energy of this reference signal at level N. Accord-
ing to Table 1, we have

fs=2Nþ1
6 fref 6 fs=2N ð8Þ

From Eq. (8), we get

log2ðfs=fref Þ � 1 6 N 6 log2ðfs=fref Þ ð9Þ

Since we need to locate the energy of the reference frequency at
the center of the final result (level 6 as shown in Fig. 5), the MDL
for the EDMRA methods, denoted as Nmin, is found by

Nmin ¼ 2 � N ð10Þ

For instance, in Fig. 4, sampling frequency fs = 5000 Hz,
fref = 60 Hz, according to Eq. (9), we get:
Fig. 10. Classification result
5:3808 < N < 6:3808 ð11Þ

we should choose N = 6. According to Eq. (10), we get
Nmin ¼ 2 � N ¼ 12. This is the reason why we choose 12 levels of
decomposition in Fig. 5 and why the evaluation reference scale is
6 in the criteria proposed in Section 3.1.

For any actual sampled signal, Eqs. (9) and (10) give the most
efficient way of finding the decomposition levels for the EDMRA
method. For example, if we sample the same waveform in Fig. 4
by sampling frequency fs = 2500 Hz, we find only 10 levels of
decomposition is necessary according to Eqs. (9) and (10). Fig. 10
gives the analysis result of 10 levels decomposition for the same
signal as shown in Fig. 4. Comparing the analysis results in Figs.
10 and 5, we can see that, 10 levels decomposition is enough for
classification varies type of PQ disturbances in this situation
(fs = 2500 Hz). In this way, we saved about 17% of the computa-
tional time compared to the 12 levels of decomposition.

Now, we can modify the evaluation criterions in Section 3.1 to a
universal form:

Conjecture 2:

(1) If the peak-value of the ED is located at scale of Nmin=2, the
disturbance is either sag or swell (negative ED means swell
and positive ED means sag).

(2) If the peak-value is at a scale smaller than Nmin=2, the distur-
bance is high frequency distortion; otherwise, it is a low fre-
quency distortion.

The regions of this classification are shown in Fig. 10.
of the EDMRA method.



Table 2
Wavelet characteristics.

Wavelet name Orthogonal Compact
support

Support
width

Filters
length

Symmetry

Haar Yes Yes 1 2 Yes
Daubechies Yes Yes 2N-1 2N Far from
Coiflets Yes Yes 6N-1 6N Near from
Symlets Yes Yes 2N-1 2N Near from
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3.4. Choice of a suitable wavelet

It is well known that the choice of the appropriate wavelet is
very important for all the wavelet based PQ analyses [4,16]. In this
part, we investigate the influence of different kinds of wavelets to
the proposed EDMRA method.
Fig. 11. EDMRA analysis result
Four commonly used wavelets, namely, Daubechies wavelets,
Symlets and Coiflets wavelet are taken into account. Notice that
the Haar wavelets are Daubechies wavelets with N = 1. Table 2
shows their corresponding features and Fig. 11a–d is the EDMRA
analysis result to the previous distorted signal in Fig. 4
(fs = 5000 Hz, MDL = 12).

From Fig. 11a–d we can see, that although different wavelets
have some influence of the final analysis result, all these wave-
lets keep good resolution to classify various type of PQ distur-
bances. By these means, we can claim that the EDMRA method
has good robustness characteristics. However, it is very impor-
tant to evaluate corresponding computational cost of different
wavelets. This will provide useful information for actual applica-
tion, considering the tradeoff between performance and time
cost.
s with different wavelets.



Table 3
Computational time for different wavelets.

Wavelets Number of filter coefficients Computational time (s) Dt% Wavelets Number of filter coefficients Computational time (s) Dt%

Haar 2 0.5412 / Sym 8 16 0.6100 12.71
Db2 4 0.5756 6.35 Coif 1 6 0.5733 5.93
Db5 10 0.5988 10.64 Coif 2 12 0.5875 8.55
Db8 16 0.6172 14.04 Coif 3 18 0.5984 10.56
Db10 20 0.6231 15.13 Coif 4 24 0.6119 13.06
Sym2 4 0.5681 4.97 Coif 5 30 0.6256 15.59
Sym5 10 0.5891 8.85
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Assume that the input discrete signal x(t) is represented by a
vector of length N = 2K. The DWT using a wavelet with M filter coef-
ficients, we need to compute

yA½n� ¼
X1

k¼�1
xðkÞc½2n� k� ¼

XM�1

k¼0

c½k�x½2n� k�; ð12Þ

yD½n� ¼
X1

k¼�1
xðkÞh½2n� k� ¼

XM�1

k¼0

h½k�x½2n� k�; ð13Þ

where yA is the low pass component (approximation) and yD is the
high pass component (details) and c[k] and d[k] are the low pass
(approximation) filter and high pass (detail) filter coefficients as de-
fined in the dilation equations:

/ðtÞ ¼
XM�1

k¼0

c½k�/ðt � kÞ and w ¼
XM�1

k¼0

h½k�/ðt � kÞ; ð14Þ

where h½k� ¼ ð�1Þkc½M � k�, M is the filter length (total number of
filter coefficients). Notice that when the DWT applied to discrete
signal (a vector), the computation is simply the convolution of
two vectors, the signal and the filter coefficients. After a type of
wavelets is chosen, the length of wavelet filter will be kept the same
at all levels. For this reason, the computation complexity is mainly
dependent on the length of the wavelet filters. Since the mother
wavelet produces all wavelet functions (via the dilation equations)
used in the transformation through translation and scaling, it deter-
mines the characteristics (such as smoothness, symmetry) of the
resulting Wavelet Transform. Therefore, the details of a particular
application should be taken into account and the appropriate
mother wavelet should be chosen in order to use wavelet transform
effectively. For example, the Coiflets have important near symmetry
property which is highly desired in image processing, since they
correspond with nearly linear phased filters. Certainly, if the com-
putational complexity is the only factor under consideration, the fil-
ter length should be chosen as short as possible.

From Section 2, we see that, the time complexity is proportional
to the number of filter coefficients, thus wavelets with larger num-
ber of coefficient take longer time to compute. To gain empirical
understanding of the computational complexity of different wave-
let families, we conducted the experiments in Matlab 6.2 by Intel
Pentium 4 1.8 GHz processor using a stopwatch timer. The compu-
tational time for Haar wavelet is chosen as the base for evaluation
and we define the following variable Dt% for reference

Dt% ¼ twavelets � tHaar

tHaar
; ð15Þ

where twavelets means the EDMRA method computational time by
the specific choosing wavelets, thaar is the reference computation
time of the EDMRA method by Haar wavelet. Dt% means how much
more computational time should the specific choice of wavelet
needed for EDMRA method compared to that of Haar wavelet. Based
on the above definition, Table 3 gives the results according to Eq.
(15).

Based on the data in Table 3, although Haar wavelet has the
smallest computational cost, further investigation shows that Haar
wavelet has difficulty to localize the time information for the
beginning and ending time of the disturbance. Therefore, in the sit-
uation that the classification of different kinds of PQ disturbances
is the only concerned issue, we can choose Haar wavelet for EDM-
RA method to avoid unnecessary computational cost. Otherwise,
based on the data in Table 3, we recommend using wavelets with
shorter filter length, such as Db2, Sym2 or Coif1 wavelets for prac-
tical application since they have relatively smaller computational
cost as well as more reliable analysis performance. Of course, this
kind of selection should also be based on their noise tolerance per-
formance in actual applications, which will be discussed in detail
in Section 4.

4. Noise tolerance analysis for EDMRA method

Since noise is omnipresent in electrical power distribution net-
works, we analyze whether the proposed EDMRA method is still
effective in a noisy environment. Two types of noise, namely
Gaussian white noise and band limited spectrum noise are
considered.

4.1. Gaussian white noise

Gaussian white noise was considered in papers [18,23,24] for
power quality disturbance analysis. In this section, we suppose
that the noise riding on the sampled signal for EDMRA analysis is
white Gaussian distribution. Here we focus on the detection and
classification of different kinds of PQ disturbances under different
signal to noise ratio (SNR). A detailed discussion about the localiza-
tion of the beginning and ending time of the disturbances in noise
environment can be referred in paper [18], in which an adaptive
threshold of wavelet analysis is proposed to eliminate the noise
influence.

Fig. 12 shows the EDMRA analysis result for the signal in Fig. 4
in the noisy environment with SNR = 20 dB. Comparing Fig. 12 with
Fig. 5 we can see, the EDMRA method has good anti-noise perfor-
mance and allow us to correctly classify different kinds of PQ dis-
turbances in the noisy environment.

To test the EDMRA method performance in different noise envi-
ronments, we use Monte-Carlo method to get the average correct
classification rate when SNR varied from 20 dB to 50 dB. The value
of SNR is defined as follows

SNR ¼ 10 logðPs=PnÞdB; ð16Þ

where Ps is the power (variance) of the signal and Pn is that of the
noise. For each PQ disturbance, 100 cases with different parameters
were simulated for each choice of wavelets. The average correct
classification rate according to the evaluation criteria proposed in
Section 3 is calculated for different wavelets under different SNR.
The test results are shown in Fig. 13a–d.

4.2. Band limited spectrum noise

In real electrical distribution networks, noise caused by power
electronic devices, control circuits, loads with solid-state rectifiers



Fig. 12. EDMRA analysis result in Gaussian white noise environment (SNR = 20 dB).

Fig. 13. Classification accuracy for different wavelet under different SNR.
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and switching power supplies are not Gaussian white noise. It has
been shown that the power quality noise is defined as electrical
signals with broadband spectral content lower than 200 KHz
superimposed upon the signal [25]. In this research, we consider
a band limited noise spectrum close to the fundamental frequency
(60 Hz).
Fig. 14 shows the EDMRA analysis (Db4 wavelet, SNR = 20 dB)
result for the distorted signal combined with a band limited noise.
As we can see here, the EDMRA method still shows good perfor-
mance in this kind of noise environment.

To test the performance of different wavelets in different SNR
within the band limited noise, Fig. 15 shows the Monte-Carlo



Fig. 14. EDMRA analysis result in band limited noise environment (SNR = 20 dB).

Fig. 15. Classification accuracy in band limited noise environment.
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method for the average correct classification probability for differ-
ent SNR.

Based on the analysis of the experimental results in Figs. 13 and
15, we conclude that the EDMRA method is not noise sensitive and
performed well in the noisy environments. Although different
types of noise and SNR have some influence on its performance,
EDMRA method always can achieve high correct classification
probability as presented in Figs. 13 and 15.
5. Conclusions

This paper presents an effective EDMRA method for detection,
localization and classification of different kinds of PQ disturbances.
The functional relationship between the MDL and sampling fre-
quency is presented to avoid unnecessary computational cost. Dif-
ferent kinds of wavelets are taken into account in this paper and it
is recommended that one can choose wavelets with short filter
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length, such as Db2, Sym2 or Coif 1 for practical applications based
on their satisfactory performance as well as lower computational
cost. Finally, two types of noise, named Gaussian white noise and
band limited spectrum noise, are considered in the analysis.
Monte-Carlo simulations are used to show the effectiveness of
the proposed method in different noise environments empirically.
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