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Opportunistic Behavior in Motivated
Learning Agents

James Graham, Member, IEEE, Janusz A. Starzyk, Senior Member, IEEE, and Daniel Jachyra, Member, IEEE

Abstract— This paper focuses on the novel motivated
learning (ML) scheme and opportunistic behavior of an intelli-
gent agent. It extends previously developed ML to opportunistic
behavior in a multitask situation. Our paper describes the virtual
world implementation of autonomous opportunistic agents learn-
ing in a dynamically changing environment, creating abstract
goals, and taking advantage of arising opportunities to improve
their performance. An opportunistic agent achieves better results
than an agent based on ML only. It does so by minimizing
the average value of all need signals rather than a dominating
need. This paper applies to the design of autonomous embodied
systems (robots) learning in real-time how to operate in a complex
environment.

Index Terms— Cognitive model, motivated learning (ML),
opportunistic agent, reinforcement learning (RL).

I. INTRODUCTION

AN INTELLIGENT agent must have the ability to
recognize new situations and important events through

interactions with its environment. Therefore, the agent must be
able to perceive and interpret external signals from the envi-
ronment, which allows the agent to accurately and dynamically
predict new situations, so that the agent can make decisions
and act according to its objectives. The preferred approach
is to have minimum supervision over the agent’s actions and
learning process, such that it can adapt to an unknown and
changing environment that is quite often hostile to the agent.

Developing intelligent agents is important in a wide variety
of applications, such as remote sensing, image recognition,
quality control, warfare, assisting humans, entertainment,
and so on. There are two fundamental questions regarding
embodied agents: what motivates the agent to do anything
and how to motivate the agent to explore the environment and
interact with it in an innovative and effective way? It follows
that determining a reliable motivation mechanism consistent
with the agent’s goals is an important issue.
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There are several concepts for organizing motivational
systems. One, introduced by Pfeifer and Bongard [1],
shows motivation as a result of the developmental process.
He believes that motivation for learning comes from the
agent’s growth and development. Another concept, based on
external reward signals, is known in psychology as positive
reinforcement. Its implementation led to a major development
in machine learning known as reinforcement learning (RL)
initialized by the work of Sutton and co-workers [2]–[4] fol-
lowed by Brooks [5], Pfeifer and Scheier [6], Schmidhuber [7]
and many others.

One of the main issues with RL is that it can suffer from the
credit assignment problem [8]. To deal with the credit assign-
ment problem in RL, a hierarchical reinforcement learning
(HRL) algorithm as defined by Bakker and Schmidhuber [9]
was developed. HRL works by using higher-level policies to
determine useful subgoals and learning to apply them when
appropriate. Although reinforcement desires to optimize the
objective function (maximize the reward), it does not provide
a mechanism for the development of motivations undefined by
the designer. This was partially addressed introducing intrinsic
motivations related to curiosity, or exploration of the most
surprising events [10]. Schmidhuber [7] used the idea of
intrinsic motivations to drive robots to explore and discover
new subgoals. The intrinsic motivation system proposed by
Oudeyer et al. [11] is similar to artificial curiosity presented
by Bakker and Schmidhuber [9]. Oudeyer et al. [11] suggested
an adaptive curiosity system where motivation comes from
a desire to minimize prediction error. Generally, artificial
curiosity helps to explore the environment and can be effective
compared with purely RL-based exploration. Merrick [12]
introduced motivated RL and compared several value systems
for motivated exploration.

Steels [13] proposed a self-motivating agent with a flow
mechanism. The main task was to give an agent the ability
to self-regulate its own developmental process. An autotelic
principle was proposed, which goes beyond classical RL as
a behavioral method used by psychologists. He observed
that when people perform a difficult task well that they are
motivated to attempt even more complex tasks. The flow state
is thought of as an optimal state of intrinsic motivation. The
agent and its motivational mechanism are constantly trying to
keep the balance between challenges and skills.

Merrick [12] pointed out that RL robots do not have internal
drives to maintain their resources within the acceptable
range [12]. To address this problem, a motivated learning (ML)
system was proposed to allow the agent to develop its
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motivations and goals [14]. This goal-driven mechanism is
based on primitive needs measured by pain signals that
motivate the machine to act, learn, and develop. These mech-
anisms have been presented and discussed in [15]. Whereas
standard RL relies primarily on external reinforcement
provided by a teacher; ML relies on pain signals internal
to the agent. Initially, these signals share some similarity
with reinforcement-based reward signals, as they rely on
predefined needs and guide the agent to learn specific skills.
However, one of the main tenants of ML is the ability of
the agent to derive additional motivations on the basis of its
initial needs.

A machine operating based only on predefined needs would
spend its entire existence trying to satisfy those needs and
not generalize beyond them. Furthermore, it would be difficult
for it to develop the understanding needed for more complex
behaviors. Some might argue that more complex needs could
be given to the agent, such as the need to drive a car. The
problem with this approach is that it requires a plethora
of background information and task-specific knowledge.
Providing the agent with this need both defeats the purpose of
developing a learning agent and curtails the agent’s ability to
discover and generalize knowledge.

Predefining knowledge and needs by itself is not bad; it
is done extensively in nature. However, providing an agent
with too much specialized knowledge can easily limit its
development. The advantage of limited prior knowledge can
be seen when comparing human development to that of many
other animals. Human children are among the most limited at
birth, and take well over a decade to develop into adults, but
are also among the most versatile beings on the planet.

In [16], we demonstrated that in a dynamically changing
environment, ML outperforms RL with no internal goal
creation and can both maximize total reward and minimize
the overall pain signals perceived by the agent.

The main contribution of this paper is to introduce oppor-
tunistic behavior to our ML agent. We demonstrate that such
a modified agent can improve its performance by considering
various motivations it may have at any given moment. In ML
described in [15] and [16], the agent responded to its strongest
need or pain signals and tried to minimize the strongest pain,
if several of its needs were not satisfied. We show that by
adopting opportunistic behavior the agent may reduce the
average pain, and thus perform more successfully.

Therefore, one of the major objectives of this paper is
the implementation and testing of opportunistic behavior in
our ML agent. In our paper, we developed things such that
the opportunistic agent is motivated to act by its internal
motivations, creates abstract goals, and learns how to respond
autonomously to the open-ended challenges and changes in
its environment. The need for opportunistic behavior has been
recognized in robotics, although it is defined differently than
in our paper. For instance, a form of opportunistic behavior
was considered in belief–desire–intention (BDI) agents [17]
where the agent makes choices at run time rather than at the
design stage. This facilitates the agent to operate in dynamic,
open environments, whose behavior cannot be described at
design time. Saffioti et al. [18] proposed using goodness,

competence and conflict as categories for action selection cri-
teria. Anselme [19] described opportunistic behavior in robot
when it can identify favorable conditions for its actions. As it
was pointed out in [19], autonomous robots are equipped with
motivational states that determine when they will perform a
specific task and that this does not allow the robot to recognize
opportunities in the environment the way that animals do.
He pointed out that the main issue for opportunistic behavior
is to build an algorithm that allow the robot to converge toward
a solution of its survival problems.

Kruse and Kirsch [20] defined opportunity as an alterna-
tive action to the robot’s current action and choosing the
next action was considered an opportunistic behavior. This
approach was developed to facilitate robot interaction and
cooperation with humans. However, opportunistic behavior in
[20] was driven by human actions and did not result from the
robot’s own decision-making process. This was a supervised
way of teaching a robot to take opportunities; thus, it is not
appropriate for autonomous robots. Robots trained according
to [20] would not know how to choose new opportunities,
other than those a human taught it to use.

This paper is developed within the framework of the
cognitive model proposed in earlier work, and briefly dis-
cussed in Section II along with basic properties of ML.
Section III contains an overview of opportunistic motivated
learning (OML). Two OML algorithms are presented and are
related to the traveling salesmen problem (TSP). Section IV
discusses computational efficiency and time requirements for
the proposed algorithms. Section V presents two implementa-
tions of ML agents in virtual environments and show real-time
simulation results for agent decision making and resulting total
pain. Section V presents the conclusion.

II. BACKGROUND

A. Characterization of ML Approach

Our prior work [16] demonstrated how motivated learning
works in a dynamically changing environment and that it can
outperform learning methods that neither generate nor reward
internal goals. In this earlier work, the main focus was on
the motivation mechanism, where only the core motivation
building, goal creation, and symbolic sensory-motor I/O were
used. Goal creation is different from goal inference [21] or
subgoal generation as discussed in [22] and [23] where it is
an adoption of existing goals rather than creation of new goals
by the agent. Such limitations in an agent’s ability to set the
goals for itself would limit its autonomy and may compromise
its performance.

The general motivation of our agent is to succeed in an
unknown environment. Our view of motivations is in agree-
ment with views of psychologists like Maslow [24]. However,
unlike Maslow we do not predefine a hierarchy of needs, but
try to evolve them through learning. Our approach, although
based on predefined physiological needs, leads to higher level
needs like safety, friendship, and so on. These needs are
predefined by Maslov in his hierarchy of needs; however, the
ML agent’s hierarchy of needs evolves automatically as the
agent learns.
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To clarify our discussion, let us define some critical concepts
used in ML.

Definitions: An agent has predefined needs (such as need
for shelter, food, or energy level). A primitive pain is related to
each predefined need and is defined as a measure that reflects
how far the agent is from satisfying its need. The pain is larger,
if the degree of satisfaction of a need is lower. For example,
the following function can measure resource related pains:

Pi = w ∗ Rd (si )

ε + Rc(si )
(1)

where Rd is a desired level of needed resource si , w is a weight
that increases with the increased importance of resource i ,
Rc is the current level, and ε is a small positive number to
prevent division by zero when Rc = 0. It was arbitrarily set
to 10−10. The agent acts on its need only if the pain is greater
than a prespecified threshold. An agent’s motivations are to
satisfy its needs, which mean that the agent must reduce the
associated pains below threshold. Pain reduction in ML is
equivalent to a reward in RL.

When an agent is introduced to a new environment, it does
not know how to satisfy its needs and must experiment with
various resources and available actions. It attempts various
sensory or motor actions in the environment until it succeeds
in reducing its primitive need. In ML, the agent creates a new
abstract need associated with the resource used to reduce the
primitive need.

Once the agent learns that the resource is important and
when the availability of the resource declines, the agent’s need
for the resource increases. The agent will pursue the reduction
of the new abstract need in the same manner it sought the
reduction of its primitive need.

Abstract pain is defined as a measure that reflects how far
the agent is from satisfying its abstract need and is computed
on the basis of the level of satisfaction of the abstract need in
a similar way to (1).

In this context, the performance metrics that we use to
compare various learning agent implementations is based on
the sum of all pain signals that the agent experiences during
its operation. The obvious goal is to minimize this sum.

Once introduced, an abstract need can be satisfied by
acting on another resource. This leads to another higher level
abstract need and related abstract pain. This simple mechanism
allows the agent to build a potentially complex network of
needs. We use the term network, because the needs can be
interdependent on each other. For example, one resource, like
money, could impact several needs and there are several ways
with which one can acquire money.

This departs from classical reinforcement where the agent
chooses its next action only on the basis of the state of the
environment. In our version of ML, the agent chooses its
action on the basis of the state of the environment and its
current internal state. Major differences between our version
of motivated learning and classical RL are shown in Table I
and are briefly explained next.

The ML agent uses a separate value function for each of
its motivations, so depending on the current motivation it
may chose different actions for the same environment state.

TABLE I

REINFORCEMENT LEARNING VERSUS MOTIVATED LEARNING

Because rewards are internal to the ML agent, the total reward
is not externally measurable, therefore the agent cannot be
optimized and its behavior is, to a large degree, unpredictable,
because an ML agent sets its own objectives on the basis of
designer-controlled primitive needs and self-assigned abstract
needs, whereas an RL agent’s objectives are fully controlled by
the designer and all the rewards are external and measurable.
Thus, an RL agent can be optimized by the designer as
described in [25], but our ML agent cannot, because the value
functions are not externally measurable.

ML solves a minimax problem and, thus, is well endowed
to deal with multiple needs. This is different from RL goals,
which are based on maximization of reward. An ML agent is
always stable, because its reward is always constrained, and
only acts when needed as indicated by the need or pain level.
Once all needs are below threshold, the agent does not have
to act.

In much ML literature, motivations are fixed and drive either
learning or the creation of new goals [11] or [26]. We see
this as a limitation in developmental agents, similar to some
extent to when the goals are explicitly given. The motivations
to act cannot be a priori defined for an intelligent agent and
they must evolve during its learning process. Yet, to be useful
motivations must be grounded in the specific needs of the agent
that are set by its designer. Thus, motivations in our approach
to ML are derived from the needs of the agent and they result
from the goal creation process [13], [14].

Opportunistic behavior is introduced within the framework
of motivated learning. In ML, the agent interacts with the envi-
ronment making real-time decisions on what to do. It combines
the creation of goals and needs according to the state of the
environment and its internal state. Algorithm 1 implements the
agent operations.

Notice that the ML algorithm works in real-time and the
agent interprets inputs from the environment at each iteration.
Thus, a goal may be changed if the conditions in the environ-
ment change.

As shown in [16], an ML agent performs better than the
TD-Falcon RL agent in a dynamically changing environment
in which the amount of resources needed by the agent depends
on the agent’s action.

It is true that not all environments are as difficult and
dynamic as this one, but because there was no situation
tested in which RL without internal goals outperformed
ML and we could demonstrate the opposite, we consider
this as evidence of the superior performance of ML over
traditional RL.
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Algorithm 1 Motivated Learning Algorithm
1. The agent reads the current state of the environment.
2. With the sensory inputs and its internal state, the agent

evaluates the internal pains.
3. The agent checks whether the pains were reduced.

a. If a pain was reduced, the agent learns proper
behavior by using classical RL and creates or
reinforces an abstract need.

b. Otherwise, it learns that the action is not useful
and reduces the chance of repeating it in a similar
state of the environment and the agent.

4. The pains are updated using the degree of satisfaction
of its needs (1). If a new need was established due to a
successful action, the related pain is evaluated as well.

5. Select a goal according to the existing pains and the
state of the environment.

6. Perform a desired action to accomplish the goal.
7. Repeat 1–6.

B. Comparison to Other Methods

The ML algorithm shares some of the same elements of
BDI agents [27]–[30]. For example, an ML agent has belief
that its internal representation of the state of the world around
represents the state of the said world. The internal representa-
tion or belief of the ML agent is formed through the system
of perceptions, pain centers, goals, and planned actions, and
links its perception of the environment to semantic knowledge
about the environment. Desires in a BDI agent correspond to
motivations as expressed by the pain centers in an ML agent.
The pains compete for attention and drive the ML agent’s
actions. Intentions are similarly represented in an ML agent
as the selected method for implementing a goal chosen by
the agent. BDI and ML agents differ primarily by the way
their actions are determined. ML agents can generate their
complex abstract motivations (desires) and derive complex
actions from them, whereas BDI agents typically have their
actions determined by their designers, and lack the ability to
define desires beyond their initial design.

C. Opportunistic Behavior

In ML, an agent simply pursues its most pressing needs.
Selection of a goal is obtained using a winner that takes all
approach. The opportunistic motivated agent considers all its
needs and the efforts required to accomplish them. There will
be instances where a less pressing need can be accomplished
easily, yielding lower time and effort to reduce the average
of all pain signals. For instance, this happens when the agent
must travel a long distance before it can work on its most
pressing need, whereas another need can be easily satisfied
without such extra effort. With this opportunity the agent will
lower its average pain. Such behavior is in agreement with the
behavior of animals.

In animals, the stronger their motivation to act, the more
focused they are on a specific goal and less distracted by
other potential opportunities [19]. This kind of behavior is
typified by the ML mechanism we presented in [14] and [15].

However, if the dominant motivation is not so strong, an
animal may choose to pursue a less pressing need when an
opportunity arises. We would like to model a similar behavior
in the embodied agents’ control. In [31], we presented the
general idea of an opportunistic agent, where the agent decided
what to do was based on the winning action value.

Definition: By opportunistic behavior, we mean actions of
the agent reducing not necessarily the most pressing need, but
the one leading to the largest reduction of the average overall
pain.

For example, let us examine a situation where an individual
is on his way to the bank to cash a check. While driving
to the bank, he passes by a supermarket and realizes that
he needs groceries. He decides to stop and buy groceries
before continuing on, thus reducing a (less critical) need for
food. In performing opportunistic actions, the agent has to
balance several factors, such as, current need levels, distances
involved, time needed to perform various actions, and pre-
dicted (or known) changes in pains or needs. In opportunistic
behavior, the agent has to continuously reevaluate its options,
because its pain levels change dynamically both as a result of
its actions and changes within the environment.

Section III provides a mathematical treatment of this oppor-
tunistic behavior reducing it to an optimization problem with
(7) and (8) being different instantiations of the optimized
functions.

In a standard implementation of ML, the agent selects a
goal in step 5 of the ML algorithm choosing the maximum
pains that can be resolved considering current conditions in
the environment. This is simply obtained using winner takes
all competition between pain signals with inhibition to those
goals which cannot be currently performed. Although such
implementation of ML works very well, this can be improved
using the opportunistic behavior developed in this paper.

The opportunistic ML agent implements step 5 of the ML
algorithm as follows.

1) Evaluate the effort to reduce each pain according to the
resource location and the required task time.

2) Use a heuristic algorithm to select the next action
considering not only the pain level but also the cost of
performing the action (doing this requires that the agent
evaluates total cost of satisfying all its needs).

The main focus point of this paper is the choice, organi-
zation, and properties of the heuristic algorithm that the ML
agent uses in step 5 of the ML algorithm. These are discussed
in Sections III and IV.

Although pains (and goals) may change in over time, the
agent makes its opportunistic decision according to the current
state of the environment and its needs. As conditions of
the environment changes, the agent reevaluates its previous
choices dynamically adjusting to changing environment and
its internal needs.

In humans, opportunistic behavior involves attention switch-
ing to evaluate various opportunities in a changing environ-
ment. We adopted a similar approach to design cognitive
agents. Fig. 1 shows how attention switching fits into our
cognitive model described in [32]. Implementing this cognitive
model is our long-term objective.
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Fig. 1. Cognitive model pursued in this paper.

III. OPPORTUNISTIC AGENT

The opportunistic motivated agent (OML) considers all
pains (needs) and the total effort to reduce them, trying to
minimize its cumulative pain. The method we chose and the
reasons for the choice will be discussed in this section. It is
based on our need to limit computation time while improving
overall pain reduction.

Opportunistic behavior is based on the interplay of motiva-
tions that the agent develops while learning proper behavior.
This is based on our prior work on ML. Using ML, the agent
develops needs and related pains that must be satisfied at any
given moment. Opportunistic behavior is used to tell the agent
which of these needs should be considered first by prioritizing
them as we discuss in this section.

Let us consider multiple pains that the agent can reduce
by taking proper actions. Assume that the agent must spend
some time performing each action to reduce a pain and
additional time to travel to the proper destination to perform
these actions. Also assume that the agent does not anticipate
future pains, so it can minimize the expected cumulative pain
according to the current state of various pains. Finally, assume
that the agent knows the time required to travel between
different destinations and the effort required to finish each
job. Dynamic changes that take place in the environment may
affect these travel times and the efforts, but we assume that
the agent knows their current values.

To find the minimum cumulative pain the agent chooses the
travel route and estimates the cumulative pain along this route.
This cumulative pain Pc can be estimated from

Pc = minr

{
n∑

k=1

pk ∗
( k∑

i=1

(
t tr
i + tw

i

))}
(2)

or as expressed in an equivalent form

Pc = minr

{
n∑

k=1

((
t tr
k + tw

k

) ∗
n∑

i=k

pi

)}
(3)

where r is the traveled route between various destinations that
the agent selects, n is the number of destinations, t tr

k is the
time to travel from point k to k + 1 along the route, tw

k is the
working time to complete a task at the kth destination along

the route, and pi is the pain at point i, i = 1, . . . , k. Notice that
at the beginning of the route (tw

1 = 0), the agent may not be at
the job location, so in such a case the corresponding p1 = 0.
Also notice that each individual pain effect is cumulative over
the whole task until the pain is reduced or eliminated. This
is particularly obvious from (3) where each individual part of
the route that ends with performing a task at location k is
multiplied by the sum of the pains in all remaining locations
not yet visited by the agent.

Equations (2) and (3) estimate the cumulative pain that
the opportunistic agent will experience assuming that pain is
known ahead of time and is fixed. We can generalize this
result and assume that pain at each location changes over time.
In such case, we can modify (3) as follows:

Pav = min
r

{
n∑

k=1

((
t tr
k + tw

k

) ∗
n∑

i=k

(
1

t tr
k + tw

k

∫ t tr
k +tw

k

0
pi dt

))}

= minr

{
n∑

k=1

((
t tr
k + tw

k

) ∗
n∑

i=k

Pi av

)}
(4)

where Pi av is the average pain level at location i, i = 1, . . . , k
over the duration of time to travel kth section of the route and
complete kth task.

In a similar way, we can generalize (2) as follows:

Pc = minr

{
n∑

k=1

Pc
kav ∗

( k∑
i=1

(
t tr
i + tw

i

))}
(5)

where Pc
kav is the average pain level at location k over the

duration of time to travel all sections from section 1 to k of
the route and complete all corresponding tasks along these
sections. Although (2) and (3) are equivalent, (4) is easier
to compute than (5) because Pc

kav depends on what was the
pain change over previously traveled sections, so it cannot be
precomputed even if these changes are anticipated and can be
predicted over any specific time interval.

Lemma: Finding the minimum Pc is an nondeterministic
polynomial time (NP) complete problem.

Proof: We can prove it by reducing this problem to TSP,
which is known to be NP complete. The simplest case of
the cumulative pain minimization is when the agent is at a
specific target destination and plans its traveling route and all
tw
k = 0. In addition, let us assume that all pi are constant and
pi = 1/n. In such a case, (3) is reduced to

Pav = minr

n∑
k=1

t tr
k wk (6)

where wk = 1. TSP is a special case of (6) with all wk = 1
and t tr

k replaced by the distance between points k and
k + 1. �

Because finding the optimum solution to the opportunistic
behavior problem is NP complete, we can use heuris-
tics to approximate the minimum. Although many heuristic
algorithms exist for TSP, none of them can be directly used
in this problem because weights wk in (6) depend on the path
selected.

Next, we present two heuristic algorithms that the oppor-
tunistic agent may use to control its behavior.
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Algorithm 2 Linear Heuristic Algorithm
1. Iterate with i = 1, . . . , n, where n is the number of pain

locations that the agent considers. Set the initial location
as the current location of the agent, and set m = n, and
dLH = ∅ where LH is linear heuristic.

2. At the current location of the agent, which is equal to
pain reduction rate (7), find the maximum where t tr

k is
a distance from the agent at the current location to the
pain at location k.

3. Append node dr to the selected path dLH ={dLH, dr }
where r corresponds to k with the minimum value Prr
in (7).

4. Change the current location of the agent to the new
location r , remove location r from pain locations, and
repeat steps 2 and 3.

5. The resulting optimized route is dLH = {d1, d2, . . . , dn}.

TABLE II

LOCATIONS AND PAIN SIGNAL VALUES

A. Linear Heuristic (LH) Algorithm: Pain Reduction Rate

One of the simplest heuristics for TSP is a greedy strategy
in which the agent goes to the closest location. We can adopt
a similar strategy in the opportunistic agent, but instead of
selecting the nearest location, the agent selects the location
where it can get the largest pain reduction with the smallest
effort. In this algorithm, the agent determines the pain reduc-
tion rate defined as

Prr = maxr

(
pk(

t tr
k + tw

k

)2

)
, k = 1, . . . , m (7)

where k is one of the possible locations reachable from the
current position of the agent.

The LH algorithm for the opportunistic agent is explained
in Algorithm 2.

This algorithm is simple to implement, has linear complex-
ity, and, thus, is useful for a complex environment where the
agent faces many choices and needs to update them in real-
time. Moreover, in spite of its simplicity the algorithm delivers
near optimum performance in tests.

Example 1: Assume that an agent is placed on a 2-D grid
and the starting location of the agent is (xy) = (10, 7).
Assume that at current iteration of the ML algorithm, the
agents determined its needs, related pains, and observed the
locations of the resources it can use to satisfy its needs.
Assume that there are seven resource location points with x
and y coordinates and the pain levels to be reduced at these
points as shown in Table II.

Distances between different locations are as shown
in Table III.

For the given example, the pain reduction rates computed
using (7) are as shown in Table IV.

TABLE III

DISTANCES BETWEEN VARIOUS LOCATIONS THAT

OPPORTUNISTIC AGENT NEEDS TO VISIT

TABLE IV

COMPUTED PAIN REDUCTION RATES

Following the LH algorithm, the opportunistic agent selects
to go to location 5—its nearest location. Notice that standard
ML agent would go to location 4 with the largest pain (as
shown in the last row of Table II). Here, we assume that t tr

k
can be replaced by the traveling distances shown in Table III,
and that all values of tw

k are equal to 1. Using this heuristic
strategy, the opportunistic agent will chose the route through
the following nodes: dLH = {5, 4, 7, 2, 1, 6, 3}, while the route
of the ML agent will have nodes: dML = {4, 7, 6, 5, 2, 1, 3}.
This will result in a 25.9% reduction in the total pain of the
opportunistic agent over the pain suffered by the ML agent.
The work time in this experiment was set to 1 for all tasks.

Obviously, the advantage of opportunistic behavior over ML
is greater if the agent would be forced to go back and forth
chasing the biggest pain rather than taking the opportunity
offered by nearby pain reduction.

Notice that the agent reevaluates its decision after each itera-
tion of the ML algorithm, so it is likely that it will not complete
the entire path. Nevertheless, the advantage of selecting the
goal to be implemented according to the LH algorithm can be
demonstrated in many simulated environments.

B. Quadratic Heuristic (QH) Algorithm

The main idea behind the QH algorithm is to be able to
paste together the entire path planned by the agent from the
locally dominating section of the path. In this algorithm, the
agents finds the minimum normalized effort reduction in the
entire table

Prr = minik

((
t tr
ik + tw

ik

)4

pk

)
. (8)

Locally the approach is similar to the greedy algorithm; how-
ever, because the search is along any possible path segments,
rather than from the current agent location the agent has a
chance to find a better total path that minimizes its cumulative
pain (5).

The QH algorithm for an opportunistic agent is explained
in Algorithm 3.

Example 2: To illustrate the steps of transforming the QH
algorithm to a TSP problem, let us consider 1-D case in
which the agent is located at coordinate x = 5, with resource
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Algorithm 3 Quadratic Heuristic Algorithm
1. Compute combined effort matrix (n+1)×nM weighted

with pain at each destination location

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
a1 + tw

1

)4 (
a2 + tw

2

)4
. . .

(
an + tw

n

)4(
d11 + tw

1

)4 (
d12 + tw

2

)4
. . .(

d1n + tw
n

)4

...
...

. . .
...(

dn1 + tw
1

)4 (
dn2 + tw

2

)4
. . .

(
dnn + tw

n

)4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎡
⎢⎢⎢⎢⎣

1/p11 0 . . . 0

0 1/p22 . . . 0
...

...
. . .

...

0 0 . . . 1/pnn

⎤
⎥⎥⎥⎥⎦ (9)

where a j is agent distance, tw
j is the working time at

the j th location, di j is distances between pain locations,
and p j j is the pain value at location j .

2. Create square matrix W from matrix M by adding a new
column with ∞ values and change diagonal elements
to ∞

W(n+1)x(n+1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∞ m11 m12 · · · m1n

∞ ∞ m22 · · · m2n

∞ m31 ∞ · · · m3n

...
...

...
. . .

...
∞ mn+1,1 mn+1,2 · · · ∞

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(10)

The ∞ value represents connections, which will never be
chosen, as the agent must start from its current location
and cannot revisit any location.

3. Normalize matrix W by dividing each element w jk by
the sum of finite elements in row j and column k of
matrix W . In addition, change all ∞ values to 1 to obtain
the normalized effort matrix V

V =

⎡
⎢⎢⎢⎢⎢⎣

1 v12 v13 · · · v1,n+1
1 1 v23 · · · v2,n+1
1 v32 1 · · · v3,n+1
...

...
...

. . .
...

1 vn+1,1 vn+1,2 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ (11)

where

v j k =
[

w jk∑n+1
i �= j w j i + ∑n+1

i �=k wik

]
<1, j =1, . . . , n + 1,

k = 2, . . . , n + 1, j �= k.

4. Iterate with i = 1, . . . , n

a. Find the smallest element of matrix V and store
the row index of this element in the resulting rows
vector R (setting ri = b − 1), and columns vector
C (setting ci = e − 1).

b. Replace all elements of row b and column e by 1.
Because all elements of the matrix V are not larger
than 1, this will eliminate possibility of selecting
this element again.

5. To obtain the selected path, iterate with m = 1, . . . , n

5.1 Start with ri = 0, set m = 1, and use b = ci as
the first visited location (dm = b).

5.2 Next, find rk = dm , increase m by 1, and use
b = ck as the next visited location (dm = b).

6. The resulting route is dQH ={d1, d2, . . . , dn}.

TABLE V

PAINS AT VARIOUS LOCATIONS

Fig. 2. Histogram of all solutions by using an exhaustive search.

locations (x coordinates) and the pain levels that can be
reduced at these locations as shown in Table V.

First, we formulate the effort matrix M (9) and reduce this
matrix to the normalized form V (11). Matrix M is equal to
(only three significant digits are shown)

M =104 ∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 0.01 0.33 19.1 108 330
0 0.04 0.65 26.8 126 377

0.02 0 0.07 10.1 82 262
0.43 0.08 0 1.86 44.7 158
6.25 3.93 0.65 0 11.0 51.8
130 141 69.2 48.8 0 0.20
239 27.7 150 140 0.124 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

and the normalized V matrix is

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1E − 06 8E − 06 5E − 04 0.027 0.130 0.202
1 1 3E − 05 9E − 04 0.034 0.139 0.221
1 3E − 05 1 1E − 04 0.017 0.113 0.171
1 0.001 1E − 04 1 0.004 0.078 0.114
1 0.014 0.008 0.002 1 0.025 0.041
1 0.170 0.174 0.114 0.077 1 1E − 04
1 0.202 0.225 0.146 0.133 1E − 04 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

Using exhaustive search for this example, we can obtain all
solutions with the histogram shown in Fig. 2 with a mean pain
value of 19 229 and standard deviation of 5728. The minimum
total pain was 5701, and the maximum was 32 159.

IV. COMPUTATIONAL EFFICIENCY

To compare the efficiency of the proposed solution with
opportunistic agent behavior, we transform the description of
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Fig. 3. Directed graph with seven nodes and 36 edges that correspond to
values in matrix V (13). To simplify the drawing we used bidirectional edges.

TABLE VI

COMPARISON TOTAL PAIN TO CHRISTOFIDES LIMITS

the problem to a format compatible with the asymmetric TSP
described by a directed graph. Because TSP is one of the most
researched problems in discrete optimization and has a large
number of heuristics solutions, we can compare both efficiency
and computational cost of the QH algorithm.

This procedure applied to the problem described in Exam-
ple 2 resulted in the directed graph shown in Fig. 3. The
matrix V from (13) and graph shown in Fig. 3 are used for
the standard TSP. According to QH algorithm use a combined
distance matrix with average pain at each location included
in the graph through calculation of matrix M (9). Another
important point is that our agent always starts from node 1,
visits every node once, and does not go back to the starting
point.

Christofides [33] showed a polynomial time algorithm for
TSP such that the total length obtained by this algorithm La

is less than 3/2∗ Lmin where Lmin is the global minimum that
can be found using a heuristic process. In our case, this means
that a polynomial time algorithm can find a solution with the
total accumulated pain signal less than the Christofides limit
La < 3/2 ∗ 5701 = 8551.5.

In addition, Cornuejols and Nemhauser [34] demon-
strated a tighter bound for Christofides’ algorithm La ≤
(3m − 1/2m)Lmin where m is the largest integer not greater
than n/2 and that the bound is tight (reaching equality) for
n > 6. In our case, with n = 6, m = 3 Christofides algorithm
gives La = (3 ∗ 3 − 1/2 ∗ 3)5701 = 7601.32.

As we can see from Table VI, both algorithms produce
results below the limits of algorithmic solutions as specified
by Christofides. By running the QH algorithm for Example 2,

TABLE VII

COMPARISON OF OPPORTUNISTIC AGENT

WITH SEVERAL TSP ALGORITHMS

Fig. 4. Run time for different algorithms (with std-dev).

we got the route visiting nodes dQH = {1, 2, 3, 4, 6, 5} and
total pain of 6519 and the opportunistic agent was better than
99.58% of all cases. The LH algorithm was even better in this
case with total pain equal to 5701.

According to the LH algorithm, the opportunistic agent will
chose the route visiting nodes dLH = {1, 2, 3, 4, 5, 6}, whereas
the ML agent will visit nodes in the order of decreasing pain
signal values dML = {5, 1, 3, 6, 2, 4} and will suffer 4.15
times larger cumulative pain than the opportunistic agent. Total
accumulated pain for the opportunistic agent was 5701, while
for the ML agent it was 23 701. The opportunistic agent was
better than 99.86% of all cases, while ML was better than only
24.58% of cases.

We have tested the LH and QH algorithms against
Christofides’ bounds on a number of graphs starting from the
graph shown in Fig. 3 and gradually increasing the problem
complexity by adding more nodes (pain centers). For each size
of the graph, we repeated the test randomly generating the
graph structure. The average results with standard deviations
obtained after 20 runs of algorithms are shown in Table VI.

We used the approach presented in Example 2 to formulate
an equivalent TSP problem for opportunistic agent behavior
and applied several popular TSP algorithms comparing both
algorithmic complexity and quality of the final results. The
results of analysis are shown in Table VII and Fig. 4 in
ascending order of run time.

Fig. 4 shows the logarithm of the run time of the compared
algorithms as a function of the number of nodes in the resulting
directed graph.
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Fig. 5. Overall pain for different algorithms (with std-dev).

As can be seen from the presented results, the linear and
quadratic heuristic algorithms are both fast and effective.
Notice that although, for small graphs, the exhaustive algo-
rithm is more efficient than ant colony, random search, or
genetic algorithms, it is the most computationally expensive
once the graphs have more than nine nodes. All other algo-
rithms maintain their run-time level for tested size of graphs.

As shown in Fig. 4, the linear and quadratic algorithms
require the least simulation time, whereas the exhaustive
search is the most expensive one with an exponentially grow-
ing time requirement.

Fig. 5 shows the overall pain of the compared algorithms as
a function of the number of nodes. Each data point shown in
Fig. 5 is the average result obtained after 20 runs. Results
demonstrate that both the linear and quadratic algorithms
were almost as efficient as the genetic and exhaustive search
algorithms that yielded the best results.

Because there is a large variability of the overall pain in
various algorithms, we summarized total pain in all experi-
ments with the number of nodes changing from 4 to 12 and
presented this in the last column of Table VII. This confirms
that the proposed algorithms are almost as efficient as the
most computationally demanding ones, and are superior to
simulated annealing, greedy search, ant colony, and random
search algorithms in both the simulation time and total pain
obtained.

In a typical situation observed in a simulated environments,
an opportunistic agent must choose from 3 to 7 options
(represented by the number of active pains), therefore we can
recommend using the LH algorithm to control the behavior
of the opportunistic agent. The quadratic algorithm has been
useful to formulate opportunistic behavior in terms of the well-
studied TSP and helped to make our final recommendation
regarding the use of the LH algorithm.

The examples considered represent what an opportunistic
agent may encounter while dealing with its pains. An agent
may have only a small number of pains that are relevant at
any given moment. Thus, the algorithm selection is specific
to ML needs and corresponds to a small number of choices a
cognitive agent considers in its working memory. We do not
claim that these algorithms are effective to solve large-scale
TSP problems.

To summarize, the opportunistic agent uses the lowest
cost path, to improve every step of the ML process.

The learning mechanism still uses abstract goal creation
and internal motivations as described in our previous
works [14]–[16].

Notice that the heuristic algorithms discussed in this section
are to help the agent decide what to do to cope with the set
of needs that it developed during its learning process. This
should not be confused with the learning process itself. The
agent learns what is good for it by interacting with complex
dynamically changing environment and observing results of
such actions, but the planning process it uses deciding what
to do involves solving problems similar to TSP using one
of the presented heuristic algorithms. So while TSP solves
a search problem only, the action taken by the agent after
the search is evaluated and is a basis for learning within ML
approach. Specifically, actions that resulted in pain reduction
will be reinforced. In addition, they may lead to change agent’s
motivations and result in new goals.

V. SIMULATING AGENTS

The implemented learning agent needs to be tested in real-
time application. This can be done either via robotics, where
the agent controls a robotic body, or via simulation, where
the agent exists within a virtual environment and possesses
a virtual body. These approaches require an embodied agent
central to Embodied Cognition, initiated in the early-1990s
with work by Brooks [5] and Pfeifer and Scheier [6]. The
theory behind embodied cognition is that machine’s interaction
with its environment is predetermined by its embodiment and
that intelligence cannot develop without embodiment.

This approach adheres to the idea that the agent’s body
shapes its development, because the motor and sensory appa-
ratuses of the body effect how the agent functions.

Robotics platforms, can be costly to design, build, and
operate; advanced robots cost upward of $100 000. Further-
more, it is still necessary to create an environment for the
robot to operate within. In a simulation, there is much more
freedom in designing the agent and the environment, more
freedom to change things, and physical hardware costs are
limited to the costs of computers. Simulation and virtual
environments were used to develop principles of synthetic
intelligence agent in [35], use learning agents as nonplayer
characters in computer games [36], and build robotic training
platforms, [37], [38]. Thus, we chose to use simulated virtual
agents to demonstrate their improved learning capabilities
when the agent adopts an opportunistic behavior.

In our previous work, we implemented a basic ML algo-
rithm in MATLAB. Results from some of the initial tests can
be found in [14] and [16]. However, the environment and con-
sequently the embodiment in these simulations were simple,
limiting the agent’s capabilities. Alternative environments are
needed to expand the agent’s capabilities, properly investigate
various scenarios, and improve overall fidelity. We have tested
the ML agent [39] in the NeoAxis game engine software
development kit [40] by implementing the motivated agent
functionality in C++.

OML implementation of the learning agent combines ML
(providing pain signals and motivations) with a heuristic
algorithm (to choose the current goal).
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Fig. 6. Agent walking toward a target resource.

In this section, we compare three implementations of the
ML algorithm. The first one denoted here as ML is a standard
implementation of ML where the action is chosen on the basis
of the maximum pain signal, the second one, denoted by linear
OML, is an opportunistic ML where the choice of action is
according to the LH algorithm, and the third one, denoted by
exhaustive OML, is an opportunistic ML where the choice of
action is according to an exhaustive search.

The performance metric in this comparison is defined as
the minimum total average pain suffered by each agent that is
subjected to the same environment. The smaller the pain, the
better the agent’s performance.

A. NeoAxis

NeoAxis comes with a number of assets and demonstrations
as well as Map and Resource Editors. The presence of several
terrain maps eliminates much of the work needed to develop
a realistic environment.

Fig. 6 shows a third person view of the opportunistic agent
implemented in NeoAxis. It shows the agent about to act on
a resource object in front of itself.

The depicted opportunistic agent, detects a useful resource
within its view range, evaluates it against its needs and decides
whether to deviate from its current objective or not. In this
case, the agent’s choice is determined by the LH algorithm
discussed in Section III.

B. Opportunistic Simulation Results

This section provides the results of real-time comparison
between the performances of the standard ML algorithm and
the OML algorithm. The LH algorithm was used for the
OML agent. Although this algorithm is not as effective as
the exhaustive algorithm, it still provides noticeable benefits.

We used a simple farming scenario, where the agent has to
farm for food and keep itself fed. There are five primitive pains
in the scenario that are linked predefined needs of the agent.
The agent can satisfy its primitive needs by using various
resources and create up to eight abstract needs.

Fig. 7. Total average pain comparison for standard ML, linear OML,
quadratic OML, and exhaustive ML algorithms.

Fig. 7 shows a comparison of total average pains for four
algorithms (ML, linear OML, quadratic OML, and exhaustive
OML) by using 20 000 iterations for each algorithm in a
simulated scenario. The total average pain is the cumulative
sum of all pains, divided by the iteration number, and is used
as the performance measure of the particular run. The agent’s
objective is to lower this total average pain.

As shown in Fig. 7, after the agent learns how to manage
new abstract pains, total average pain stabilizes and moves
toward equilibrium. (The dashed lines around each solid line
correspond to a 95% confidence interval, determined by 2×
the standard deviation of each average pain. These statistics
represent results obtained after ten simulation runs.) As we
can see, the exhaustive OML algorithm provides the best
results, although, the difference among the linear, quadratic,
and exhaustive algorithms is negligible in this case. However,
when we run the simulation with a more complex environment
consisting of eight primitive and 14 abstract needs (compared
with five primitive and eight abstract needs in the baseline
scenario), a greater performance benefit of the linear OML
algorithm over the exhaustive OML can be observed in
terms of computation time (Table VIII). Considering that the
exhaustive algorithm is NP complete, the high effectiveness
of the linear algorithm eliminates the need for more advanced
decision-making process in most practical situations.

Table VIII shows how time requirements for the ML and
OML algorithms depend on the number of pains used in the
simulation. For the simulation results shown in Fig. 7, the
exhaustive algorithm took on average 74.1 s compared with
the 37.3 s needed for the linear OML implementation, and
32.6 s for the ML algorithm. In such a simple environment,
the exhaustive OML algorithm did not take a large amount of
time owing to only a few pains at a time being above threshold
(3 on average), thereby keeping the computational depth of the
exhaustive algorithm’s factorial level complexity low.

However, in the more complex environments, more pains
reside above threshold, increasing the computational time
of the exhaustive algorithm as seen in last three rows
in Table VIII.

While the ML and Linear OML runs have a linear depen-
dency on the number of pains in the environment, the factorial



GRAHAM et al.: OPPORTUNISTIC BEHAVIOR IN ML AGENTS 1745

TABLE VIII

TIME NEEDED (s) VERSUS NUMBER AND TYPE OF PAINS

Fig. 8. Frequency of pains above threshold. Left: ML. Right: linear OML.

dependency of the exhaustive OML on the number of pains
above threshold observed in Table VIII is definitely a problem
for real-time applications.

It is clear that many more pains ended up above the
threshold in the last three rows in Table VIII than in the
baseline scenario (row one), increasing the time needed for
exhaustive OML. Fig. 8 shows a pair of histograms showing
the frequency for each number of pains above threshold (in the
base line scenario with five primitive pains and eight possible
abstract pains) for the standard ML and linear OML runs,
respectively. From these charts, there is a clear indication that
the OML algorithm does a better job managing the pains as
it is able to keep more pains below threshold.

In the simulations, the agent does not automatically know
how long the execution of each type of action will take before
it tries it out, so it has to estimate. The agent assumes constant
values to estimate the unfamiliar task’s working time (shown
as the estimated motor effort in Table IX). As it performs
each task, the agent learns all the real working times. The
real working times are represented such that they follow a
rough Gaussian distribution with mean and standard deviation
equal to 3 and 1, respectively. Table IX chronicles how the
estimated effort values affect the performance of the algorithm
by showing their respective average pain levels at the end of
simulation runs.

From Table IX, we can see that the best results generally
occur when the agent matches or underestimates the working
time (except with the first instance of basic ML), as inferred
by the fact that the lowest difference between linear OML
and exhaustive OML occurs when the unfamiliar task working
time is 2. This has the effect of biasing the agent toward more
exploration.

So far, we have only looked at the clear advantages of imple-
menting OML; however, are there any disadvantages? The
most obvious one to consider is the increase in computational
overhead associated with the OML algorithms. However, when
observing the significant average pain reduction between ML
and Linear OML and small computation time, this increase in

TABLE IX

TOTAL AVERAGE PAINS AT RUN COMPLETION

FOR VARYING ESTIMATED MOTOR EFFORTS

computational time is negligible. Another possible disadvan-
tage is lack of any analysis of the past events or estimation
of the future pains to better select opportunities to explore.
However, this is something we are actively working on,
moving toward dealing with more complex cognitive agents.

VI. CONCLUSION

In this paper, we have introduced the concept of an
opportunistic intelligent agent improving our previous ML
work. In earlier works [14]–[16], it was discussed why we
believe that ML can surpass other approaches, in particular,
standard RL. In this paper, we discussed how opportunistic
behavior improves standard ML, and demonstrated results
of OML. Additionally, we have discussed the importance of
testing embodied agents in increasingly complex environments
and provided two examples of our paper through Blender and
NeoAxis implementations of ML and OML.

In our prior tests, we demonstrated that ML agents have
been able to outperform similarly configured RL-based agents
with no internally created goals. In this paper, it has been
demonstrated that the opportunistic agent introduced in this
paper can perform even better than the standard ML.
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