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Abstract—In this paper, an optimized approximation algorithm
(OAA) is proposed to address the overfitting problem in function
approximation using neural networks (NNs). The optimized
approximation algorithm avoids overfitting by means of a novel
and effective stopping criterion based on the estimation of the
signal-to-noise-ratio figure (SNRF). Using SNRF, which checks
the goodness-of-fit in the approximation, overfitting can be auto-
matically detected from the training error only without use of a
separate validation set. The algorithm has been applied to prob-
lems of optimizing the number of hidden neurons in a multilayer
perceptron (MLP) and optimizing the number of learning epochs
in MLP’s backpropagation training using both synthetic and
benchmark data sets. The OAA algorithm can also be utilized in
the optimization of other parameters of NNs. In addition, it can be
applied to the problem of function approximation using any kind
of basis functions, or to the problem of learning model selection
when overfitting needs to be considered.

Index Terms—Function approximation, neural network (NN)
learning, overfitting.

I. INTRODUCTION

UNKNOWN function approximation or model approxi-
mation is needed in many areas, and has been widely

investigated. Without prior knowledge of the system properties,
we can only obtain a limited number of observations and use a
set of basis functions to fit the data to a desired level of accuracy
in order to approximate the system function. The basis func-
tions could be, for instance, a set of orthogonal functions, Walsh
functions, sinusoidal waves, or sigmoid functions. Common
approximation methods include least squares fit, neural net-
works (NNs) in the form of feedforward multilayer perceptrons
(MLPs) [1], radial basis function (RBF) networks [2], etc. In
NN learning, adding more hidden neurons is equivalent to
adding more basis functions in function approximation. In
addition to the number of hidden neurons, the training accuracy
could also be affected by several other parameters, including
the number of layers, the number of training samples, the length
of learning period, the choice of neuron activation functions,
and the training algorithm. Previous work has shown that NNs
can be used as universal approximators [3]–[5]. For universal
approximators, how to determine the proper parameters to use
in the model without a preset target for training accuracy is one

Manuscript received October 6, 2006; revised April 11, 2007 and August 23,
2007; accepted October 12, 2007.

The authors are with the School of Electrical Engineering and Computer Sci-
ence, Ohio University, Athens, OH 45701 USA (e-mail: yliu@bobcat.ent.ohiou.
edu; starzyk@bobcat.ent.ohiou.edu; zhuz@ohiou.edu).

Digital Object Identifier 10.1109/TNN.2007.915114

of the major challenges, which makes the design and use of
NNs more of an art than a science [6].

In order to optimize the number of hidden neurons, several
techniques have been developed in literature, which correlate
it with the number of training samples or the input and output
layer sizes [7]–[9]. Other work estimates the complexity of the
desired function and relates it to the number of hidden neu-
rons [10]. If the NN training uses backpropagation (BP) algo-
rithm, it has been shown that increasing the number of hidden
neurons and the number of weights makes it easier to find the
global minimum [11], [12]. However, without examining the
goodness-of-fit or considering the statistical characteristics of
the training data, these approaches are less theoretically sound.
Geometric interpretation given in [6] provides some insight into
the problem of determining the number of neurons. It helps to
find the minimum structure of MLP necessary for a satisfactory
approximation of a given problem. However, such method can
be only applied to problems with the input space’s dimension-
ality up to two. Some work [13]–[16] on estimating the number
of hidden neurons focused on the learning capabilities of the
MLP on a training data set without considering the possibility
of overfitting.

Using an excessive number of basis functions will cause
overfitting, which means that the approximator overestimates
the complexity of the target problem. This is usually referred
to as the bias/variance dilemma [17]. A natural upper limit
for the number of basis functions is the number of available
training data points. The major purpose of developing function
approximation is to interpolate in a meaningful way between
the training samples [18], in order to generalize a model from
existing training data and make predictions for novel data.
Such generalization capability, usually measured by the gen-
eralization error [19], is degraded by overfitting, which leads
to a significant deviation in prediction. It was addressed in
[6] that finding the minimum structure of MLP in most cases
results in the least cost of computation, least requirements
on implementation resources, and best generalization. In this
sense, determining the optimum number of neurons or finding
the minimum structure to prevent overfitting are critical in
function approximation.

During BP training in NNs, the weights are adjusted incre-
mentally. Therefore, besides the network size, training accu-
racy also depends on the number of training epochs. Too many
epochs used in BP training will lead to overtraining, which is a
concept similar to overfitting.

A lot of effort has been put into studying the overfitting
problem in NNs. Some studies show that generalization perfor-
mance of NN can be improved by introducing additive noise
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to the training samples [18]–[20]. In [18], noise is added to
the available training set to generate an unlimited source of
training samples. This is interpreted as a kernel estimate of the
probability density that describes the training vector distribu-
tion. It helps to enhance the generalization performance, speed
up the BP algorithm, and reduce the possibility of local minima
entrapment [20]. These methods provide a useful tool to expand
data sets. However, they only demonstrate improvement on an
existing network with preset network parameters. Optimiza-
tion of the network architecture (for example, the number of
neurons) has not been addressed. The design of NNs to avoid
overfitting remains an open problem.

To find the optimal network structure with an optimal size
of the hidden layer or optimal value of a certain network
parameter, constructive/destructive algorithms were adopted to
incrementally increase or decrease the parameter to be opti-
mized [21]–[24]. During the constructive/destructive process,
cross validation is commonly used to check the network
quality [25] and the design parameter is chosen using early
stopping [26]–[28]. In these approaches, the available data are
divided usually into two independent sets: a training set and
a validation or testing set. Only the training set participates
in the NN learning, and the validation set is used to compute
validation error, which approximates the generalization error.
The performance of a function approximation during training
and validation is measured, respectively, by training error
and validation error presented, for instance, in the form
of mean squared error (MSE). Once the validation performance
stops improving as the target parameter continues to increase,
it is possible that the training has begun to fit the noise in the
training data, and overfitting occurs. Therefore, the stopping
criterion is set so that, when starts to increase, or equiva-
lently, when and start to diverge, it is assumed that
the optimal value of the target parameter has been reached.

Singular value decomposition (SVD) approach was also used
to quantify the significance of increasing the number of neu-
rons in the hidden layer in the constructive/destructive process
[29]. The number of neurons is considered sufficient when each
additional neuron contributes effect that is lower than an ar-
bitrary threshold. There are several other model selection cri-
teria, such as Akaike’s information criterion (AIC) [30] and the
minimum description length (MDL) [31], as a function of the
model complexity, the training performance, and the number of
training samples. Some work applied such information criteria
in the problem of finding optimal NN structures [32], [33]. AIC
was introduced in order to maximize the mean log-likelihood
of a model while avoiding unnecessary complexity. A penalty
term was applied to make model with excessive number of in-
dependent parameters less desirable. The algorithm using AIC
as stopping criterion will choose the model with the minimum
AIC. The bias/variance decomposition [13] is a method used to
decompose the bias and variance terms from MSE and to mea-
sure the sensitivity of a learning model to the training data. Fit-
ting into the available data will reduce the bias while overfitting
may induce large variance. In practice, the bias and variance
components for a certain learning model are estimated statisti-
cally over several training sets samples from the same function.
Among several model choices, the one with least bias and vari-

ance is chosen as the optimum. Overall, cross validation and
early stopping are still the common techniques used in finding
optimal network structure up to date.

Nevertheless, in cross validation and early stopping, the use
of the stopping criterion based on is not straightforward
and requires definite answers to several issues. For example,
users have to find out the distribution of data so that training and
validation sets can be properly divided and to assure that each
of them have good coverage of the input space. In addition, as
demonstrated in [11], the validation data have to be representa-
tive enough due to its size and data distribution, so that can
provide an unbiased estimate of the actual network performance
and the real generalization error . As validation data are sta-
tistically sampled, has only a statistical chance to correlate
with the generalization error, thus it is not a reliable measure.

, as a function of target parameter, may have many local
minima during the training process. It is not definite which one
indicates the occurrence of overfitting [27], [28] and it is even
more difficult to find out how likely overfitting actually hap-
pened. Therefore, during the constructive/destructive process,
users have to go through the process of adjusting the target pa-
rameter and observing the variation of to vaguely deter-
mine a good place to stop, which is a somewhat empirical and
a not well-quantified process. Three classes of better defined
stopping criteria based on the concept of early stopping were
proposed in [27], from which users can choose based on dif-
ferent concerns on efficiency, effectiveness, or robustness. The
first class of stopping criteria (GL) proposes to stop training
as soon as the generalization loss, measured by the increase of

, exceeds a certain threshold. The second class (PQ) evalu-
ates the quotient of generalization loss and training progress so
that even if generalization error increases, the rapid decrease of
training error will suggest continuation of the process. The third
class (UP) suggested stopping the process when the generaliza-
tion error kept increasing in several successive steps. It helped
the users to choose stopping criterion in a systematic and auto-
matic way to avoid the ad hoc process. However, as long as cross
validation is used, the methods require omission of the valida-
tion set in the training stage, which is a significant waste of the
precious data available for training in some real-life cases, e.g.,
plant data set [34].

In general, overfitting occurs when excessive number of
neurons is used in the network. In these cases, although the
may not be severely degraded, the network does overestimate
the complexity of the problem and it cost more resources to
train and implement. The case of severe overfitting that goes
undetected using the validation set can be easily illustrated with
an example of a synthetic data set obtained from a noisy sine
wave signal approximated by polynomial functions. Fig. 1(a)
shows training and validation data sets. Fig. 1(b) shows the
values of training and validation errors as a function of the
orders of approximating polynomials. Also shown in Fig. 1(b)
is (usually unknown) generalization error, which measures the
deviation of the approximating result from the original sine
wave. As illustrated in Fig. 1(b), the validation error did not
increase significantly enough to indicate severe overfitting that
occurs when the order of approximating polynomial was higher
than 18.
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Fig. 1. (a) Training and validation set. (b) Variation of errors in function
approximations.

Thus, it is desirable to have a measure that can quantify under-
fitting or overfitting of a network on a given learning problem.
An algorithm based on such measure should be able to recognize
the occurrence of overfitting by examining the training error
without using a validation set and show where the process can
be safely stopped so that the optimal structure of the MLP for
a given problem is found. In this paper, a signal-to-noise-ratio
figure (SNRF) is defined to measure the goodness-of-fit using
the training error. Based on the SNRF measurement, an op-
timized approximation algorithm (OAA) is proposed to avoid
overfitting in function approximation and NN design applica-
tions.

The organization of this paper is as follows. In Section II,
the definition and estimation method of SNRF is introduced.
The OAA procedure utilizing SNRF-based stopping criterion is
demonstrated in Section III. The OAA is validated using both
simulated and benchmark data, as shown in Section IV. Finally,
features of the OAA are discussed in Section V.

II. ESTIMATION OF SIGNAL-TO-NOISE-RATIO FIGURE

A. SNRF of the Error Signal

In order to have a clear indication of overfitting, we need to
examine the difference between the approximated function and
the training data. This difference, which is defined as the error
signal in this work, comes from two possible sources: the ap-
proximation error due to the limited training accuracy in approx-
imation with the given set of basis functions and an unknown
level of noise in the training data. The noise can be the result
of multiple causes, such as input noise, output noise, or system
disturbance which will all be treated as the output noise. In func-
tion approximation, without any knowledge of the noise sources
and based on the central limit theorem, we can assume the noise
as white Gaussian noise (WGN) without losing generality. A
critical question is whether there is still useful signal informa-
tion left to be learned in the error signal. If there is, based on

the assumption that the target function we try to approximate
is continuous and that the noise is WGN, we can estimate the
level of signal and noise in the error signal. The ratio of the esti-
mated signal level to the noise level in the error signal is defined
as SNRF, and it is used to measure the amount of information
left unlearned in the error signal. The SNRF can be precalcu-
lated for a signal that contains solely WGN. The comparison of
SNRF of the error signal with that of WGN determines whether
WGN dominates in the error signal. If the noise dominates, there
is little useful information left in the error signal, and there is no
point to reduce it anymore as this will lead to overfitting. The
estimation of SNRF will be first illustrated using a 1-D function
approximation problem, followed by the discussion for multidi-
mensional problems.

B. SNRF Estimation for 1-D Function Approximation

Assume that in a 1-D function approximation problem,
training data are uniformly sampled from the input space

with additive noise at an unknown level. An approx-
imation is obtained using a certain set of basis functions. The
error signal contains a noise component denoted by , and
an approximation error signal component, which is the useful
signal left unlearned, and therefore, denoted by

(1)

where represents the number of samples. Without losing gen-
erality, can be modeled as a WGN process with standard de-
viation , and stands for a WGN process with unit standard
deviation. The energy of the error signal is also composed of
signal and noise components

(2)

The energy of can be calculated using the autocorrelation
function

(3)

where represents the correlation calculation. Notice that a
presumption is made that the target function needs to be contin-
uous, and the approximation is usually a continuous function.
Practically, the useful signal left unlearned is also a continuous
function. We could further assume that, if treated as time signals,
the target function and both have relatively small bandwidth
compared to the sampling rate or to the noise bandwidth. As a
result, there is a high level of correlation between two neigh-
boring samples of . Consequently

(4)

where represents the (circular) shifted version of the . Due
to the nature of WGN, noise of a sample is independent of noise
of neighboring samples

(5)

where represents a replica of shifted by one sample.
Because the noise component is independent of the signal com-
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Fig. 2. (a) Standard deviation of SNRF in a 1-D case. (b) Histogram of
SNRF for � samples in a 1-D case.

ponent, the correlation of with its shifted copy approxi-
mates the signal energy, as shown in

(6)

The difference between the autocorrelation with no time shift
defined in (3) and gives the noise energy in the error
signal

(7)

The ratio of the signal level to the noise level, defined as the
SNRF of the error signal, is obtained as

SNRF (8)

Notice that in SNRF, the signal component and noise compo-
nent are decomposed by using the correlation between neigh-
boring samples. In the bias/variance decomposition, similar es-
timations of the signal or noise level are obtained from bias
and variance components, which are calculated statistically in
common practice.

When learning of the target function improves, it is expected
that the useful signal left unlearned in the error signal is reduced,
while the noise component does not change so that SNRF will
decrease. In order to detect the existence of useful signal in , the
SNRF has to be compared with the SNRF estimated for WGN
using the same number of samples. When there is no signal in
, we have

(9)

The SNRF for WGN is calculated as

SNRF

(10)

It is observed that the SNRF is independent of the noise
level , which means that SNRF only needs to be estimated
with unit standard deviation in order to obtain the general char-
acterization for any level of WGN. The expected value of the
correlation is zero, which would intuitively indi-
cate a zero SNRF . However, SNRF is estimated using
a limited number of samples, thus it is a random value related to
the number of samples . Average value and standard deviation
of SNRF can be derived for a given

(11)

Because , we have

(12)

(13)

Note that the samples of SNRF are statistically in-
dependent. According to the central limit theorem, if
is large enough, the samples of SNRF tend to follow
Gaussian distribution with mean and standard
deviation . In Fig. 2(a), from a
10 000-run Monte Carlo simulation is shown in the logarithmic
scale as a function of the number of samples. The estimated

in (13) agrees with the simulation results,
especially for the values larger than 64. Such estimation
is expected to work well for the sample numbers available in
real-world training data sets.

C. The 1-D SNRF-Based Stopping Criterion

The stopping criterion in OAA can now be determined by
testing the hypothesis that SNRF and SNRF are from the
same population. The value of SNRF at which the hypothesis
is rejected constitutes a threshold below which training OAA
is stopped. Fig. 2(b) illustrates the histogram of SNRF
with samples, as an example. It is observed that the
5% significance level [35] can be approximated by the average
value plus 1.7 times standard deviations for an arbitrary .
As shown in Fig. 2(b), the threshold can be calculated using

for samples. Notice
it agrees with the threshold of 5% significance level calculated
using Gaussian distribution with mean and stan-
dard deviation .

SNRF-based stopping criterion in OAA can be defined as an
SNRF smaller than the threshold determined by (14), in which
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case, there is at least 95% probability that error signal represents
a WGN and learning must stop to avoid overfitting

(14)

The threshold can be recalculated for different significance
levels if needed, also based on the mean and stan-
dard deviation derived in (12) and (13).

In the previous discussion, (6) and (7) have been developed
based on the assumption that could be treated as a signal with
evenly spaced samples. In a general 1-D function approxima-
tion problem, the input samples may be unevenly spaced. Yet,

, , and can still be approximated using (3), (6), and
(7), respectively. In addition, in the cases when only sparse data
samples are available, the data set can be expanded using the ap-
proaches in [18]–[20]. Thus, the SNRF can be estimated using
(8) and the overfitting is determined by comparison of SNRF
with the threshold in (14).

D. SNRF Estimation for Multidimensional Function
Approximation

In a general multidimensional function approximation
problem, the training data are usually randomly sampled from
the input space . The method used to estimate SNRF
in the 1-D case cannot be directly applied to such multidimen-
sional problem. However, we could still assume that variation of

along each of the dimensions is slow compared to the average
sampling distance. Thus, the same principle of signal and noise
level estimation using correlation may be utilized. Because
changes slowly in all directions, the continuous function can
be locally approximated around using weighted average of
a set of points, which includes and its neighbors
with the shortest distances. These points are expected to have
correlated values, whereas the noise on these points is assumed
to be WGN and has independent samples. As a result, the signal
and noise levels at each sample can be
estimated through the correlation with its nearest neighbors
and computed using a weighted combination of the products
of values with each of its neighbors .
Because the samples of are assumed to be spatially corre-
lated, the distances between samples can be used to calculate
the weight values. In a -dimensional space, the weights are
obtained based on the scaled distance between and
to the power of , and normalized, as given in the following,
where :

(15)

Thus, the overall signal level of can be calculated as

(16)

As in (3), the autocorrelation of estimates signal plus noise
level

(17)

Finally, the SNRF for neighbors approach in a multidi-
mensional input space is computed as

SNRF (18)

Notice that when applied to 1-D cases with , (18) is
identical to (8).

The same calculation is done for WGN with unit standard
deviation to characterize the SNRF in multidimensional
space. When there is no signal, SNRF is estimated using
(18) with . In the calculation of of WGN, is
an independent random process with respect to or . Because

(19)

we can have

(20)
where is the standard de-
viation of the perceived signal energy at sample in WGN. It
has the minimum value when the has equal values (i.e., with
uniform sampling distance), which sets the lower bound. Notice
that the upper and lower bounds in (20) are equal for ,
independently of the input space dimensionality. For ,
the standard deviation gets closer to the upper bound in prob-
lems with large dimensionality , because the closest neighbor
dominates the weight calculation.

In the estimation of , it has to
be considered that not all the items are independent of
each other with respect to and . For instance, when points

and are the closest neighbors to each other, is
calculated twice in . In the worst case,
all the terms may appear twice, therefore, we have

(21)

Then, we have the estimate for the standard deviation of
SNRF as follows:

(22)

Also, the average of SNRF is estimated as

(23)
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Fig. 3. (a) Standard deviation of SNRF in a 3-D case with� � �. (b)
Histogram of SNRF for 8000 samples in a 3-D case with� � �.

E. Multidimensional SNRF-Based Stopping Criterion

Notice that the estimation of and
using (22) and (23) is no longer a func-

tion of the number of samples in the neighborhood or problem
dimensionality. Such simplification yields a universal detection
threshold. for in a 3-D case from a
1000-run Monte Carlo simulation is shown in the logarithmic
scale in Fig. 3(a). The distances among WGN samples are
randomly generated. The estimated in (22) is
consistent with an upper bound of , and the bounds
developed in (20) are validated.

Fig. 3(b) shows the histogram of SNRF for 8000 sam-
ples in the 3-D case with . We note that the threshold
of the significance level 5% can be approximated by the
average value plus 1.7 times the standard deviations. With

the threshold is calculated as
. If not all the samples are independent, central

limit theorem does not apply and the distribution of SNRF
is not Gaussian. In such case, the upper estimate of the standard
deviation in (22) is used. The threshold can be experimentally
established as the average value plus 1.2 times upper estimate
of the standard deviation, to achieve the 5% significance level.
Note that this result coincides with (14) for

as the approximated upper limit in (22) (24)

While using can improve estimation of the signal
level by greater noise filtering when a large number of training
samples is available, we did not observe a significant change
in the detection threshold levels, comparing to . Thus,
using is preferred for computing efficiency even in mul-
tidimensional cases, when the number of training data is small.

In summary, a method for estimating the SNRF of the error
signal has been demonstrated. By comparing SNRF with

SNRF , we are able to develop the optimized approxima-
tion algorithm (OAA) as discussed in Section III. The threshold
for the OAA stopping criterion is determined from the estimate
of SNRF , and can be applied to problems of an arbitrary
number of samples and dimensions.

III. OPTIMIZED APPROXIMATION ALGORITHM

Using SNRF, we can estimate the signal level and the noise
level for the error signal and then determine the amount of useful
signal information left unlearned. When there is no information
left, the learning process must be stopped, and the optimal ap-
proximation has been obtained without overfitting. Otherwise,
the target parameter has to be increased to improve the learning
and reduce the approximation error. The following procedure
describes the basic steps of the OAA for the optimization of a
given parameter of the NNs.
Step 1) Assume that an unknown function , with input

space , is described by training samples
as , .

Step 2) The signal detection threshold is precalculated
for the given number of samples based on

.
Step 3) Select as the initial value for the target parameter.
Step 4) Use the MLP (or other learning models) to ob-

tain the approximated function
.

Step 5) Calculate the error signal ,
.

Step 6) Determine SNRF of the error signal , SNRF .
For a 1-D problem, use (8); for a multidimensional
problem, use (18).

Step 7) Stop if the SNRF is less than , or if
exceeds its maximum value. Otherwise, increment

and repeat Steps 4)–7).
Step 8) If SNRF is equal to or less than , is

the optimized approximation.

IV. SIMULATION AND DISCUSSION

An MLP is used as an example learning system to demon-
strate the use of the proposed OAA. The MLP contains the input
layer and the output layer with linear transfer functions and
hidden layers with nonlinear transfer functions in the middle.
OAA with SNRF-based stopping criterion will be tested in two
aspects, optimization of the number of hidden neurons and opti-
mization of the number of learning epochs, using synthetic data
sets and benchmark data sets. First, the synthetic data sets are
studied because we know the true target function so that real
generalization error can be calculated and the results pro-
vide a visual insight to the problem and its proposed solution.
Subsequently, the benchmark data sets provide justification for
the use of OAA in practical applications.

In all the simulation examples, when OAA is tested in op-
timization of the number of hidden neurons, the least squared
learning method (LSM) proposed in [36] as initialization
method will be used as training method in this paper. In LSM,
the adaptation of weights in MLP is based on the least squared
calculation so that the learning performance is only affected by
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Fig. 4. Simulation I: optimization of number of hidden neurons. (a) SNRF of
the error signal and the threshold. (b) Training performance. (c) Validation per-
formance.

the number of hidden neurons representing the number of basis
functions without concerning the number of iterations.

In addition, in all the simulation examples, when the number
of learning epochs is optimized, an MLP with preset structure is
trained using the BP method, implemented using the MATLAB
NNs toolbox. The SNRF-based criterion in OAA will determine
when to stop the learning to avoid overtraining (overfitting).

It is expected that when the SNRF-based criterion recognizes
overfitting, either and will start to diverge from each
other, or will reach a minimum. Such observation will help
to prove the effectiveness of the OAA with the SNRF-based
stopping criterion. The results, including the stopping points
and corresponding , , and (for synthetic data)
from OAA will be compared with those from four other classes
of stopping criteria described in [27] and [30]. Specific cri-
teria used in the comparison are denoted as follows: AIC [30],
GL GL (generalization loss with thresholds [27]),
PQ PQ (generalization loss over training progress with
thresholds [27]), and UP UP (the number of suc-
cessive increases in the generalization error [27]). To calculate
the AIC for MLP, the number of free parameters is equal to the
overall number of weights and the bias.

Simulation I: 1-D Function Approximation

First, the desired function to be approximated is
, which is the same target function as used in

[18]. A four-layered MLP is used as the learning prototype with
the number of hidden neurons to be optimized. The number

Fig. 5. Comparison of approximated function using three and 20 neurons.

TABLE I
SIMULATION I: RESULT COMPARISON FOR OPTIMIZING NUMBER OF NEURONS

of hidden neurons in these two hidden layers is set equal in
the following simulation. The training and validation data sets,
containing 200 samples each, are randomly sampled from the
input space, and the outputs are subjected to WGN with a
standard deviation of 0.2.

Simulation results show that SNRF goes below the threshold
when the number of hidden neurons on each layer is more than
three for the four-layered MLP, as can be seen from Fig. 4(a). As
shown in Fig. 4(b), the approximated function for the training
data obtained from the MLP with size 1-3-3-1 approximates the
target function well. At the same time, it makes reasonable pre-
dictions on the unseen validation data, as shown in Fig. 4(c).
Although the produced by MLP with 20 neurons is only
6% higher than that by three neurons, the MLP with 20 neurons
seriously overestimates the complexity of the problem and the
overfitting definitely shows up, as in the comparison in Fig. 5.

The results from different kinds of stopping criteria are com-
pared in Table I. Among all the stopping criteria, SNRF-based
stopping criterion suggests the minimum structure that can effi-
ciently handle the target problem and yield the minimum gen-
eralization error, which corresponds to possibly the best gener-
alization ability.

In [18], the same target function is approximated using an
MLP with size 1-13-1. It was demonstrated that the overfit-
ting problem can be mitigated to some degree by using additive
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Fig. 6. Approximated function using (a) ten and (b) 200 learning epochs.

TABLE II
SIMULATION I: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF LEARNING EPOCHS

noise to expand the sparse data set [18]. However, without opti-
mizing the network structure, the approximated function still de-
viates from the desired function. Using the proposed OAA, the
SNRF-based stopping criterion shows that the optimal number
of hidden neurons for this three-layered MLP is five.

With such 1-5-1 MLP, the number of learning epochs of the
BP algorithm can be optimized using SNRF-based stopping cri-
terion in OAA. It suggests stopping the training after ten epochs.
The approximated function after ten epochs is compared with
that after 200 epochs in Fig. 6, which shows that large number
of learning epochs induces overfitting and the SNRF-based stop-
ping criterion is able to stop the learning process at the optimum
point.

The results of optimizing the number of learning epochs from
different kinds of stopping criteria are compared in Table II.
SNRF-based stopping criterion suggests stopping the training
with minimum number of learning epochs in this case and shows

Fig. 7. Multidimensional function to be approximated.vsk 6pt

Fig. 8. Simulation II: optimization of number of hidden neurons. (a) SNRF of
the error signal and the threshold. (b) Training and validation errors.

minimum generalization error. Notice that because the network
structure does not change during the process, the AIC stopping
criterion can not be applied and will be denoted as “N/A” in the
result tables. Some of the stopping criteria, including GL , GL ,
and GL , have not been met even with the maximum number
of learning epochs and will be denoted as “incomplete” in the
result tables.

Simulation II: 2-D Function Approximation

A function is
used as the target function to illustrate a multidimensional case,
as shown in Fig. 7. Data points are randomly sampled adding
WGN with a standard deviation of 0.1 to produce training and
validation data sets, each containing 100 samples.

The OAA is applied to optimize the number of hidden neu-
rons of a four-layered MLP. SNRF falls below the threshold
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Fig. 9. Approximated function using (a) 2-25-25-1 and (b) 2-35-35-1 MLPs.

when the number of hidden neurons exceeds 25 as shown in
Fig. 8. It may be seen that the validation error has many local
minima located in the range from 25 to 35 neurons. In this
case, it would be difficult to exactly determine where overfit-
ting begins by using . Using such 2-25-25-1 MLP as a
function approximator, the approximated function in the given
input space replicates the desired function well, as in Fig. 9(a).
However, using 35 hidden neurons, the approximated function
has significant deviations from the target function at the unseen
data, which is illustrated in Fig. 9(b). The function surface in-
dicates obvious overfitting. The optimal network size with 25
neuron optimum is correctly predicted by the OAA.

The optimization results based on different stopping criteria
are compared in Table III. In this case, other methods stop too
early resulting in larger generalization errors.

Subsequently, OAA was used in a three-layered MLP with
size 2-25-1 to find proper number of learning epochs, and the
results are compared with others methods in Table IV. Again,
we can see that the proposed SNRF criterion yields an optimum
number of the training epochs with the smallest validation and
generalization errors.

TABLE III
SIMULATION II: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF HIDDEN NEURONS

TABLE IV
SIMULATION II: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF LEARNING EPOCHS

Simulation III: Mackey–Glass Data Set

The Mackey–Glass data is a time–series data set ob-
tained from a physiological system [37]. In the first test on
Mackey–Glass data, MLP is used to predict the eight sample
based on the preceding seven samples, assuming that every
eight sample in the time series is a function of previous seven
samples. The training and validation sets contain 500 and 293
samples, respectively. As shown in Fig. 10(a), it is predicted
with 95% probability that overfitting occurs when the four-lay-
ered network has more than two neurons on hidden layers. This
prediction is confirmed by the increase of and divergence
between and , as shown in Fig. 10(b).

The results of optimizing number of neurons from different
stopping criteria are compared in Table V. The SNRF-based
OAA suggests the minimum structure and yields the smallest
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Fig. 10. Simulation III: optimization of number of hidden neurons. (a) SNRF
of the error signal and the threshold. (b) Training and validation errors.

TABLE V
SIMULATION III: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF HIDDEN NEURONS

test error, which outperforms other criteria on the generaliza-
tion ability.

Using a three-layered 7-2-1 MLP, the results of optimizing
number of learning epochs are compared in Table VI.

In another test on Mackey–Glass data, MLP is used to pre-
dict the sample from the earlier points , ,

, and . The number of neurons varies from 1 to
281, with the increment of 20. For a three-layered MLP, SNRF
becomes lower than the threshold because the number of the
hidden neurons is larger than 181. The approximated sequence
using such 4-181-1 MLP is compared with the original sequence
in Fig. 11. The results from different stopping criteria are com-
pared in Table VII. The SNRF-based OAA yields the smallest
validation error, which outperforms others on the generalization
ability. For time–series prediction problem, the discontinuous
sampling in the second test gives a much more difficult func-
tion to approximate comparing to the one in the first test. The

and fall very slowly after 61 neurons. Due to the

TABLE VI
SIMULATION III: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF LEARNING EPOCHS

Fig. 11. Approximated Mackey–Glass sequences using 4-18-1 MLP. (a)
Training performance. (b) Validation performance.

slow decrease, in order to meet the SNRF stopping criterion, it
takes many more hidden neurons in MLP than in the previous
test. As shown in Table VII, all other stopping criteria, except
for AIC, suggest the same or even higher number of hidden neu-
rons as obtained in this test. The results of optimizing number of
learning epochs for 4-181-1 MLP are compared in Table VIII.

Simulation IV: Building Data Set

The building data set [38] is used to predict the hourly con-
sumption of electric energy in a building based on 14 inputs in-
cluding the time of the day, outside temperature, outside air hu-
midity, solar radiation, wind speed, etc. The data set is subject
to an unknown level of noise. It is observed that overfitting will
start to occur when a four-layered MLP has more than 19 hidden
neurons on each hidden layer. By comparing the first 100 sam-
ples from the given sequence with the approximated sequences
in Fig. 12(a), it is observed that the approximated sequence ba-
sically follows the variation of the electric consumptions. After
the given sequence is sorted in the ascending order of elec-
trical energy consumption, and the approximated sequence is
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TABLE VII
SIMULATION III: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF HIDDEN NEURONS

TABLE VIII
SIMULATION III: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF LEARNING EPOCHS

Fig. 12. Approximated building sequences using 4-19-1 MLP. (a) Comparison
of the first 100 samples. (b) Sorted sequences.

reordered according to given sequence’s order, the correlation
between them is clearly observed as shown in Fig. 12(b).

TABLE IX
SIMULATION IV: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF HIDDEN NEURONS

TABLE X
SIMULATION IV: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF LEARNING EPOCHS

Optimum numbers of neurons for a four-layered MLP deter-
mined by different stopping criteria are compared in Table IX.
Subsequently, OAA and other criteria are used to optimize the
number of learning epochs for a three-layerd MLP with size
14-19-1, and the results are compared in Table X.

Simulation V: Puma Robot Arm Dynamics Data Set

Another multidimensional benchmark data set OAA is ap-
plied to is generated from a simulation of the dynamics of a
Unimation Puma 560 robot arm [39]. The task in this problem is
to predict the angular acceleration of the robot arm’s links from
eight inputs including angular positions of three joints, angular
velocities of three joints, and torques of two joints of the robot
arm. Various numbers of neurons (from one to 100 with a step
size of three) are used in the MLP and the optimum number of
hidden neurons is determined using OAA. The SNRF is com-
pared with threshold, as shown in Fig. 13(a), which indicates
that overfitting starts to occur when the number of neurons is
46.
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Fig. 13. Simulation V: optimization of number of hidden neurons. (a) SNRF
of the error signal and the threshold. (b) Training and validation errors.

TABLE XI
SIMULATION V: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF HIDDEN NEURONS

Note that has many local minima, as seen in Fig. 13(b),
and using a local minimum of as a stopping criterion
would be ambiguous. The optimization results based on dif-
ferent stopping criterion are compared in Table XI. With an
MLP of size 8-46-1, OAA can be used to find proper number
of learning epochs and the results are compared with others in
Table XII.

In summary, for all tested data sets, the SNRF quantitatively
identified overfitting and helped to find the proper structure or
the number of training epochs for effective NN learning for a
given problem. In the presented simulations, SNRF-based crite-
rion correctly recognizes overfitting, and through analysis of nu-
merical results, we observe that at the obtained optimum point,

and start to diverge from each other, and
reaches its minimum.

In most simulation cases, OAA suggests the minimum
structure or minimum length of the training period unlike other
stopping criteria. In the few cases it does not, OAA still delivers
better generalization in the sense of the smallest . In many
stopping criteria, variation of is one of the measures used

TABLE XII
SIMULATION V: RESULT COMPARISON FOR OPTIMIZING

NUMBER OF LEARNING EPOCHS

to determine possibility of overfitting rather than providing
quantified evaluation of the goodness-of-fit accomplished by
SNRF. To meet the quantified stopping criterion, it may take
slightly more hidden neurons or learning epochs for the SNRF
to fall below the threshold than in some other criteria. However,
in all the cases, the network optimized with OAA outperforms
all the other stopping criteria by providing optimized general-
ization ability.

V. CONCLUSION

In this paper, an optimized approximation algorithm is pro-
posed to solve the problem of overfitting in function approxi-
mation applications using NNs. The OAA utilizes a quantitative
stopping criterion based on the SNRF. This algorithm can au-
tomatically detect overfitting based on the training errors only.
The algorithm has been validated for optimization of the number
of hidden neurons for MLP and the number of iterations for the
BP training. It can be applied to parametric optimization of any
learning model or model selection for other function approxi-
mation problems.
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