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Needs, Pains, and Motivations in
Autonomous Agents

Janusz A. Starzyk, Life Member, IEEE, James Graham, Member, IEEE, and Leszek Puzio

Abstract— This paper presents the development of a motivated
learning (ML) agent with symbolic I/O. Our earlier work on
the ML agent was enhanced, giving it autonomy for interaction
with other agents. Specifically, we equipped the agent with drives
and pains that establish its motivations to learn how to respond
to desired and undesired events and create related abstract
goals. The purpose of this paper is to explore the autonomous
development of motivations and memory in agents within a
simulated environment. The ML agent has been implemented
in a virtual environment created within the NeoAxis game
engine. Additionally, to illustrate the benefits of an ML-based
agent, we compared the performance of our algorithm against
various reinforcement learning (RL) algorithms in a dynamic test
scenario, and demonstrated that our ML agent learns better than
any of the tested RL agents.

Index Terms— Cognitive architectures, embodied intelligence,
motivated learning (ML), simulation, virtual agent.

I. INTRODUCTION

A SIGNIFICANT challenge in robotics is to develop
autonomous systems that can reason and perform

missions in dynamic, uncertain, and uncontrolled environ-
ments [1]. Therefore, recent research efforts are directed
toward developing autonomous cognitive systems. Reinforce-
ment learning (RL) methods have made significant progress
in this direction [2]–[5], and the topic is actively researched
in laboratories around the world.

Current cognitive architectures, such as Soar [6],
Adaptive Control of Thought—Rational (ACT-R) [7], [8],
Icarus [9], [10], Learning Intelligent Distribution
Agent (LIDA) [11], Polyscheme [12], Nonaxiomatic
Reasoning System (NARS) [13], and Connectionist Learning
with Adaptive Rule Induction Online (CLARION) [14], either
have to rely on predefined goals [without self-motivated
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learning (ML)] or predefined rules (without autonomous
reasoning). Due to their reliance on predefined scripts and
heuristic rules, current robotic systems lack autonomy, self-
adaptability, and reasoning capabilities either to accomplish
complex missions or to handle ever-changing missions in
uncontrolled environments.

One of the best known cognitive architectures, Soar, consists
of many useful functional blocks like semantic, procedural,
and episodic memory, working memory, symbolic and sub-
symbolic processing of sensory input data. Semantic, proce-
dural, and episodic memories interact in Soar during each
decision cycle when the memory is searched for knowledge
relevant to related goals and rewards. Soar uses production
rules that help to fetch data from the long-term memory and
select an appropriate action. If it has insufficient information
to handle a problem, it generates subgoals. However, it lacks
grounding (intrinsic understanding of symbols) and its intrinsic
motivations are limited to set goals. Attention switching in
Soar is limited to the perceptual stage, hence it does not
contain real-time regulation of its processes and assumes that
it has enough processing power to compute everything that it
needs to decide about its action.

ACT-R is part of a family of architectures that is used
to model human cognitive processes. However, these archi-
tectures are focused primarily on modeling and are not
designed toward emulating full intelligence, but rather to
test cognitive concepts. A newer version of this architecture,
ACT-R/Embodied (ACT-R/E) [8], tries to faithfully model
people’s behavior as they perceive, think about, and act on the
world around them. ACT-R/E hopes that by closely modeling
human processing, it will aid in developing agents that are
more capable of interacting with humans in an assistive
manner. However, ACT-R/E has no mechanism to develop
internal motivations.

Icarus, is an adaptive architecture for intelligent physical
agents. It shares several similarities with Soar and ACT-R,
such as symbolic representation of knowledge, pattern match-
ing, a recognize-act cycle, and incremental learning. It also
possesses short and long-term memory structures. Icarus
focuses on perception and action but its lack of focus on
more complex cognitive capabilities, such as mental attention
switching, significantly limits its use.

The LIDA architecture utilizes a “Global Workspace”
(based on Baar’s Global Workspace Theory) for cognitive
processing. LIDA is a comprehensive architecture that models
biological cognition from low-level action to high-level rea-
soning. However, its reliance on somewhat ambiguous “atoms”
and “attention codelets” makes it more difficult to implement

2162-237X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



STARZYK et al.: NEEDS, PAINS, AND MOTIVATIONS IN AUTONOMOUS AGENTS 2529

than used in this work mechanism based on motivations and
mental saccades [15].

Polyscheme tries to integrate multiple inference and
representation schemes into a single system capable of cog-
nitive thought. By combining several modules, Polyscheme is
a fairly flexible system, capable of choosing its own focus.
However, the system is overspecialized. Its modular architec-
ture is good, but the individual modules are overly restricted
in their operation, which limits Polyscheme’s learning
capabilities.

NARS is an embodied situated system that grounds its
knowledge in its past experience, uses fuzzy reasoning and
fuzzy learning, and operates in real-time. Its tasks are pri-
oritized based on task urgency depending on the system’s
internal state and task durability. Competing tasks, as well
as resource management and resource allocation, depend on
the state of the environment. In NARS, intrinsic goals are
derived and prioritized by the system. NARS can generate
new goals using its decision-making procedure. The decision-
making procedure in NARS requires a formal language (with
a grammar and semantics) and a set of inference rules.

CLARION combines sensory perception with symbolic
representation through neural networks, RL, and higher level
declarative knowledge. It uses a motivational system for per-
ception, cognition, and action and uses inductive analysis of
its learned knowledge to discover rules. Higher level motiva-
tions in CLARION are pretrained using a back propagation
neural network. Sun [14] suggests that motivations may be
derived through RL. However, no specific mechanism or a
practical example illustrating how the learning agent derives
its motivations was provided. CLARION tries to capture the
interaction between explicit and implicit processes and appears
to be focused primarily on the modeling of psychological
models.

Embodied cognition is a trend in philosophy that challenges
the traditional view that the body has a marginal effect on
understanding of cognition and mind [16], [17]. This parallels
developments in robotics that claim that intelligence has to
be embodied, situated in its environment, and cannot develop
without embodiment [18], [19]. Embodied cognitive systems
often use RL to develop their abilities to interact with their
environment [5], [20]–[23].

Intelligent systems should have some degree of autonomy,
and are described in [24] as systems that perform tasks in
a diverse environment through learning and adaptation to
accomplish high-level goals. Thus, in this paper, we focus
on the development of autonomous intelligent systems that
implement their goals in a dynamic environment using limited
resources. We stress the importance of the system’s intrinsic
motivations and development and management of internal
cognitive goals.

In open-ended tasks that an autonomous intelligent system
must perform, resource management is often pointed to as
a core problem. In our paper, we provide a motivational
development mechanism that can engage such a core problem.

Starzyk et al. [25], [26] and Graham et al. [27] focused
on the idea of motivation as the underlying drive behind
the operation of a cognitive agent. The agent has designer

specified “primitive” needs and a general motivation to satisfy
its needs. As the agent learns how to fulfill its “primitive”
needs, it creates new “abstract” needs related to the actions
and/or resources needed to fulfill them.

This paper presents a significant extension of the agent’s
motivation and goal creation scheme by providing the agent
with needs to respond to both desired and undesired actions
by other agents. We developed a learning mechanism to either
encourage or discourage such actions. We also unified bias
calculations for desired and undesired resources and actions.

The obtained generalized ML agent is better equipped to
recognize desired and undesired situations, and learn how
to respond. We illustrate the development of such systems
in dynamic, changing environments using virtual agents with
symbolic I/O in a simulation environment within the NeoAxis
game engine [28] (see Section IV).

Most current autonomous robot systems [29]–[32] aim at
developing local behavior control algorithms under heuristic
rules, and then seek to emerge global behaviors. However, no
clear path is provided that tells the agent how to generalize
from local to global behavior. In contrast, our ML approach
provides such generalization via a mechanism that creates
higher level goals and motivations that are intrinsic to the
agent.

Adding the intrinsic motivations developed in ML improves
the agent’s skills and facilitates learning in dynamically chang-
ing environments. To test this hypothesis, we constructed a
black-box framework for autonomous learning systems and
demonstrated that our ML agent learns better than any of the
tested RL agents.

The rest of this paper is organized as follows. In Section II,
we discuss the memory organization of an ML agent.
Section III describes a generalization of the ML agent capable
of dealing with desirable and undesirable resources while
managing its own and the environment’s actions. We discuss
how it learns proper behavior to minimize its pains. Following
this, in Section IV, we present an implementation of the
ML agent, which includes the improvements specified in this
paper. The ML agent is integrated into the NeoAxis simulation
environment and operates in an example testing scenario.
Section V compares our ML agent with other learning agents
in a simplified scenario using our black-box testing approach.
In Section VI, we discuss our current results, and present
our plans to further advance the ML agents and their virtual
simulation tool.

II. MOTIVATED LEARNING AGENT

MEMORY ORGANIZATION

A higher level goal for the ML system, addressed in our
work, is survival—-this includes avoiding hazardous situations
in the environment (like highly toxic substances), but also
adverse actions by other agents that can hurt the system.

ML systems use artificial curiosity to explore, which is
similar to curiosity-based learning used in RL [3], [4], [33].
However, in addition to curiosity-based motivations, ML sys-
tems are able to create abstract goals and new motivations to
learn efficiently and purposefully. It was argued in the ML
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literature [34], [35] that the designer cannot predetermine all
goals, and we agree with this argument. However, in these
papers, motivations that drive learning and the creation of
new goals are specified by the designer. We suggest that an
intelligent system cannot have all motivations predetermined
by the designer either. A simple argument is that complex
motivations may require understanding of complex concepts
and the machine must first learn such complex concepts
before they are used to trigger complex motivations. Thus,
concept learning, goal creation, and motivations are mutually
dependent and have to be gradually developed in learning
agents.

The ML agent interacts with the virtual environment,
changing it by its actions and receiving rewards (external
and internal) for its actions. In the current implementation
of the ML agent, we assume that both sensory inputs and
motor outputs are symbolic, and that they provide an interface
to the virtual environment. While this symbolic form of
perceptions and actions is not necessary for ML, it simplifies
the description of the agent’s motivations, goals, and action
control.

We assume that the ML agent learns in a hostile environ-
ment, where there is either a limited amount of renewable
resources that the agent needs or there are hostile characters
that may harm the agent, unless it learns to defend itself.
An ML agent has a number of predefined basic needs, e.g.,
desired energy level, comfortable temperature, or acceptable
pressure. The agent can satisfy these needs by proper actions.
If a need is not satisfied (e.g., energy level is below threshold)
the agent feels a pain signal. Thus a pain signal related to
basic needs can be predefined as a deviation from desired
levels. When the agent learns how to satisfy its need, then
an abstract need is introduced related to the requirements for
satisfying the need. Unsatisfied need manifests itself by a pain
signal and the agent is motivated to reduce this pain.

Needs in our ML system are similar to drives used in
principles of synthetic theory (PSI) agents [36]. However,
drives in [36] were prespecified by the designer, while in
ML the agent develops its own needs and motivations, which
makes it more autonomous and a better fit to face various
challenges in an open environment than PSI agents. In order to
clarify our discussion, let us first define some critical concepts
used in our ML.

Definitions: An agent has predefined needs (for instance
need for shelter, food, or energy). A primitive pain is related
to each predefined need and is defined as a measure that
reflects how far the agent is from satisfying its need. The
pain is larger if the degree of satisfaction of a need is lower.
The agent acts on its need only if the pain is greater than a
prespecified threshold. An agent’s motivations are to satisfy its
needs, therefore, the agent must reduce the associated pains
below threshold. Pain reduction in ML is similar to a reward
in RL.

We use pain rather than reward for two reasons. Pains lead
to efficient management of goals, as dominant pains will be
considered first, and the system easily switches between goals.

The second reason is that a system that uses pain reduction
acts only when it is needed, while a reward-based system

always tries to maximize the reward. We found this concept
more convenient for the development of a need-based system,
than when a reward is used to stimulate all actions.

To be consistent with this terminology, we convert all
drives that the agent may have into pain signals. For instance,
if curiosity is used to learn, we introduce a curiosity pain
signal that generates a low-grade pain that remains until the
agent has explored its environment and the actions it can take.

A. Neural Network Implementation of ML
A simple implementation of our ML schema uses a neural

network where each sensory neuron represents an object and
each motor neuron represents an action. Such symbolic repre-
sentations have to be learned through a sensory–motor (S–M)
approach to object recognition and action learning (known also
as symbol grounding), but full discussion of symbol grounding
is beyond the scope of this paper.

The ML system’s neural network, in addition to sensory S
and motor M neurons, contains pain neurons P that register
the pain signals, and goal neurons G responsible for pain
reduction. Selected pain neurons are connected to the external
reward/punishment signals. These neurons receive primitive
pain signals that directly increase or decrease their activation
level. In ML, abstract pain centers are created through the
goal creation mechanism [25], [37] and are activated via
an interpretation of sensory inputs through bias signals. All
abstract pain neurons have a bias input B that depends on the
state of the environment and the preference (bias) of the agent
for or against a certain resource or action performed by other
actors, referred to here as nonagent characters (NACs).

Definition: A bias signal reflects the state of the environ-
ment related to a specific resource or event and the agent
preference for or against such resource or event.

Definitions: A goal is an intended action that involves an
S–M pair. To implement a goal the agent acts on the observed
object or interacts with another agent. An abstract pain is a
product of the bias signal and wbp weights.

Reduction of the bias signal reduces the associated abstract
pain P and triggers learning, increasing the interconnection
weight between corresponding P and G neurons. However, if
the dominant pain increases as a result of the selected action,
then the interconnection weight between the corresponding
P and G neurons is reduced. Learning goals through S–M
pairs has been used in robotics in recent years [38].

All pain neurons are initially connected to goal neurons
with random interconnection weights. In simple ML, all goal
neurons and pain neurons are subject to the winner-take-
all (WTA) competition. Once the highest pain above threshold
is determined, the winning goal is established by evaluating
wpg weights for a given pain. Opportunistic ML (OML)
agents [27] use a simple heuristic algorithm rather than a WTA
mechanism to determine which goals they will implement.
In the symbolic representation, each neuron represents a single
symbol, pain, goal, or action. In Fig. 1, pain neurons P with
connections to their sensory S, bias B , goal G, and motor M
neurons are shown.

A single curiosity neuron is added to indicate the machine’s
desire to explore. It is triggered by a constant pain value equal
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Fig. 1. Connections between sensory, motor, bias, pain, and goal neurons.

Fig. 2. Trainable connections between pain, bias, and goal neurons.

to a specified threshold. The curiosity pain neuron is linked
to all the goal neurons with randomly set weights. As the
machine learns, the weights from the curiosity pain to various
goals decrease so the curiosity exploration steadily decreases.

G neurons are connected via untrainable weights equal to 1
to corresponding S and M neurons, P and G neurons are
fully connected with trainable wpg weights. There are no direct
connections from the pain center neurons P to the motor
neurons M .

Fig. 2 shows trainable connections between bias, pain,
and goal neurons as well as additional inhibitory neurons
[unavailable resource (UR) and unsuccessful action (UA)
neurons] that fire depending on the environment conditions.
A UR neuron inhibits goal selection if a resource required to
perform the action is not observed on the sensory input, while
a UA neuron inhibits goal selection when a desired action
could not be completed (due to motor malfunction or adverse
environment conditions). UA neurons are normally inhibited
by an inhibitory link from an action completed (AC) neuron,
indicating that a motor function can be performed if needed.
The AC neuron forms a bistable pair with a UA neuron and
only one of them is active at any given time. When a desired
action (A) cannot be completed, a UA neuron is activated.

In ML, each time a goal based on selected S–M pair results
in the decrease of a dominant pain Pj , there is an increase
in the connection weights between this pain neuron and the
selected goal neuron Gkj (wpg in Fig. 2). In addition, the bias
link strength wbp of the abstract pain neuron Pk associated with

the desired sensory input Sk is increased. In a similar way, the
bias link strength wbp of the abstract pain neuron Pk associated
with the desired action A j is increased. These weight increases
gradually establish the need for resources and actions that have
helped the agent to reach its goals. At the same time, the lack
of these resources or an inability to perform needed actions
will become abstract needs (pains) of the learning agent.

The only exception to this is in a curiosity triggered action
(when no other pain exceeds the pain threshold). Is this
situation, the wpg connection weight is always decreased
signifying a decrease in curiosity for this goal. Furthermore,
the weights for the other pains are adjusted depending on the
effect of the curiosity-based action on these pains.

Section III presents a generalized ML agent, which includes
internal motivations to learn how to respond to NAC actions.

III. GENERALIZED ML AGENT

The previously implemented ML agent learns how to sur-
vive in an environment where resources are limited and can be
renewed by the agent’s actions. In general, we must consider
various situations the agent may face in a hostile environment.
Thus, we introduced rules that govern desired and undesired
events. In this section, we discuss the desirability of resources
and actions, the creation of pains and goals, bias signals,
weights, and associated pains, and learning how to respond.
All of these rules are general enough to be applied to various
environment conditions, and are implemented in the agent
simulation algorithm presented in Section IV-A.

A. Desired and Undesired Events

The resources in the environment can be used either by the
agent itself to its benefit, or by other agents. In the first case,
the agent must learn how to restore these resources, while in
the second case the agent may need to learn how to prevent
the competing agents from using the resources it needs. The
resources can be either desirable, in which case the agent needs
to protect or restore them, undesirable, in which case the agent
needs to remove or destroy them, or neutral to the agent.

Initially, all resources and NAC actions are unknown to the
agent, so their desirability is unknown.

Definition: An agent finds a resource undesirable when
the resource increases the agent’s pain. A resource is found
desirable once its use reduces the agent’s pain.

A more general approach is to consider both desired and
undesired events caused either by the agent itself or by other
agents. We want the agent to learn how to avoid undesirable
events and encourage those that benefit it.

Typically, an event desired by the agent requires it to act on
a resource. Any inability to do this is a source of pain to the
intelligent agent. One such situation is a lack of the desired
resource, but equally important is the inability to perform a
desired action. Suppose the agent needs to bring coal to heat its
home and has found a huge coal slab. Although it has a desired
resource, if it cannot transport it home, its need will not be
satisfied. A similar situation is when the agent wants to remove
an undesired resource from its environment—it must identify
the undesired resource and have the ability to remove it.
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TABLE I

AGENT’S LEARNING AND GOAL CREATION PRINCIPLES

A slightly different situation is when a NAC instigates
an undesired event. In this case, the ML agent can either
remove the resource that the NAC agent needs to perform the
undesired action (for instance remove his weapon), or prevent
the undesired action.

An interesting case is when both desired and undesired
events are related to the same resource (or NAC). Consider
a beehive. It is desired to have more bees, so the agent can
get more honey; on the other hand, the more bees an agent has
around the more likely it is that they will sting it, increasing
its pain. Removal of bees from the environment will reduce
this pain, but this may increase an abstract pain related to the
lack of honey. A practical solution, in this case, is to prevent
bees from stinging the agent by wearing protective gear.

The agent generates an internal pain signal when it has
too few desired resources or too many undesired ones. It also
generates an internal pain signal if it cannot perform a desired
action or cannot stop an undesired one. Such simple rules
for generating intrinsic pain signals are general enough for
the agent to develop many abstract goals from those that
are needed for its survival—fight its enemies, make friends,
or obey a teacher. Table I illustrates the agent–environment
interactions and various effects they have on the agent’s pains
and goals.

Next we describe setting bias signals and adjusting weights
associated with pain reduction.

B. Bias Signals, Weights, and Associated Pains

The ML agent is motivated to learn how to minimize its
internal pains. We differentiate three types of internal pains:
1) pain based on availability of resources; 2) action-related
pain; and 3) pain caused by the inability to perform a desired
action.

A bias signal triggers an abstract pain and depends on the
perceived situation. Introduction and proper use of bias signals
is perhaps the most significant differentiating factor between
RL and ML schemes.

1) Resource-Related Pains: If the autonomous agent needs
to maintain a resource at a certain level, falling below this
level triggers a resource-related pain. To generate this pain,
a bias signal that reflects how difficult it is to obtain this
resource, is used. The agent must first use the resource to

Fig. 3. Bias signal for (a) desired resource and (b) undesired resource.

determine if the resource is desired or undesired. The resource
bias signal is calculated from the amount of the resource and
its desired/undesired status as follows:

B(si ) = −(1 + δi ) ∗ (ln A(si ) + 1) + 2 ∗ A(si ) (1)

where

A(si ) = ε + Rc(si )

ε + Rd (si )
(2)

represents availability of the resource si , Rc is a current
resource amount, and Rd is a desired resource amount. If the
resource is undesired Rd is the limit value of the resource
perceived as painful to the agent (for instance a painful amount
of pollution). ε is a small positive number to prevent numerical
overflow, and δi = 1 when the resource is desired, δi = −1
when it is not desired, and δi = 0 otherwise (when the
character of the resource is unknown).

Rd is used as a normalizing factor for the resource level.
If Rc(si ) = Rd (si ) the corresponding resource pain is zero
for a desirable resource, and for an undesirable resource the
smaller the Rc(si ), the smaller the resource pain. Pain reaches
significant levels when the agent is out of a desired resource
or has plenty of an undesired one.

Fig. 3 shows changes in the bias signal values for desired
and undesired resources. Bias value also increases when a
desired resource exceeds the desired level. This is a useful
feature of the assumed bias function as it penalizes hording.

In special cases, when the resource was found both desired
and undesired, we first set δi = 1 and learn how to prevent
it from harming the agent by proper action. When this fails,
we set δi = −1.
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Fig. 4. Bias signal as a function of (a) availability and (b) relative distance.

While other functions can be used to compute biases,
we found that function (1) properly correlates availability and
desirability of resources and actions, and can be conveniently
applied in all situations, as discussed next.

2) Action-Related Pains: Action-related pains are of two
kinds—the agent’s own action, or the action of a NAC. When
the pain increase is a result of the agent’s own action, such
action must be avoided. When the pain increase is a result of
a NAC’s action—the agent must learn how to mitigate such an
action. The ML agent may need to discourage or encourage
other agents to act according to its perception of how useful
such actions are. It can do this by introducing biases related
to NAC agents’ actions. The bias signal is activated whenever
the environment conditions are similar to those that caused the
pain in the past.

“NAC Action Pain” is first learned when the NAC’s action
is observed and is correlated to an increased or decreased pain.
Subsequently it is triggered by the “NAC Action Bias.” Biases
that resulted from pain reduction due to a NAC’s action are
indicated by the link from “Pain” to “NAC Action Biases”
and create a need to encourage the NAC to act in the desired
way. Bias activation strength is proportional to the reward or
punishment received by the agent.

The “NAC Action Bias” is calculated from (1) with A(si )
representing action availability computed from

A(si ) = 1
dc
dd

+ 1+δi
2

(3)

where dc is current and dd is a desired (a comfortable) distance
to another agent and δi = 1 when the NAC action is desired,
δi = −1 when it is not desired, and δi = 0 otherwise. Fig. 4
shows changes in the bias signal values for desired, undesired,
and neutral NAC actions, both as a function of availability and
a relative distance dc/dd .

Setting the “NAC Action Pain” is important since this
motivates the agent to properly respond to a NAC action.
This provides the agent with the ability to beneficially interact
with other agents. The biases related to a NAC action (shown
in Fig. 4 as “NAC Action Biases”) are activated through the
link from the likelihood of the specific action.

Distance-based availability, computed from (3), is a poor
estimate of the likelihood of a NAC action. We used this
in our simulation to show that even when using such a
simple measure, the agent learns the correct responses to NAC
actions. A more elaborate approach would replace A(si ) with
the likelihood that the NAC agent will perform its action.

Fig. 5. Block dependencies between perceptions, biases, pains, motivations,
goals, and actions.

3) Inability to Act Pains: The third kind of pain—the
inability to perform a desired action is generated after the agent
learns that an action is useful, but it is unable to perform it in
spite of the available resources. This pain may be caused by a
motor malfunction or a restriction on the agent’s movements.
In both cases it produces an abstract pain, which grows in
proportion to the need to perform the action. Thus, the third
kind of pain depends on the first two, and is triggered by them.
However, once it is triggered it does not depend on a current
need to obtain a resource or to perform the action.

The bias signal in this case is obtained from

B = γ ∗ P(si ) (4)

where γ is a constant value less than one, and P(si ) is the
mean value of the lower level pain that requires the given
action to be performed in order to reduce this pain.

Pain biases calculated in this section were set using arbitrary
functions. They were introduced to illustrate setting of internal
pain signals that represent the motivational state of the agent.
Other approaches to compute the internal state of the agent
are possible. Fig. 5 schematically shows block dependencies
between perceptions, biases, pains motivations, goals, and
actions.

Links in Fig. 5 that end with a black dot are inhibitory,
while those that end with an arrow are excitatory.

Blocks marked with dashed lines extend the original
motivated agent that was only able to create resource-related
pains [25], [37]. The new blocks contain perception based
NAC Action Bias that correlates the observed action by a
NAC and the pain it inflicted on the ML agent. Subsequently,
an observed attack will trigger the NAC Action Pain related
to the action by the NAC. This, in turn, triggers a motivation
block to prevent or stop the attack and the proper action that
accomplishes this is learned. “Unable to Act” and ”Action
Biases” are new functional blocks related to an agent’s inabil-
ity to perform useful actions either to restore/destroy resources
or to act defensively.

4) Bias Weight Adjustment: The agent learns the impor-
tance of the observed resources or events by adjusting bias
weights wbp (shown in Fig. 2) that relate biases and pains.
Initially, all bias weights wbp are set to 0. Thus, the machine
initially responds only to the primitive pain signals P directly
received from the environment. Each time a specific pain P
is reduced, the weight wbp of the Bk − Pk bias link increases.
However, if the goal activated by the pain center P was
completed and did not result in the reduction of pain P ,
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then the Bk − Pk weights wbp are reduced. Since the bias
weight indicates how useful it is to have access to a desired
resource S or to be able to perform the selected motor
function M , a bias weight adjustment parameter �b must be
properly selected to reflect the rate of stimuli applied to a
higher order pain center. This rate reflects how often a given
abstract pain center Pk was used to reduce the lower order
pain signal P .

When a specific goal is not invoked for a long period
of time its importance in satisfying a lower level pain is
gradually reduced. This requires a reduction of the wpg weight
to this goal from all the pain centers. A similar reduction of
the wbp weights indicates a gradual decline in importance of an
abstract pain. Without such a decay mechanism, the machine
can set higher level goals even if they are no longer required
to support its lower level needs.

To implement these concepts, the bias weight wbp is
computed incrementally based on pain change signals that
resulted from the action taken as follows:

wbp =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wbp + �b+ ∗ (αb−wbp)

if associated pain changed

wbp ∗ (1 − �b+)

if there was no change in pain

wbp ∗ (1 − �b−)

if associated percept was not used

(5)

where αb = 0.5, sets the ceiling for wbp; �b− = 0.0001,
sets the rate of decline for wbp weights; �b+ = 0.08, sets
the rate of increase for wbp weights. These parameters are set
experimentally and while they affect the learning speed, the
agent behavior is not critically sensitive to these parameters.
The bias weights are limited to the (0, αb) interval.

Using the bias signal, the pain value is estimated from

P(si ) = B(si ) ∗ wbp(si ) (6)

where wbp is a bias to pain weight for a given pain center.

C. Learning Recommendations

A motivated agent learns when its actions satisfy one of
its needs, which translates to a reduction in one of its pain
signals. In previous implementations of ML [26], [27], pain
reduction was related to the case of a passive environment in
which the agent only used resources to its advantage. Here,
we extend this to an active environment, where other NACs
may act on the ML agent affecting its pains.

A correct action may not result in the reduction of pain,
but instead it may stop the pain’s increase. Thus, a successful
action cannot be measured by pain reduction alone.

In the general case of an active environment, learning based
solely on the agent’s own actions may not suffice. In this case,
the agent learns how to respond depending on the outcome of
interactions with NACs as described in Table II.

In Table II, we have nine distinct situations depending on
the action taken and its outcome. We consider three types of
actions: agent acts δa , NAC acts δn , or both agent and NAC
act δaδn . The outcome of each action can be pain reduction

TABLE II

DETERMINATION OF wpg WEIGHT ADJUSTMENTS

(−1 in pain column), neutral (0 in pain column), and pain
increase (1 in pain column).

Pairs (x, y) in Table II indicate learning recommendations
related to reinforcement and desirability. If x = 1 the action
taken by the agent should be reinforced by increasing wpg
weights, if x = 0 no change in wpg weights is recommended,
and when x = −1 then wpg weights should be reduced.

Desirability of NAC actions is determined based on y
values. When y = 1 this action is desirable and should be
encouraged by the agent, when y = 0 the action is neutral
and the agent should not care about it, and when y = −1 this
action is undesirable and should be discouraged.

Recommendations related to NAC actions mean that the
agent must learn how to influence the NAC’s behavior. This
means that any action by the ML agent that results in the
desired behavior by NAC will be reinforced.

An interesting case is the second row in Table II, when the
pain does not change. If the pain did not change after the
agent’s own action, such action should be discouraged, since
it is unnecessary. If the agent acted in response to an action
by a NAC, this action is deemed useful since it is possible that
it stopped an “attack” on the agent. This is a special case in
which the agent’s own action should be encouraged but that of
the NAC agent should be discouraged. The reason is that even
though the action by the NAC agent would not do any harm,
it requires a defensive action by the learning agent, possibly
taking away precious time and resources.

D. Fight or Flight

If the NAC acts and “hurts” the agent, the agent must
respond to protect itself or its resources. The correct response
depends on the agent’s ability to observe the NAC’s action and
prevent it from harming the agent. Thus, detecting an action
by the NAC and determining if it is a desired or undesired
action is critical.

When the agent detects a NAC action, it activates a potential
pain based on the bias signal (1) for the NAC action. This
potential pain competes for the agent’s attention and motivates
it to act defensively. At the same time, the potential pain
is not registered as a pain increase, since it is only the
motivating factor and not the real pain. Likewise, if the agent
acts defensively and stops the attack, it learns the proper action
by observing that the real pain did not increase. This lack of
pain increase is sufficient reason to reinforce such behavior.
However, if the real pain increased, this indicates that the
agent did not use a proper response to the attack, and the
corresponding wpg weight must go down.

This action-related potential pain signal is removed as the
observed NAC action stops. If it stopped as a result of the
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agent action, a reinforced learning takes place. If it stopped
without the agent’s action (for instance when the attacker
walks away), the learning agent gradually reduces the potential
pain signal.

If the agent is attacked, it can resolve to either defend
itself by attacking the enemy or running away from it. The
agent can learn which action is a better choice, depending on
its experience. The cognitive agent will be able to estimate
its chance of running away from the enemy based on its
understanding of its own and the enemy’s embodiment and
limits on its ability to prevent the enemy’s action. If, in its
own estimate, the agent cannot outrun the NAC, it will fight.

E. Setting Goals

The ML agent sets its goals based on the pain signals
and its ability to control them. In a simple neural network
implementation of ML, the goal is selected based on the
strength of interconnection weights wpg shown in Fig. 2.
A given pain signal P is multiplied by wpg weights and a
goal neuron with the strongest activation is selected.

To control wpg weights we established the pain reduction
parameter δp based on the reduction or increase of pain and
actions performed. δp is negative when pain increases, and is
positive if the pain decreases. The pain reduction parameter δp

represents the learning recommendations from Table II and is
obtained using the formula

δp = 2 ∗ x + y (7)

where (x, y) are obtained from Table II. δp is between −3
and +3. Larger weight is given to the agent’s own actions,
represented by x , since the agent controls them better than
NAC actions.

Initial weights between P–G neurons are randomly selected
in the 0−αg interval (a good setting is between 0.49 and 0.51
of αg for faster learning). Assume that the weights are adjusted
upward or downward by a maximum amount μg . In order
to keep the interconnection weights within prespecified limits
(0 < wpg < αg), the value of the actual weight adjustment
applied can be less than μg and is computed as

�a = μg ∗ atan

(
ds

dŝ

)

∗ min(|αg −wpg|, wpg) where αg ≤ 1

(8)

(ds)/(dŝ) is the rate of change of lower level resource s as a
result of using higher level resource ŝ observed by the agent,
and

μg = μ0

(

1 − 2

π
atan(10/B)

)

where μ0= 0.3. (9)

Using (8) produces weights that slowly saturate toward 0
or αg (for quick learning set μ0 = αg /2) and μg gradually
changes from μ0 toward 0 when B changes from a large value
toward 0.

If, as a result of the action taken, the pain that triggered
this action increased (as determined by pain reduction para-
meter δp), then the wpg weight is decreased, and if the pain
decreased, then the wpg weight is increased as follows:

wpg = wpg + δp ∗ �a. (10)

δp is computed from (7) depending on the (x, y) value
in Table II. A new pain signal is created to either discourage
or encourage the NAC action depending on the y value.
The agent learns how to reduce NAC action pain, adjusting
corresponding wpg weights.

Additionally, the curiosity weight associated with the action
is reduced as

wpgC
= wpgC

− �ac. (11)

Curiosity helps the machine to explore the environment and
learn when not performing any specific pain-based actions.

In addition to decreasing curiosity wpg weight, there is
another factor affecting the curiosity goal. We refer to it as
“certainty.” Certainty CG is a measure indicating how certain
the agent is about a particular goal. For example, if any of the
wpg weights associated with a specific goal G approaches 1,
then this goal’s certainty approaches 1. Conversely, if all the
values of wpg weights for a particular goal approach zero, we
can say that the certainty for that goal also approaches 1.

When calculating the goal’s curiosity value we multiply
the wpgC

value by (1 − CG ), since if we are certain about
a particular goal, there is no reason to be curious about it.

In sum, certainty CG is determined from

CG = 1 − min(maxP(wpg), 1 − maxP(wpg)) (12)

and the curiosity-related goal activation strength with consid-
eration of certainty is determined using

Gs = Pc ∗ wpgC
∗ min(maxP (wpg), 1 − maxP (wpg)) (13)

where Pc is the curiosity pain and wpgC
is curiosity to goal

weight.

F. Action Value Determination for OML Agent

The ML agent must choose which of the currently activated
goals it must implement first. A simple ML agent chooses
the goal with the highest pain value and the highest chance
to reduce this pain based on wpg weights. While this simple
approach gives the agent autonomy over its goals, it does not
yield the optimum results as demonstrated in [27]. In an OML
agent the “best action” is determined by the linear heuristic
OML model [27], using action “Value” Vi

Vi = Pi + (�P ∗ (tmot + tdist))

(tmot + tdist)
2 (14)

where �P is the estimated change in pain. Pi is the pain
associated with the action under consideration, tmot is the
required motor time to complete the action, and tdist is the
travel time to the location where the action will be performed.
We generally assume that pains will not change over the course
of the action. The action with the highest value of Vi is the
one chosen by the OML agent.

IV. SIMULATION ALGORITHM OF ML AGENT IN NEOAXIS

We use a simulated environment with a virtual robot to
develop and test our generalized ML agent and to compare it
with other learning agents. First, we created a test bed within
the NeoAxis engine [28], generated a virtual environment,
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and set its rules. The rules describe how the environment
will change when acted upon by the agent or a NAC. Next,
we embedded the ML agent in the created environment and
provided it with means to observe the environment and to
interact with it. The agent receives information about the
resources in the environment and NAC actions. The agent has
certain needs that are based on the state of the environment.
It can satisfy these needs by proper actions that it must learn
and use when needed.

The NeoAxis environment can simulate agents in their
virtual world. Various types of agents can be developed in the
3ds Max tool by modeling the body, constructing a skeleton
and defining agent constraints and then imported into NeoAxis.
By using different agent types, we are able to choose the best
type of agent for a given task.

The second reason why we utilize NeoAxis is its capable
physics engine. Using it we can obtain realistic representa-
tion of objects by assigning different properties, static and
dynamic parameters like friction, mass, bounciness, hardness,
etc. In addition, objects can be attached to one another to create
complex structures. It is also possible to create environment
rules, i.e., a tree may produce apples at set times, a ball will
roll when kicked, or a resource will disappear when used up.

The simulation can host various types of NACs; some of
them could be friendly and some hostile, like wild animals.
All these result in the creation of a complex, dynamic sim-
ulation environment, which reflects realistic situations for an
intelligent agent to handle. The ML agent is tested on how
well it can respond to various scenarios, and the performance
measure we use is either the average pain level or total reward
received (when we compare with RL agents).

A. Agent’s Simulation in NeoAxis Environment

The basic steps of ML agent simulation algorithm in
NeoAxis are as follows.

After initialization, the algorithm performs successive iter-
ations. Each iteration, occurring once per frame (or roughly
every 33 ms) consists of the Agent Phase, where the agent
observes the Environment, updates its internal state, and
generates motor outputs, and the Environment Phase, where
the environment performs the agent’s actions and updates itself
accordingly.

1) Agent phase includes the following.
a) Relevant environment information is passed to the

agent. This information consists of resource object,
the resource levels, and their distance from the
agent, and information about other NACs, with
their goals, distances to resources and to the ML
agent.

b) The bias signals are updated by taking new sensory
data into account.

c) Current pain levels are compared with the pains
from the previous cycle in order to determine the
pain reduction parameter δp.

d) The bias weights wbp are adjusted according to (5).
If the action was curiosity based, no adjustment of
the wbp weights is performed.

e) Pain to goal weights wpg are adjusted
using (10) and (11) and are limited to the
(0, αg) interval.

f) All other wpgi (i �= 0) weights from the selected
pain center P to other goals are reduced by

�i = �awpgi/
∑

wpgi. (15)

g) The system recalculates pains and determines the
new goal using (14).

h) The algorithm determines if the winning goal value
is above threshold. If it is not, no action is taken
in the next cycle.

2) Environment update phase includes the following.
a) The current goal involving an S–M pair is

implemented. This requires moving the agent to
the target and performing the selected motor
action.

b) The environment is changed as a result of this
action (e.g., one resource is replenished, while
the other, typically the one that the agent used,
is depleted).

c) NACs respond to the agent’s action according to
their AI rules (for instance a NAC will run away
when kicked by the agent).

d) The sensory data about the state of the environment
and NACs actions to be passed to the agent in the
next iteration are updated.

In the following section, we discuss how we design and
simulate the NeoAxis environment. The performance test is
designed to compare autonomous agents’ learning in virtual
environments.

B. NeoAxis Implementation

We implemented the basic infrastructure of the ML agent
in NeoAxis describing the motivated agent functionality in
C++ and in C#. The virtual environment for the ML agents
built in NeoAxis is a 3-D simulated world governed by
realistic physics to present the agents with a dynamic, chal-
lenging world. This simulation environment can be separated
into two major components. The first component is the ani-
mation controller that handles display tasks and transitions
the agent from one action to another. The second compo-
nent processes the agent’s behaviors implementing potentially
sophisticated rules governing the virtual world in which the
agent lives. The agent working in the created environment
discovers these rules and learns to use them to its
advantage.

In this environment, we created resources that the agent
could use (presented in Table III), and we endowed the agent
with the ability to act on these resources (agent’s motor actions
are listed in column 1 of Table III). The agent’s actions are
driven by pains listed in column 3. Only the pains listed in
Table III as primitive pains are predefined. They are hunger,
thirst, and sweet tooth that increase over time, bee sting that
results from the Bee NAC action, and curiosity. Curiosity
pain causes the agent to explore the environment when no
other pain is detected and it lasts until all useful actions are
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TABLE III

LIST OF RESOURCES, USEFUL RESOURCE-MOTOR PAIRS, AND THEIR OUTCOME

Fig. 6. Main simulation view with displayed simulation state in windows.

learned. The agent observes which resources it needs and
introduces the need to have them according to the goal creation
methodology.

We also defined the world rules (listed in Table III as
outcome), which describe what the results of the agent’s
actions are. The agent’s actions result in various outcomes like
increasing and decreasing resources quantities, as well as in
reducing abstract pains. To visualize the resource quantities,
the current task, pains levels, and the agent’s memory, we
added simulation windows, which display the current state
of the environment and the ML agent, as shown in Fig. 6.
When a pain level is above threshold, it is displayed in red.
In this screenshot the agent action is driven by NAC action
pain.

The agent tries to learn useful actions and their outcomes.
Sometimes the agent performs a nonsense action like “Play
for joy with hammer,” but even such “useless” actions are

used to learn. The memory window on the left part of Fig. 6
displays the memory state of various S–M pairs. When the
color is gray, then it means that the agent did not learn the
value of the corresponding S–M pair. When the color is white,
it means that action is useful for the agent, and if the color is
black, the action is known to be useless.

The environment parameters must be properly set to give the
ML agent a chance to learn proper behavior. When resources
are sparse, the agent does not learn all useful actions because
it runs out of resources to test new actions. On the other
hand, when resources, are plentiful, the agent does not bother
to learn anything new since its pain is under control. Also,
when action times are too long, the agent cannot satisfy all
of the pains. When proper simulation parameters are selected,
the ML agent proves to learn correctly even in a complex
and changing environment. We have run multiple simulations
where we modified resource quantities and motor action times.
By using a human controlled character, we tried to disturb the
ML agent by getting in its way or moving resources to different
locations. In all of these simulations, the ML agent learned
to manage the changes in the environment and minimize its
average pain.

C. Simulation Results

Fig. 7 illustrates changes at various pain levels, with partic-
ular emphasis on the pain triggered by a NAC action labeled
by the solid line as “NAC Action” pain. This pain is related to
the consumption of food by the NAC. Food is directly related
to the primitive hunger pain (not shown in Fig. 7), so any pain
related to food reduction is discovered quickly. Initially, the
pain remains below threshold. However, as the NAC consumes
food, it causes a buildup of bias against the NAC action (1)
and related pain. Eventually the pain passes threshold, and the
agent learns to scare the NAC away. As time progresses, Fig. 7
illustrates that the agent correctly interrupts an undesirable
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Fig. 7. NAC pain behavior.

NAC behavior, and reduces the pain associated with the said
behavior by forcing the NAC away.

V. COMPARISON WITH RL AGENTS

An important question that must be answered is whether
the proposed ML scheme with goal creation is any better that
other schemes derived from RL? Some may argue that RL
with subgoal creation will perform equally well as ML, where
a subgoal is created when it is needed to complete a designer
set goal. However, it is not the same as internal motivations to
perform a specific goal. An ML agent will act on its internally
set goals independently from the goals set by designer, and in
a dynamic environment this results in better performance of
the ML agent over the RL agent.

To prove this, we tested several RL agents operating in
the same environment using a “black box” approach. The RL
agents were given the same information about the environ-
ment as the ML agent and could perform the same actions.
Agent actions resulted in changes in the environment that
corresponded to their actions. Since RL agents optimize the
reward received, we computed the rewards received by various
agents and normalized them to the maximum reward that could
be obtained in this environment at any given time.

The tested environment presents a simple eight-level hier-
archy of resources similar in structure to the basic scenario
presented in [26], thus it was much simpler than the scenario
we implemented in NeoAxis and illustrated in Table III.
In this scenario, there is a single primitive need, which can
be resolved by the correct action, which consumes a specific
resource. This specific resource gets depleted over time and
needs a proper action to restore, and so on up to the “top”
level of the hierarchy. The top resource level is unlimited.

The settings and basic descriptions of the RL algorithms
used to control the agent are as follows.

Q-learning is one of the traditional RL algorithms and can
be used to acquire optimal control strategies from delayed
rewards. We implemented the Q-learning algorithm from [39]
with the discount factor γ = 0.9 and α = 0.7.

Fig. 8. Comparison of RL algorithm average reward performance with ML.

State-action-reward-state-action [SARSA(λ)] is a typical
temporal difference learning algorithm. It considers transitions
from state-action pair to state-action pair. It updates the esti-
mates based on the other learned estimates, without waiting for
a final outcome. We implemented this SARSA(λ) algorithm
from [21] and set the parameters as γ = 0.9, α = 0.4,
and λ = 0.9.

Maximum Q (MAXQ) is adopted to implement the hierar-
chical RL from [40], where subgoals and subtasks are defined.
By doing this, the agent constructs a set of policies that need
to be considered during RL. The MAXQ value function is
assumed to represent the value function of any given hierarchy.
The parameters are set as γ = 0.9 and α = 0.4.

Neural fitted Q iteration (NFQ) is a variant of the batch
RL learning fitted Q iteration algorithm [41], [42]. Defining
the learning problem and appropriately adjusting all relevant
parameters is often a tedious task. Hence, NFQ implements a
dynamic scaling heuristic that can be seamlessly integrated
into neural batch RL algorithms, which use a fixed set of
a priori-known transition samples, e.g., offline learning.

Explauto [43] is a Python library/interface framewor for
the implementation of active and online sensorimotor learning
algorithms. In our tests with Explauto we used its built-
in DiscreteProgress interest model configured to match our
environment.

The “black box” scenario regulates the amount of reward
that a system can receive using the following equation:

Rp(i) = 1 − Scp/Sinp (16)

where Sinp is the initial (restoration) level of the primitive
resource p and Scp is the resource level at the time the agent
performs a valid action on it. By using this approach, the agent
will receive a reward ranging from 0 to 1 whenever it performs
the correct action, receiving higher values when the need for
the resource is greater. At the end of the simulation, results are
generated using (17) by averaging the runs and normalizing
them, such that the maximum reward any agent can receive
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is 1.0

RNorm(i) =
1
i

∑n
p=1

∑i
k=1 Rp(k)

∑n
p=1

Srp
Sinp

(17)

where RNorm is the normalized reward, i indicates the current
time step, n is the number of primitive resources, and Srp is
the rate at which the rewarding resource p is depleted.

Fig. 8 compares our ML algorithm against the specified
RL algorithms. Each algorithm was run 25 times and the
results were averaged. The 95% confidence intervals were
less than ±2.6% per each line. As expected, hierarchical
reinforcement learning (MAXQ) performs better than either
Q-learning or SARSA(λ). However, ML clearly outperforms
all of them. ML is simply better suited to operate in the
hierarchically structured, dynamically changing environments.

These results show that the ML algorithm performs favor-
ably against several common RL algorithms. RL is only using
information about the environment state and a “reward” signal,
while the ML agent’s decision also depends on the internal
state of the agent and its intrinsic rewards. A more thorough
treatment of our “black-box” testing was given in [44]. The
Black box scenario is open to anyone wishing to conduct their
own experiments at: http://ncn.wsiz.rzeszow.pl/autonomous-
learning-challenge/.

Please feel free to run the experiment yourself and let us
know if your results are better than what we reported.

VI. CONCLUSION

In this paper, we have presented a generalized ML agent.
This generalization includes a significant extension of the
agent’s motivation and goal creation scheme by introducing
needs to respond to both desired and undesired actions by
NACs. We introduced several modifications to the ML algo-
rithm, including introduction of resource and action desirabil-
ity and calculations of bias signals and wpg weights. We unified
bias calculations for desired and undesired resources and
actions. We also presented simple learning recommendations
that depend on interactions between the agent, NACs, and the
environment. This includes the calculation of pain reduction
parameter δp . By adding these new features we have improved
the agent’s ability to handle its environment as well as our own
ability to implement complex and interesting environments for
our agents.

We simulated the ML agent in a virtual environment using
the NeoAxis game engine with a focus to illustrate the new
features. The currently implemented agent has several basic
primitive motor procedures, which can be linked together to
form more complex operations. By rendering low-level motor
actions such as grasping or walking into symbolic motor
control, we avoid the agent’s need to learn these elementary
motions. Furthermore, by simulating the agent’s environment,
we both improve and simplify our control over the learning
process. As a result, there are fewer adaptive learning variables
and learning takes less time than it would in a real world
environment.

It is important to emphasize that our ML agent learns and
acts in a real time within its virtual environment. This means

that it learns and makes all its decisions within the time frame
permitted between iterative updates of the environment (less
than 33 ms).

This paper represents a major overhaul of the ML agent,
redefining its needs, pains, and motivations to act, which
are fundamental to its learning principles. The simulation
results of the ML agent in the virtual 3-D environment in
NeoAxis prove that our theoretical assumptions for ML agent
memory organization, determination of bias signals, weights,
and associated pain calculations, were useful. The ML agent
was able to learn all environment rules, and keep the agent’s
pains under control.

Comparison with several RL agents demonstrated the
validity of our approach in dynamic environments.
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