
 
Abstract— When data sets are analyzed, statistical pattern recognition is often used to find the information hidden in the data.  Another 
approach to information discovery is data mining.  Data mining is concerned with finding previously undiscovered relationships in data sets.  
Rough set theory provides a theoretical basis from which to find these undiscovered relationships.  We define a new theoretical concept, 
strong compressibility, and present the mathematical foundation for an efficient algorithm, the Expansion Algorithm,  for generation of all 
reducts of an information system. The process of finding reducts has been proven to be NP-hard.  Using the elimination method, problems of 
size 13 could be solved in reasonable times.  Using our Expansion Algorithm, the size of problems that can be solved has grown to 40. Further, 
by using the strong compressibility property in the Expansion Algorithm, additional savings of up to 50% can be achieved.  This paper 
presents this algorithm and the simulation results obtained from randomly generated information systems. 
 
Keywords— Rough sets, information systems, data mining. 

I. INTRODUCTION 
Information systems are used in data mining and intelligent decision support for pattern recognition and neural network training 
to represent the knowledge that can be extracted from the database.  These systems were investigated by several researchers [3], 
[6], [7], [10] using rough set theory.  In recent years rough set theory and its applications have captured a lot of attention from 
AI researchers and developers of intelligent systems.  Rough sets parallel fuzzy sets in their domain of applications, usefulness 
to capture the imprecise knowledge, and mathematical formalism based on set theory.  Among the various problems addressed 
by researchers who study rough sets are knowledge representation and reduction, dependencies in knowledge bases, imprecise 
knowledge, and software implementation of decision support systems. 
 
Rough set theory and its strict mathematical formalism is appealing to many researchers working in logic and deductive 
reasoning [2], [6], [9].  Specialized logic tools were developed to deal with approximate reasoning.  A basic problem for many 
practical applications of the rough sets is an efficient selection of the set of attributes (features) necessary for the classification of 
objects in the considered universe (signal space).  This problem, known as the knowledge reduction problem, was treated in [4], 
[1], and an algorithmic approach based on the discernibility matrix and expansion and reduction of discernibility function was 
developed.  The hardest problem to solve algorithmically in a data reduction system is the problem of generating all reducts of a 
given information system.  It was shown in [7] that generation of all reducts is NP-hard. 
 
This paper complements the work by [7] for generation of reducts with the notion of strong equivalence of the attributes of the 
information system and attribute expansion.  Applying the concepts of strongly compressible and attribute expansion, we 
demonstrate a significant reduction in computational complexity of the reduct generation procedure. Improvement stems from 
breaking a complex reduct generation problem into a number of simpler problems. 

                                                           
   Manuscript received ________; revised _________. 
    J. Starzyk is with School of Electrical Engineering and Computer Sciences, Ohio University, Athens, OH 45701 (e-mail 
starzyk@bobcat.ohiou.edu) 
   D. Nelson is with the Air Force Research Laboratory, Sensors Directorate, WPAFB, OH 45433-7001 (e-mail 
nelsonde@sensors.wpafb.af.mil) 
   K. Sturtz is with Veridian Inc., Dayton, OH, 45431 (e-mail ksturtz@mbvlab.wpafb.af.mil) 
 

A Mathematical Foundation for Improved 
Reduct Generation in Information Systems 

Janusz A. Starzyk , Senior Member, IEEE, Dale E. Nelson, Member, IEEE, and Kirk Sturtz 



 2

 

II. INFORMATION SYSTEMS AND REDUCTS 

 
In this section we review basic definitions of rough set theory related to selection of the set of attributes for the purpose of 
classifying a given set of objects.  Discernibility function is formally defined and an alternative characterization of reducts is 
given which is easier to manipulate for algorithmic purposes.  For a full description of rough set theory and related terms see [5]. 
 
Consider the information system ),( AU , where },...,{ 1 nxxU =  is a nonempty finite set called the universe, and },...,{ 1 maaA =  
is a nonempty set.  The elements of A, called attributes, are functions 

ii VUa →:  
 
where iV  is called the value set of ia .  The discernibility matrix of A is the nn ×  matrix with th, ji  entry 
 

)}()(:{ jiij xaxaAac ≠∈= . 
 
Let AB ⊆ , and let )(AP  be the power set of A.  The  Boolean-valued function Bχ  is 
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Let )}(:{ APBS B ∈= χχ .  Define the binary operator ∧ , called conjunction, by 
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DDD
AP

CB

CB

χχ
χχ

a

→∧
 

 
It is not difficult to prove ),( ∧χS  forms a commutative monoid, with the identity element being Aχ .  The associativity property 

)()( DCBDCB χχχχχχ ∧∧=∧∧  

allows the parenthesis to be dropped without any possibility of confusion; moreover we can now define ∧  for any finite 
collection of functions { } p

iiB 1=
χ  by recursion 

( )
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χχχ ∧∧=∧
−== 1,...,1,...,1

 

The discernibility function of the information system is 
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where “ 0 ” is the constant function 

0:  
}1,0{)(:0

aC
AP →  

If Af  is an empty conjunction we define Af  to be the constant zero function.  This is an uninteresting case and we assume 
throughout that Af  is not an empty conjunction. 

The condition 0≠
ijcχ  used in the definition of the discernibility function is equivalent to the condition that ∅≠ijc  since 
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∅≠⇔∈∃⇔∅≠∩⇔=⇔≠ ijijkijijcijc
ccaAcA 1)(0 χχ  

Using the fact the discernibility matrix is symmetric and that ∅=iic  we obtain the discernibility function simplifies to 

ijc

ijc
njiAf χ

∅≠
≤<≤

∧=
 

 1
.  An immediate consequence of the definition is 

Proposition 1.  .1)( =Af A  
Proof.  Suppose the contrary, 0)( =Af A .  Then  

( )( )

∅=
⇓

∅=∩
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=∃

ij

ij

ijcijc

c

cA

A

    

    

0)(χχ

 

contradicting the definition of Af  as a conjunction of functions with a nonempty indexing set.                                                  � 
 
Let AB ⊆ .  The B-indiscernability relation is 

)})()(()(:),{()( yaxaBaUUyxBInd =∈∀×∈=  

The B-discernibility relation is the complement of )(BInd  in UU × , 

)()( BIndUUBDis −×= . 

The following lemma is an immediate consequence of the definition.  It is used repeatedly in the propositions to follow. 
 
Lemma 2.  Let AB ⊆  .  Then 

UU
BaBa

aDisaDisBDis
∈∈

=






= )}{(}{)( . 

Consequently, if Bba ∈,  and })({})({ bDisaDis =  then  

}){()}{()( bBDisaBDisBDis −=−= .                                                                 � 

Essential for the information system are the reducts that describe knowledge represented in this system.  A set AB ⊆  is a 
discern in A if )()( AIndBInd = .  A discern is called a reduct if )(}){(  )( BIndaBIndBa ⊃−∈∀ , where “⊃” denotes a 
proper subset relation.  The set of all reducts of A is denoted )(ARed .  The reduct generation procedure developed in [8] is based 
on the expansion of the discernibility function into a disjunction of its prime implicants by applying the absorption or 
multiplication laws.  It is our intention to improve the computational efficiency of the reduct generation procedure. 
 
The following proposition provides an alternative characterization of a reduct in terms of the discernibility function.  This 
characterization is more convenient for purposes of the reduct generation algorithm to follow. 
 
Proposition 3.  B is a reduct in A iff 
 (1) 1)( =Bf A , and 
 (2) 0)( =⇒⊂ CfBC A . 
Proof.  Suppose B is a reduct in A. We first show 1)( =Bf A .  By Proposition 1, 1)()(

1
=∧=

∅≠
≤<≤

AAf
ijc

ijc
njiA χ  which implies 

1)()(),( =∅≠∀ Acji
ijcij χ .  So by definition of χ⋅ , )()(),( ∅≠∩∅≠∀ Accji ijij  which implies 

))()(()())(,( jiij xaxaAacji ≠∈∃∅≠∀  which in turn implies ))(),)(((),( ADisxxcji jiij ∈∅≠∀ .  Using the hypothesis 
)()( AIndBInd =  we obtain ))(),)(()(,( BDisxxcji jiij ∈∅≠∀  which implies ))()()()()(,( jiij xaxaBacji ≠∈∃∅≠∀ .  Hence 

))()(,( ∅≠∩∅≠∀ Bccji ijij  from which we obtain )1)()()(,( =∅≠∀ Bcji
ijcij χ .  This implies 1)()(

1
=∧=

∅≠
≤<≤

BBf
ijc

ijc
njiA χ .  We 
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now prove )(}){(   )( BIndaBIndBa ⊃−∈∀  implies 0)( =⇒⊂ CfBC A .  Let  BC ⊂  so ))(( CaBa ∉∈∃ .  The hypothesis 
implies )()( BIndCInd ⊃  so  
 (i) ))()()())(,(( jiji xbxbCbxx =∈∀∃  while 
 (ii) )()( ji xaxa ≠ . 
Condition (i) implies ∅=∩ Ccij  which in turn implies 0)( =C

ijcχ . 

Condition (ii) )()( ji xaxa ≠  implies ∅≠ijc  so 
ijcχ  is a factor of Af .  Combining these two conditions we obtain 0)( =Cf A .   

Conversely, suppose the two conditions (i) 1)( =Bf A , and (ii) 0)( =⇒⊂ CfBC A  hold. 
 
We first prove, using only the condition (i) 1)( =Bf A , that )()( AIndBInd =  by showing )()( AIndBInd ⊆  and 

)()( BIndAInd ⊆ .  Let )(),( 21 BIndxx ∈ .  Then )()()( ji xaxaBa =∈∀ .  Now either ∅=ijc  or ∅≠ijc .  The latter condition 
cannot hold true.  For suppose ∅≠ijc .  Then since, by hypothesis, 1)( =Bf A  we obtain that 1)( =B

ijcχ  which implies 

∅≠∩ Bcij .  Hence ))()()(( ji xaxaBa ≠∈∃  contradicting our hypothesis )(),( 21 BIndxx ∈ .  Thus we must conclude ∅=ijc  
which implies )(),( 21 AIndxx ∈ .  Hence )()( AIndBInd ⊆ .  The condition )()( BIndAInd ⊆  is immediate since  AB ⊆ .  Hence 

)()( AIndBInd = . 
 
Now we show )(}){(   )( BIndaBIndBa ⊃−∈∀  follows from the two given conditions of the proposition.  Let Ba ∈   and 

BaBC ⊂−= }{ .  By the second condition 0)( =⇒⊂ CfBC A  so 0)()( =∃ C
ijcijc χχ  which implies ∅=∩ Ccij .  Hence 

)()(   )( ji xaxaCa =∈∀  so )(),( CIndxx ji ∈ .  But by the first condition, 1)( =Bf A  which implies 1)( =B
ijcχ , which in turn 

implies ∅≠∩ Bcij .  Thus ))()()(( ji xbxbBb ≠∈∃  - since ∅=∩ Ccij  we conclude ab = .  Because )(),( CIndxx ji ∈  and 
)(),( BIndxx ji ∉  we obtain )(}){(= )( BIndaBIndCInd ⊃− .                                                                                                    � 

 

III. REDUCTION OF KNOWLEDGE 
 
Not all knowledge presented in the information system is necessary to describe it.  Reduction of knowledge in the information 
system (which results in generation of reducts) is analogous to mathematical independence of vectors in linear algebra. 
Reduction of knowledge will be based on the expansion and simplification of the discernibility function.  Basic tools for this 
simplification are the absorption and expansion laws discussed in this section.  These tools will be used to produce a specific 
form of the discernibility function defined here as a simple form. 
 
As before, let )}(:{ APBS B ∈= χχ .  Define the binary operator ∨ , called disjunction, by 

CBCB
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χχχχ

χχχ

∨
→×∨
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χχ
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It is easy to prove that the operator ∨  satisfies associativity, commutativity, and distributes with respect to conjunction, 

)(...)()...(
11 kCBCBkCCB χχχχχχχ ∧∨∨∧=∨∨∧  . 

Likewise it distributes with respect to disjunction, 

)(...)()...(
11 kCBCBkCCB χχχχχχχ ∨∧∧∨=∧∧∨ . 

These last two properties are called the distribution laws.  One consequence of these laws is given in the following proposition 
which provides the fundamental tools used the reduct generation algorithm to follow. 
 
Proposition 4. (a) (Absorption Law)  Let AB ⊆ .  Suppose ADC ⊆⊆≠∅ .  If 1)( =BCχ  then 1)( =BDχ . 



 5

(b) (Factorization Law) Let Aa∈  and suppose kifora
iC ,...,1=  1})({ =χ .  Then for AB ⊆  

1)))(...((1))(...( }{}{}{ 11
=∧∧∨=∧∧ −− BiffB aCaCaCC kk

χχχχχ . 

Proof. 

(a) 1)(1)( =⇒∅≠∩⇒∅≠∩⇒= BBDBCB DC χχ . 
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� 
 
Let AB ⊆  and suppose ADC ⊆⊆≠∅ .  In ascertaining the validity of 1)( =Bf A  the absorption law implies it suffices to 
check the validity of 1)( =BCχ  to ascertain in addition the validity of 1)( =BDχ .  In this manner the absorption law is exploited 
in reduct algorithms. 
 
Using commutativity of the conjunction operator to rearrange factors if necessary, and the distribution law, the factorization law 
gives 
 
Corollary 5. (Expansion Law) Suppose 

sCkCkCCAf χχχχ ∧∧∧∧∧=
+

......
11

.  Let Aa ∈  and suppose 
kifora

iC ,...,1=  1})({ =χ , and skifora
iC ,...,1+=  0})({ =χ .  Then 
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� 
Letting 

)...()...(

)...(

1}{}{12

1}{1

sCkCatCaC

sCkCa

f

f

χχχχ
χχχ

∧∧∧∧∧=

∧∧∧=

+−−

+  

the conclusion of Corollary 5 reads 21 fff A ∨= , where both 1f  and 2f  are conjunctions of the Boolean-valued functions ⋅χ .  
Since each χχ SB ∈  is a function }1,0{)(: →APBχ , both 1f  and 2f  are functions }1,0{)(: →APfi .  This suggest the following 
definitions: 
 
A cover of a discernibility function Af  is a family of Boolean-valued functions },...,{ 1 kff  satisfying kA fff ∨∨= ...1  where 
each }1,0{)(: →APfi  is a conjunction of Boolean-valued functions. 
 
Let },...,{ 1 kff  be a cover of a discernibility function Af .  The reduct of if , denoted )( ifRed , consist of all subsets AB ⊆  
such that 
 (1) 1)( =Bfi , and 
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 (2) 0)( =⇒⊂ CfBC i . 
 
A simple cover of a discernibility function Af  is a cover of  Af  such that if B Red fi∈ ( )  then B Red f j j ij∉ ∀ ≠( ) , . 

A consequence of these definitions and Proposition 3 is 
 
Proposition 6.  Let },...,{ 1 kff  be a simple cover of a discernibility function Af .  If )( ifRedB ∈  then B is a discern in A, 

)()( AIndBInd = . 
Proof.  Suppose ( )ifRedB ∈ .  Then ( ) ( ) 11 =⇒= BfBf Ai .  The proof of Proposition 3, as noted, shows the condition ( ) 1=BfA  
is equivalent to ( ) ( )AIndBInd = .  The condition AB ⊆  follows by the definition of ( )ifRed .                                  � 
 
Definition.  A simple cover },...,{ 1 kff  is called a simple form of the discernibility function if for each 

ikCCif χχ ∧∧= ...
1

 the 

indexing sets are pairwise disjoint,  jiforCC ji ≠∅=∩    . 
 
The expansion law, as stated in Corollary 5, shows that given any conjunction 

sCCAf χχ ∧∧= ...
1

 with two or more the indexing 
sets having an element (attribute) Aa ∈  in common we can factor Af  as 21 fff A ∨= .  In turn, if either 1f  or 2f  have two or 
more indexing sets in their respective conjunctions with an element in common, they can be factored to obtain  

)()( 22211211

21

ffff
fff A

∨∨∨=
∨=

 

This process can be repeated on each disjunction 
tCCif χχ ∧∧= ...

1
 of Af   in turn.  If all the indexing sets iC  in a given 

Boolean-valued function if  are distinct jiforCC ji ≠∅=∩     then the corresponding function is in simple form and is no 
longer expanded.  This process must terminate by the finiteness of A.  We have proven 
 
Proposition 7. Any discernibility function Af  can systematically be put into simple form by repeatedly applying the expansion 
law. 
 
The reduct generation algorithm, given in Section V, is based upon Proposition 7.  For computational efficiency, an expansion 
proceeds with respect to an attribute a  which belongs to the largest number of indexing sets iC  not less than two.  The 
absorption law provides computational savings, as does the concept of strong equivalence given next. 
 
The Boolean-valued functions Bχ  are completely determined by the indexing set B.  As such, it is unnecessary, for 
computational purposes, to carry along the “ χ ” notation.  In the following example, illustrating Proposition 7, we first solve the 
problem formally, and then solve it dropping the explicit χ  function notation. 
 
Example 1.  Consider the following Boolean-valued function Af : 

4321 CCCCAf χχχχ ∧∧∧=  
where 

}{  },,{  },,{  },,,{ 4321 eCdaCdbCcbaC ====  

Using the expansion law to expand pf  with respect to a  gives  

)()(
5423431 DDDDDDDAf χχχχχχχ ∧∧∧∨∧∧=  

where 

}{  ,}{  ,},{  ,},{  ,}{ 54321 dDeDcbDdbDaD ===== . 

By using the absorption law Af  can be further reduced to 

)()(
543431 DDDDDDAf χχχχχχ ∧∧∨∧∧=  



 7

The last equation is a simple form of Af .  The discerns of A are ,}{ ,}{ },,,{ b,d,ea,d,eeba  and },,{ edc .  By definition, the 
minimal elements of the set of all discerns are reducts.   Hence these four sets are the reducts of A. 
 
The same problem without the “ χ ” notation: 

4321 CCCCf A ∧∧∧= . 

where 

}{  },,{  },,{  },,,{ 4321 eCdaCdbCcbaC ====  

 
Expanding with respect to the attribute a  gives )( )( 5423421 DDDDDDDf A ∧∧∧∨∧∧=  where 

}{  ,}{  ,},{  ,},{  ,}{ 54321 dDeDcbDdbDaD ===== .  By using the absorption law Af  can be further reduced to 
)( )( 543421 DDDDDDf A ∧∧∨∧∧=  whereby the reducts can be readily determined.  The latter approach is a more efficient 

representation and we employ it computationally.  
 

IV. STRONG COMPRESSIBILITY 
 
Efficiency of the reduct generation depends on the simplification of the discernibility function.  Since reduct generation is an 
NP-hard problem, savings in both the memory and computational effort yields a more practical algorithm applicable for complex 
knowledge systems.  The concept of strong compressibility, defined in this section, can be applied together with the other tools 
of reduct generation algorithm and reduces its computational cost. 
 
The property of discernibility can be used to define an equivalence relation on A as 

})({})({~ bDisaDisba Dis =⇔ . 

The equivalence class of an attribute Aa ∈  is the subset 

 })}({})({:{][ bDisaDisAba =∈= . 

Let ][aB ⊆ .  By Lemma 2 

})({})({}{)( aDisbDisbDisBDis
BbBb

==






=
∈∈
UU , 

or equivalently, 

})({)(   )( bDisBDisBb =∈∀ . 

Let AB ⊆ .  If there exists an attribute Aa ∈  such that ][aB ⊆  then we say B is strongly compressible.  An immediate 
consequence of the above definitions is: 
 
Proposition 8.  If a subset of attributes AB ⊆  is strongly compressible then any two singleton sets, whose elements are 
attributes in B, are equivalent 

})({})({   ),( bDisaDisBba =∈∀ .                                                                      � 

The knowledge connected with a strongly compressible subset is redundant within the knowledge base in the sense that a single 
attribute from this set provides the same characterization of objects as does the whole set.  Consequently the number of attributes 
(the amount of knowledge) required to distinguish between all the objects occurring in the considered universe may be reduced. 
 
Proposition 9.  Let B be a strongly compressible subset of A.  Suppose Bba ∈, .  Then 

)(},{ ARedCba ∈⊆/ . 

Proof. Suppose the contrary.  Let C be a reduct of A containing both attributes Bba ∈, , which implies by the definition of 
strongly compressible that })({})({ bDisaDis = .  Now apply Lemma 2 to conclude )()(}){( AIndCIndaCInd ==−  
contradicting the hypothesis that C is a reduct.                                                                                                                          � 
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Based on this result, at most a single attribute from any strongly compressible subset can occur in any reduct of A.  This concept 
can be extended to the components },...,{ 1 pff  of a simple cover of Af  as shown in 
 
Proposition 10.  Let },...,{ 1 pff  be a simple cover of Af .  Let B  be strongly compressible.  Let Bba ∈},{ .  Then  

)(},{ ifRedCba ∈⊆/ . 

Proof. Suppose the contrary.  Let C be a reduct of if  such that )(},{ ifRedCba ∈⊆ .  Since Bba ∈},{   and B is strongly 
compressible we obtain })({})({ bDisaDis = .  Now apply Lemma 2 to )()(}){( ifIndCIndaCInd ==−  contradicting the 
hypothesis that C is a reduct of if .                                                                                                                                            � 
 
The equivalence relations determined by discernibility, })({})({~ bDisaDisba Dis =⇔ , are of considerable power but of 
limited use since the equivalence classes are often singleton sets.  However a closely related equivalence relation, obtained by 
replacing the definition of the relation in terms of the discernibility function by the ⋅χ  functions is of considerable 
computational use in the calculation of reducts. 
 
Let },...,{ 1 pff  be a simple cover of Af .  For each i=1,...,p, define a relation on A by  

iCCf kjforbaba
jji

,...,1   })({})({~ ==⇔ χχ  

where  
ikCCif χχ ∧∧= ...

1
. 

 
It is readily verified that for each index i, the above condition determines an equivalence relation on A.  Denote the equivalence 
class of a under the equivalence relation determined by if  by ia][ .   
Note: By the definition of the ⋅χ  functions it is equivalent to say 

ijjf kjforbCaCba
i

,...,1  )}{}{(~ =∅=∩⇔∅=∩⇔ . 

In words: the attribute a is equivalent to the attribute b iff the two attributes are simultaneously either present or absent in each of 
the indexing sets of each conjunct.  Let us introduce some terminology. 
 

Let },...,{ 1 pff  be a simple form of Af .   Let AB ⊆ .  If there exist an attribute Aa ∈  such that iaB ][⊆  then we say B is a 
local strongly compressible subset.  When we need to emphasize the particular index i, we say B is a local strongly 
compressible subset of if .    A local strongly complressible subset is characterized by 

Proposition 11.  A subset AB ⊆  is a local strongly compressible subset of if  if and only if 









=∉

=∈

⇒∈
kjCb

or

kjCb

Bb

j

j

,,1

,,1

K

K

 

where  
ikCCif χχ ∧∧= ...

1
. 

Proof .  This follows from the above note and the fact that ~fi
 is an equivalence relation.    � 

The utility of a local strongly compressible subset is stated in 

Proposition 12.  Let },...,{ 1 pff  be a simple form of Af .  Let B  be a local strongly compressible subset of if .   Suppose 
Bba ∈},{ .  Then )(},{ ifRedCba ∈⊆/ . 
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Proof. Suppose the contrary, Cba ∈, .  Let C be a reduct of fi .  Since ijDjD kja ,...,1   {b})(})({ == χχ  we obtain, since 

Cba ∈, , that )(}){( CfaCf ii =−  which implies )()(}){( ifIndCIndaCInd ==−  contradicting the hypothesis that C is a 
reduct of if .               � 
 

Note:  If  ba
if

~ then kja
jj CC ,...,1  {b})(})({ == χχ .  Thus we can replace each element of ia][ occurring  in each  

Cj   by a single representative, so 

1))(...(1))(...( ˆˆ
11

=∧∧⇔=∧∧ BB
ikik CCCC χχχχ  

where $Cj  is Cj   after substituting with representatives.   
 
We now show the relationship between strong compressible and local strongly compressible. 
Proposition 13.  Let. A subset AB ⊆  is strongly compressible iff it is local strongly compressible, 

∅≠∀=⇔= ijCC CabDisaDis
ijij

  {b})(})({})({})({ χχ  

Proof.  We prove the contrapositive statement. 

 

0})({1})({

)()()()(

)(})({),(})({),(

})({})({

==

∉∈

≠≠

−∉∈∃

≠

banda

CbandCa

xbxbandxaxa

versaviceorbDisxxandaDisxx

bDisaDis

ijij CC

ijij

jiji

jiji

χχ
c

c

c

c

 

� 
 
The knowledge connected with a strongly compressible subset is redundant within the knowledge base in the sense that a single 
attribute from this set provides the same characterization of objects as does the whole set.  Consequently the number of attributes 
(the amount of knowledge) required to distinguish between all the objects occurring in the considered universe may be reduced. 
 

V. REDUCT GENERATION 

 
All the results presented in the preceding sections are exploited in the algorithm to follow. At each stage, elements of a local 
strongly compressible subset will be replaced by a single attribute from the subset.  Moreover, each repetition of step 3 
maintains a simple cover form of the discernibility function under the expansion law.  
Reduct Generation Algorithm 
 
Given: f fA i j n

C
C

ij

ij
= = ∧

≤ ≤ ≤
≠∅

1 1
χ  which is an initial simple cover of Af . 

 
Step 1. In each component if  of the simple cover, apply the absorption law to eliminate all conjuncts Dχ  where there exist a 
conjunct Cχ  such that DC ⊆ . 
 
Step 2. Replace each local strongly compressible subset of attributes in each simple cover component if  by a single attribute 
that represents this class.  A local strongly compressible subset is identified in each component if  if the corresponding set of 
attributes is simultaneously either present or absent in each indexing subset of its conjuncts. 
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Step 3. In each component if  of the simple cover select an attribute Aa ∈  which belongs to the largest number of indexing sets 

iC , numbering at least two, and apply the expansion law.   Write the resulting form as a disjunction 21 iii fff ∨= . 
 
Step 4.  Repeat steps 1 through 3 until Af  is in a simple form. 
 
Step 5. For each component if  of the resulting simple form, substitute all local strongly compressible classes for their 

corresponding attributes, i.e., replace each function Cχ  by 
Ĉ

χ  where }:]{[ˆ CaaC i ∈∪= . 
 
Step 6.  Calculate the reducts )( ifRed . 
 

Step 7. Determine the minimal elements, with respect to the inclusion relation, of the set U
p

i
ifRed

1

)(
=

, where pA fff ∨∨= ...1 . 

These minimal elements are the elements of )(ARed . 
 
Example 2. To illustrate the reduct generation algorithm consider the discernibility function (without the explicit χ   notation) 

},{},,{},,{},,,{},{},,,{ ededbdcbfedadbfcbaf A ∧∧∧∧∧=  

1. Since },,{},{ edbdb ⊂  and },,{},{ dcbdb ⊂  we use the absorption law to eliminate conjuncts 4 and 5 and get an equivalent 
discernibility function: 

},{},,,{},{},,,{ edfedadbfcbaf A ∧∧∧=  

2. },{ fa  is a strongly compressible class so we can represent it by a single attribute g which yields: 

},{},,{},{},,{ ededgdbcbgf A ∧∧∧=  

3.  The remaining function attribute d  is the most frequent so we apply the expansion law with respect to this attribute to obtain 

}){}{ ( }),,{})({
}){},{}{},,{ (}),,{}({

21

ebcbgd
eegbcbgcbgd

fff A

∧∨∧=
∧∧∧∨∧=

∨=
 

where the simplification in the last step resulted from the absorption law. 
 
4.  All functions if  are in simple form. 
 
5.  Substituting all strongly compressible classes for their equivalent attributes we get 

}){}{ ( }),,,{}({
21

ebcbfad
fff A

∧∨∧=
∨=

 

6.  Reducts which correspond to the simple cover functions are 

}},{{)(
}},{},,{},,{},,{{)(

2

1

ebfRed
dcdbfddafRed

=
=

 

7.  The reducts of A are obtained by determining the minimal elements of the set 

( ) }},{},,{},,{},,{},,{{
2

1

ebdcdbfddafRed
i

i =
=
U  

from which we conclude 

( ) }},{},,{},,{},,{},,{{ ebdcdbfddaARed = . 

(The reducts of A are obtained by “throwing away” supersets in U
p

i
ifRed

1

)(
=

; in this example there are no supersets.) 
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It is essential that the algorithm has the desired property of determining all the reducts.  This is shown in 
Proposition 12.  The algorithm determines all the reducts of A, 

U
p

i
ifRedARed

1

)()(
=

⊆  

Proof.  There are two main points to prove: 
(1). The algorithm converges (doesn’t loop indefinitely), and 

(2). U
p

i
ifRedARed

1

)()(
=

⊆ . 

Part (1) follows from Proposition 8.  To prove part (2), note that the form kA fff ∨∨= ...1  follows from applying the expansion 
law repeatedly in step 3.  Then 

U
p

i
i

l

l

l

k

k

A

A

fRedB

fRedBl

CfBC
Bfl

CfCfBC
BfBf

CfBC
Bf

ARedB

1

1

1

)(

     

)( )(
     

0)()b(
and ,1)()()a(

     

0)(...)()b(
and ,1)(...)()a(

     
0)()b(

and ,1)((a)
3 .Prop     
)(

=

∈

⇓

∈∃
⇓

=⇒⊂
=∃

⇓

=∨∨⇒⊂
=∨∨

⇓

=⇒⊂
=

⇓

∈

 

� 

VI. RESULTS OF COMPUTER SIMULATION 
 
Simulations were run using MATLAB 5.2 on test data generated randomly.  A random number generator provided uniformly 
distributed numbers to represent each attribute of each record.  These values were multiplied by 8 and then the fractional part 
was truncated.  This resulted in integer attribute values between 0 and 8.  The number of attributes varied from 10 to 40 in 
increments of 5 and the number of records varied from 10 to 40 in increments of 5.  All simulations were accomplished using a 
dual Pentium Pro 200 MHz computer using 256MB of memory.  Figure 1 illustrates how the run times increase with problem 
size using the Expansion Algorithm.  Note the abscissa is log10 of the run time.  The curves shown are for 10, 15, 20, 25, 30, 35, 
and 40 attributes.  Note that the computational time is growing exponentially. 
 
Figure 2 shows the difference in time to run the problems using the Elimination Method and the new Distribution Algorithm.  
The graph only shows the results for 10 and 15 attributes.  This is because when the problem size was larger than this, the 
elimination method required so much time that results could not be obtained without the simulation running for many days!  
Note that the time expressed is the log10 of the time.   
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Figure 2.  Time Savings of the Expansion Algorithm vs. the Elimination Method 

 

 

 
Figure 3 shows the run times for the Expansion Algorithm with and without strong equivalence.  Incorporating strong 
equivalence into the Expansion Algorithm does cost computational time.  However, as seen in Figure 3, the time savings can be 
significant (as much as 50%) when strong equivalence is present. 
 
Figure 4 illustrates the specific run times with and without strong compressibility.  Graphed in this fashion it is easy to see the 
reduction in run time due to exploiting strong compressibility.  The examples run did not have strongly compressible subsets 
present for more than 25 signals with 40 attributes and for more than 30 signals for 30 attributes. 
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VII.  CONCLUSIONS 
We have shown that the use of the Expansion Algorithm allows the generation of all reducts in a much less time than the 
elimination method.  Further, this algorithm is ideal for implementation on multiprocessor computers.  Using this algorithm, 
larger problems should be able to be addressed. 
 
The addition of strong equivalence to the Expansion Algorithm further reduces computation time when strong compressibility is 
present.  In the simulations we ran, strong compressibility was not always present and thus the run times were increased.  It is 
possible that in real world problems, where structure is present, strong compressibility will manifest itself more frequently.  
Therefore, the computational time should be reduced in most cases. 
 
This work presented a study of knowledge reduction in information systems using properties of the discernibility function and 
proposed an improved version of a reduct generation algorithm.  Further simplification of reduct generation may be achieved 
using graph theory and hierarchical partitioning.  This topic is under investigation and will be presented in another paper. 
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