
Neural Network with Memory and Cognitive Functions 

Janusz A. Starzyk, and Yue Li 

School of Electrical Engineering and Computer Science 
Ohio University, Athens, OH 45701, U.S.A. 

starzyk@bobcat.ent.ohiou.edu 
David D. Vogel 

Ross University School of Medicine, Commonwealth of Dominica 
Dvogel@rossmed.edu.dm 

Abstract. This paper provides an analysis of a new class of distributed memo-
ries known as R-nets. These networks are similar to Hebbian networks, but are 
relatively sparsly connected.  R-nets use simple binary neurons and trained 
links between excitatory and inhibitory neurons. They use inhibition to prevent 
neurons not associated with a recalled pattern from firing.  They are shown to 
implement associative learning and have the ability to store sequential patterns, 
used in networks with higher cognitive functions. This work explores the statis-
tical properties of such networks in terms of storage capacity as a function of R-
net topology and employed learning and recall mechanisms. 

I. R-nets Neural Network Organization  

Main Concept of R-nets 

R-nets have been used as components in the modular construction of larger net-
works capable of computations analogous to serial memory, classical and operant 
conditioning, secondary reinforcement, refabrication of memory, and fabrication of 
possible future events.  R-net components of these larger networks appear to be ap-
propriate objects of more detailed analysis than has been performed [Vogel, 2005].  

R-nets stress biological plausibility and have demonstrated large storage capaci-
ties with the sparse connectivity of mammalian cortex.  The number of synapses of 
principal cells on interneurons is at least 320 [Sik, Tamamaki, & Freund 1993]; the 
number of synapses of interneurons on principal cells is 1000 to 3000 [Freund & 
Buzsáki, 1996] and the ratio of interneurons to principal cells is roughly 0.2. The R-
net modeled for this paper has 40% of excitatory neuron pairs linked though at least 1 
inhibitory neuron [Vogel, 2005]. The detailed network structure is described in previ-
ous studies [Vogel, 2005]. The biological plausibility of this arrangement is discussed 
by Vogel [2001, 2005] and also by Fujii, Aihara, and Tsuda [2004]. 

Mathematically, R-nets are defined as randomly connected artificial neural net-
works with primary and secondary neurons. The network structure and connections 
between primary and secondary neurons are discussed by Vogel [2001, 2005].  



R-nets implement distributed memories able to recall input patterns. During 
training, an input pattern is presented to the R-net by activating a selected cluster C of 
primary neurons. All links between active primary neurons are trained. During recall 
a subset of one of the stored patterns is presented to the input, activating correspond-
ing primary neurons (initial recall set). The initial recall set is expected to activate all 
neurons of one of the stored patterns that include the activated neurons as a subset. 
Each primary neuron is activated if it is not inhibited.  

During recall, inhibitory neurons linearly sum the weighted projections. 
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where ai,x represents the activity of the ith inhibitory neuron on the xth cycle, ae,x is 
the current activity of the eth excitatory neuron with possible values 0 or 1, and Wi,e is 
the weight of the projection of the eth excitatory neuron onto the ith inhibitory neuron 
with possible values of 1(untrained) or 10(trained). The excitatory neurons are then 
synchronously updated according to the rules [Vogel, 2005]. 

II. Statistical Model of R-nets  

A series of papers [Vogel and Boos, 1997; Vogel, 1998; Vogel 2001] demon-
strated the substantial storage capacities of networks progressively approximating the 
R-nets. An R-net with 106 excitatory neurons and brain-like connectivity will store at 
least 2x108 bits of information [Vogel, 2005]. In this section, a statistical model of R-
nets is presented and is compared with simulated R-nets.  

Let us assume that an R-net is characterized by the set of primary neurons P, the 
set of secondary neurons S, the primary neurons’ outgoing sets, kp, and the secondary 
neurons’ outgoing sets, ks.  These numbers are related through sp kSkP ** = . 

Let us define Pci as a set of primary neurons reachable from a primary neuron Ci 
through the secondary neurons, andα  as probability that cij Pc ∈ for a selected pri-

mary neuron cj and a given Pci, so that
P
Pci=α . The expected value of the number of 

different primary and secondary neurons reaching to (or reached from) a secondary 
and a primary neuron, are respectively 
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If the links through other secondary neurons reached from a primary neuron are con-
sidered, the number of primary neurons linked to a given primary neuron is  
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Eliminating Spurious Neurons 

Spurious neurons are defined as neurons that are not a part of the original pattern 
and that are activated during the recall process. The probability that a potential spuri-
ous neuron, cj, will be inhibited depends on the probability of the existence of an in-
hibitory link from an activated primary neuron.  
The probability that a projection out of a primary neuron in a trained set is trained 
with T patterns stored in the R-net is estimated as:   
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(4) 

Pt1 also equals Pt2, the probability of a projection out of a secondary neuron being 
trained with T patterns stored. 

As shown in Fig. 1, a neuron is spurious if it meets both of the following condi-
tions: a) It has no projection from Swa; and b) All its projections from Ssa are trained, 
where Ssa is the strongly activated set of secondary neurons and Swa is the weakly ac-
tivated set of secondary neurons. 

 
Fig. 1. Spurious neurons and activated secondary 

The probability that a secondary node, y, belongs to Sa is the same as the probabil-
ity that a selected secondary neuron is active during recall. 
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Thus the probability that a node in Sa is strongly activated is approximately  
( 1) 1
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and consequently the probability that a node in Sa is weakly activated is 1 ssaP− . 
The probability that a potentially spurious node, z, is not linked to any node in Swa is 
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Assume that a node z is not linked to Swa.  The probability that such primary 
node z is connected to a node in Ssa is 
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Using this result, we can obtain the probability that a primary node z has k pro-
jections to Ssa and no projections to Swa, and all of the links to Ssa are trained, thus ob-
taining the probability that z is a spurious node as  
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        The increasing probability of spurious neurons with increasing numbers of pat-
terns stored limits the maximum number of patterns that can be stored in the R-net 
memory. Since, in the recall process, we can tolerate no more than Smax spurious neu-
rons, and each neuron in the P-C set has probability of being spurious equal to Pz, 
then the recall set has no more than Smax spurious neurons with the probability 
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        The analysis is in reasonable agreement with actual simulations of modestly 
large networks, and anticipate that increasing the size of both the networks and the 
subsets used for recall will only make the network stochastically smoother and the 
analysis more accurate. This anticipation does not replicate the error found in Marr 
[1971] (discussed in [Vogel, 2005]). 

Eliminating Missing Neurons 

A missing neuron is a neuron from C-Cr which is suppressed by an inhibitory pro-
jection to an activated primary neuron.  The following lemma can be established. 

Lemma: Each missing neuron is suppressed by an inhibitory link to a spurious neu-
ron connected through a secondary node w, where w is different from all nodes in Sa, 
as shown in the Fig. 2. 

 
Fig. 2. Creation of missing neurons 

 
Proof: If m connects to Sa, then there is a node x in Cr such that x and m are 

linked.  Since m and x are a part of the same pattern, both parts of their link (projec-
tions from the primary node x to the secondary node in Sa and from the secondary 
node in Sa to the primary node m) are trained. Obviously the inhibition cannot result 



from such link. Therefore, the inhibitory link to m must pass through a secondary 
node outside of Sa.   

To prove the argument that inhibition must come from a spurious neuron we 
may notice that no neuron in Cr can be connected to w and that if a node x in C is 
connected to w then m and x are connected through a trained link, since they are in 
the same pattern C. Therefore no other node in C can inhibit m.  This leaves, as the 
only option that an inhibitory link to m comes from a spurious node outside of C. 

The probability that a given primary node will be missing due to a single spuri-
ous node can be estimated to be less than   
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By connecting all possible locations of missing neurons, the probability that a 
single primary neuron is missing is 
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So the probability that the recall set has no more than Smax missing neurons is  
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Results of the Statistical Model 

    The statistical model is in a good agreement with simulated R-nets and can be 
applied to estimate the computational performance of very large R-nets.  We simu-
lated the storage capacity for 20 to 100 neuron patterns of networks up to 107 primary 
neurons with 1000 projections from each primary neuron to 2x106 secondary neurons 
with 5000 projections from each back to primary neurons. Result is shown in Fig. 3. 

 
Fig. 3. Storage capacity of R-net with up to 107 primary neurons 



 
      In addition, from the conducted analysis of R-net properties based on the pre-

sented model, we can conclude that their storage capacity grows faster than the num-
ber of primary neurons and that a slope of growth is close to 10/7 on the logarithmic 
scale which agrees with experimental results reported in [Vogel, 2005]. When the 
network size reaches 109 primary neurons (with average number of projections 104 
that is similar to interconnection density of human brain), the network can store over 
109 patterns and the optimum storage for these very large memories is achieved with a 
pattern size of about 150 neurons.  

Conclusion 

         In this paper a statistical model of R-nets was presented and results were com-
pared to results observed in simulated R-nets. This model has already demonstrated 
that work on the role of disinhibition in paired-pulse induced long-term potentiation 
may be of fundamental importance to understanding memory and higher cognitive 
functions. It suggests an entirely new understanding of the role of massive projections 
of excitatory neurons onto neurons of distant regions [Vogel, 2005]. These models 
have produced computations analogous to serial memory, context dependent classical 
and operant conditioning, secondary reinforcement, refabrication of memory, and 
planning. They distinguish between perceived and recalled events, and predicate re-
sponses on the absence as well as presence of particular stimuli. Analysis suggests 
that the models may be expected to scale up to brain-sized networks efficiently. 
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