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Flowgraph Analysis of Large Electronic 
Networks 

JANUSZ A. STARZYK, SENIOR MEMBER, IEEE, AND A. KONCZYKOWSKA 

Abstract -The paper presents a new method for signal flowgraph analy- 
sis of large electronic networks. A hierarchical decomposition approach is 
realized using the so-called upward analysis of the decomposed network. 
This approach allows fully symbolic network formulas to be obtained in 
time linearly proportional to the size of the network. A multiconnection 
characterization, suitable for upward analysis, has been defined and used in 
topological formulas. Examples of large scale networks analysis are dis- 
cussed. The approach can be used to obtain symbolic solutions of linear 
systems of equations. 

I. INTRODUCTION 

T HE NOTION of topological analysis of electrical net- 
works is concerned with the determination of the 

network characteristics from the knowledge of elements 
and their connections (network topology) without applying 
numerical methods. As a result, for linear, lumped, sta- 
tionary (LLS) networks, the transfer functions (defined as 
the ratio of the Laplace transform of the output to the 
input signals under zero initial state) are obtained. 

Topological methods, independently of the graph repre- 
sentation used, allow a network transfer function to be 
obtained in a rational function form. The numerator and 
denominator of this function are expressed as a sum of 
products of edges weights [3] 

L(s) myi 
K(S) = - = ~ 

M(s) i(IYj 
(1) 

These weights depend directly on the type and value of 
network elements. 

Realization of topological formulas requires the knowl- 
edge of all graph connections [3]. To make the compu- 
tations efficient, one should use the algorithms which gen- 
erate connections rapidly and without duplication. Only in 
this case, it is possible not to check any new connection 
with all previously generated ones. There are many effi- 
cient algorithms to generate graph connections [20], [25], 
[27]. They form the basis of topological analysis programs 
intended for small linear networks [14], [16]. 

Direct application of topological formulas permits the 
analysis of networks with graphs having approximately 10 
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nodes [6]. This limitation is not the result of the low 
efficiency of generation algorithms but of great number of 
terms in topological formulas for determinant of a coeffi- 
cient matrix [3]. Even if we could generate all terms in zero 
time, the time needed for weights evaluation would grow at 
least proportionally to the number of terms, and for rela- 
tively small networks (with about 20 nodes), will attain 
enormous values. In any case, it is obvious that application 
of topological formulas for networks having more than 10 
nodes is much more time consuming than the methods of 
symbolic analysis based on the numerical techniques of 
determinant evaluation [2], [26]. 

For these reasons the methods of topological analysis 
were judged by McCalla and Pederson as completely ineffi- 
cient [15]. Nevertheless, research in this area has been 
carried out [l], [17]-[19]. 

Attempts to introduce methods of graph reduction [4], 
[9], [ll] or decomposition [5], [22] to the analysis did not 
provide universally efficient programs and were deemed 
unacceptable in a paper by Alderson and Lin [2]. 

An important development has been achieved with the 
introduction of hierarchical decomposition. In [24] the 
method of signal flowgraph analysis has been presented 
and in [23] the hierarchical analysis of directed graphs has 
been discussed. Based on both these methods and down- 
ward decomposition, a program for topological analysis of 
large networks has been successfully developed [12]. 

Further improvement was attained when the upward 
hierarchical method was introduced [13]. The details of the 
latter method will be presented in this paper. Our goal is to 
reduce the time consumption from the involution depen- 
dence for the previous (downward) decomposition to the 
linear dependency. We only consider Coates flowgraph 
representation of the network [3]. A similar approach is 
possible with other representations (e.g., unistor graph [S]). 

II. TOPOLOGICALFORMULAS 

The form of topological formulas is different for direct 
analysis and analysis with decomposition. It depends on 
the type of partition and on the kind of topological repre- 
sentation. In practice two-terminal immittances and two- 
port transfer functions are the most frequently calculated. 
As the basis for topological dependencies we consider 
evaluation of network immittances and transfer functions 
expressed by the determinant and cofactors of the nodal 
admittance matrix, as discussed in [3]. 
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(4 (b) 
Fig. 1. (a) Flowgraph. (b) l-connection. 

Let us denote W-a set of pairs of nodes in the Coates 
graph G, 

W= {(q, rl),...,(uk, rd}, vt+vm, v,+r,, r,+r, 
for I#m. 

Definition I 
We call a k-connection (multiconnection) of graph G, a 

subgraph p w, composed of k node-disjoint directed paths 
and node-disjoint directed loops incident with all graph 
nodes. The initial node of ith path is ui and the terminal 
node is ri (pairs of nodes from the set W). 

In Fig. 1 a flowgraph and its 2-connection pw is pre- 
sented. In this case W = ((5, l), (2,2)}. A O-connection or 
simply a connection is denoted by p, because W = 0. When 
ui = r,, a multiconnection has the isolated node ui. A multi- 
connection is a natural generalization of terms “connec- 
tion” and “l-connection” defined by Coates [7] and is 
useful for the topological analysis of a decomposed net- 
work. This notion corresponds to that of a k-tree (multi- 
tree) occurring in the analysis (with decomposition) when 
the representation with a pair of conjugated graphs or a 
directed graph is used. A tree can be obtained from the 
k-tree by adding’ k - 1 edges. Similarly, a k-connection can 
be transformed into a connection by adding k edges. A set 
of all k-connections p w will be denoted by P,. 

Definition 2 
The weight function of (P,I of a multiconnection set P, 

of a Coates graph with n nodes is defined as follows: 

l4+4 = C sign II Y, (2) 
PEPw ecP 

where 

signp=(-l)“fkf’Pord(ui,~~~,uk)ord(r,,~~~,r,) 

1, when ‘the number of 

ord(xl,xZ;..,xk)= 

i 

permutations order- 
ing the set is even 

-1, otherwise 

n number of graph nodes, 
4 number of loops in multiconnection p, 
Ye weight of an element e. 

Consider a flowgraph of a two-port network shown in Fig. 
2. Let Y be an indefinite admittance matrix of the two-port. 
Denote Y,, the first-order cofactor of Y as 

Y,, = ( - 1) ‘+ ” det Y,, (3) 

where Y,, is the submatrix obtained from Y by deleting 
the uth row and uth column. The second order cofactor 

Fig. 2. Two-port 

y. rp ss is defined as 

Y rp,ss= sgn(r-s)sgn(~-s)(-l)‘+~detYr~,~~, 

r#s, p#ts (4) 

where YrP ss is the submatrix obtained from Y by deleting 
rows r and s and columns p and s. Similarly we define the 
third-order cofactor Ypq,rr,ss (p # s, q # s, r f s, p Z r, 
q # r). Using these cofactors we can obtain formulas for 
transfer functions of the two-port (see [3]). 

Theorem I 
Cofactors of the indefinite admittance matrix of a given 

multiterminal network can be expressed by the weight 
functions of multiconnection sets as follows: 

r,” = IP{(,,s,)I (5) 
Y rp,ss = ~p{(~,PMs~~)~~ (6) 

Y pq,rr,- = (P((,,,,,(r.,),(,,,))(. (7) 

Proof: 
If the Coates graph is based on n X n indefinite admit- 

tance matrix Y = [ yi j], then its edge directed from node xj 
to node xi has the weight equal to yij. We have 

Y=X-YeAT, (8) 
where the element ij of h- is equal to 1 if the jth edge is 
directed towards the ith node and zero otherwise, and the 
element ij of X, is equal to 1 if the jth edge is directed 
away from the i th vertex and is zero otherwise, and Y, is a 
diagonal matrix of element admittances. 

The submatrix Y(A]B) obtained from Y by .deleting 
rows represented by the set of nodes A and columns 
represented by the set B can be written in the form 

Y(AIB) = X-,Y&, (9) 

where X-,( A+ B) is obtained from A- (1, ) by deleting 
rows A(B), respectively. According to the Binet-Cauchy 
theorem [lo] and relation (9), we have 

det Y (A] B) = c det C- det C+ 00) 
where C- is a major submatrix of X-,Y, with order equal 
to (n-card A) and C+ is the corresponding major subma- 
trix of XyB. A major determinant of XV,Y, is different 
from zero if and only if there exists one nonzero element in 
every row of the chosen submatrix C-. This corresponds to 
the set of (n-card A) edges, such that every edge has a 
different terminal node from the set of nodes (N - A), 
where N indicates the set of all nodes of the Coates graph. 
The corresponding submatrix C+ is different from zero if 
the same edges have different initial nodes from the set of 
nodes (N - B). Now it is easy to check that these edges 
form a multiconnection p w, such that if ( ui, ri) E W then 
ui E A and ri E B (see Fig. 3). Formulas (5), (6), and (7) 
follow from this general observation. q 
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An 

Fig. 3. Required multiconnections. 

- 
- ++g, 

(4 (b) 
Fig. 4. (a) Network. (b) Coates graph. 

Y is a singular matrix and only its cofactors are used to 
evaluate network functions. From (5) (6) and (7) it can be 
seen that multiconnections used to evaluate cofactors of Y 
contain s as an isolated node. We can treat this node as a 
reference and delete all edges incident to it. From now on 
the Coates graph of a network will be assumed with the 
reference node deleted. 

Example I 
An active linear network and its Coates graph with node 

3 deleted are shown in Fig. 4. The indefinite admittance 
matrix is 

[ 

g1+4c,+c2) --SC2 - g1- SC, 

Y= -‘G+gm gz + SC2 -gz-& . 

-gl-SC,-g, - g2 g, + g, + SC1 + g, 1 01) 
It is easy to confirm that 

= W,+g,) (s1+-4c,+c2)) 

+sc2k-sc2) 

for any u,u and 

Y 12.33 = i’{(l,2),(3,3))1 = - (gm - sc2). 

Computer time needed for realization of direct topo- 
logical formulas is proportional to the number of connec- 
tions in a flowgraph. Let D(G) = [dij] be a matrix denot- 
ing the connection of a Coates flowgraph; d, is equal to 
the number of edges directed from the node i to the node 
j. D is a square matrix with the dimension equal to the 
number of nodes. The number of connections in a graph .is 
equal [4] to 

card P = per [D(g)] 

where perA is a permanent of the matrix A [3]. 

(12) 

(4 (b) 
Fig. 5. (a) Node decomposition. (b) Four terminal bisection. 

Fig. 6. Edge decomposition. 

A very rough estimation for the number of connections 
for the graph with n nodes and k edges is given by [24] 

k+l n 
card P G 

i i 
--1 . 

n (13) 

Although (13) is only an upper estimate, it expresses 
correctly the rate of change in the number of terms. The 
exponential increase in the number of terms is observed in 
practice for direct topological analysis, which causes such 
analysis of large networks to be inexecutable. 

III. THE GRAPH DECOMPOSITION 

The graph of an electrical network can be analyzed 
directly with the aid of (5)-(7) and the transfer function of 
the analyzed network can be obtained in all symbolic form. 
From the previous discussion, it is evident that the number 
of terms in the symbolic function is too large. As a result, 
the analysis of medium and large networks is a formidable 
task; network and graph decomposition becomes neces- 
sary. 

The procedure of graph partition and determination of 
parts called blocks will be called decomposition. 

A flowgraph can be decomposed in one of the three 
manners. 

I) Node Decomposition: A graph is divided into edge 
disjoint subgraphs (blocks) (Fig. 5). Nodes common to two 
or more blocks are called block nodes. A particular case of 
node decomposition is bisection or decomposition into two 
subgraphs. 

2) Edge decomposition: In a graph we isolate node dis- 
joint blocks. Blocks are connected together by the means of 
edges which form cutsets of the graph (Fig. 6). These edges 
are called cutting edges. In the case of edge decomposition, 
nodes incident with cutting edges are called block nodes. 

3) Hybrid Decomposition: This partition is a combina- 
tion of two previous decompositions (Fig. 7). Nodes inci- 
dent with cutting edges or common for more than one 
block are block nodes. 

In both edge and hybrid decompositions, a bisection can 
be distinguished as a special case. We focus our attention 
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Fig. 7. Hybrid decomposition 

Fig. 8. Substitute graph spanned on four block nodes. 

GI First level of decomposition 

Second level 

Fig. 10. Two level hierarchical decomposition 

n h 

Fig. 9. Decomposition substitute graph for the decomposition from 
Fig. 7. 

on bisection because of its special usefulness for the 
hierarchical decomposition. It is evident that any decom- 
position can be represented as a sequence of bisections, 
and for computer algorithms such an assumption produces 
simple data structures and simplifies organization of com- 
putations. 

Definition 3 
A complete symmetrical directed graph with self loops 

spanned on block nodes of subgraph Gi is called a sub- 
stitute graph for that block and is denoted Gf (Fig. 8). 

Definition 4 
Graph Gd obtained when replacing blocks Gi by their 

substitute graphs is called a decomposition substitute graph 
(Fig. 9). 

In the case of edge or hybrid decompositions, cutting 
edgesxbelong to the decomposition substitute graph. 

A decomposition substitute graph should not be too 
complex because the complexity of its analysis depends on 
the number of edges and nodes exactly as estimated for the 
case of proper graph (12) (13). Hence, it appears necessary 
to limit the number of blocks and block nodes. This 
limitation results in the simple decomposition method being 
ineffective for the case of very large networks. For large 
networks either the decomposition substitute graph Gd is 
too complex for analysis or blocks Gj are still too complex 
for direct topological analysis. 

When simple decomposition is applied to subgraphs, we 
deal with hierarchical decomposition. 

First level of decomposition 

Fig. 11. Tree of decomposition shown in Fig. 10. 

Decomposition of a network graph should be executed 
automatically. There are two reasons for this. First, the 
graph structure is not known when network data are 
provided and an a priori decision about block partition 
regarding only network structure could be nonoptimal. 
Second, elaboration of data would be cumbersome for the 
program user and would demand the knowledge of decom- 
position methods and calculations regardless of whether 
the partition is desirable or not. 

The problem of graph decomposition is of the nonpoly- 
nomially bounded class. This means that time r to find an 
optimal decomposition cannot be limited by a polynomial 
expressed in terms of nodes (n) or edges (k) number. 

Taking the above into account we should not expect an 
efficient algorithm giving optimal solutions. Useful al- 
gorithms will provide a correct and nearly optimal solution 
in a short time. One such efficient algorithm has been 
presented in [21]. A modification of this algorithm gives 
the time of graph decomposition bounded linearly by the 
number of nodes. 

IV. HIERARCHICAL ANALYSIS 

Let us concentrate first on the case of node hierarchical 
decomposition. In Fig. 10 an example of hierarchical de- 
composition is presented. The hierarchical decomposition 
structure can be illustrated by a tree of decomposition. 
Nodes of the tree correspond to subgraphs obtained on 
different levels of decomposition. If a subgraph G, was 
obtained during decomposition of subgraph Gi, then there 
is an edge from node Gi to node G,. Fig. 11 shows the tree 
of decomposition from Fig. 10. 
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In the decomposition tree we have one initial node which 
is the root of the tree. Terminal nodes are leaves of the tree. 
All nodes that are not terminal nodes are middle nodes. For 
middle nodes we determine the decomposition level which 
is equal to the number of nodes in the path from the initial 
node to that node: Range of hierarchical decomposition is 
equal to the maximal decomposition level. 

Every middle node has its descendants and every node 
except the initial one has its ascendant. If we limit our- 
selves to the bisection as the only graph partition, every 
middle node has exactly two descendants. As remarked 
previously, every decomposition can be considered as a 
sequence of bisections in hierarchical structure. Hence, 
without loss of generality, we shall examine this case only, 
obtaining a simpler expression of formulas and easier 
algorithm organization. 

During the course of hierarchical decomposition analysis 
the following tasks are to be performed: 

a) direct topological analysis of terminal blocks, and 
b) analysis of middle blocks used to combine results 

from the higher level. 
Analysis of Terminal Block 
Let us consider a connection of a Coates graph. When 

we deal with a decomposed graph we can see that the part 
of the connection contained in a particular terminal block 
forms a multiconnection in this block. 

The incidence of the block nodes determines the type of 
multiconnection. It means that topological analysis of 
terminal blocks will consist of enumeration of multiconnec- 
tions, with paths linking different block nodes. Analysis of 
middle blocks will consist of combining together various 
types of multiconnections. 

It is evident that combining multiconnections one by one 
will not reduce the computation time considerably. Multi- 
connections should be generated in groups and whole 
groups should be combined together. The larger the groups 
of multiconnections are the simpler the terminal block 
analysis is, and the more efficient middle block analysis is. 
One rule should be obeyed, namely, the resulting multicon- 
nections should be generated without duplications. 

The most detailed characterization is that presented in 
Definition 1, which is the generalization of Coates defini- 
tion of 0- and l-connections. For a block the different 
multiconnections may be grouped in sets P,, of multicon- 
nections characterized by the same set of nodes W. 

However, it should be noted that a block with nb block 
nodes has 

M(nb) = f (‘f )‘i! 
i=O 

04) 

different types of multiconnection sets. This dependence 
could seriously limit the decomposition method. This led 
us to investigate other characterizations of multiconnection 
sets. After some trials [12], [13] the following type of 
characterization was chosen. 

Definition 5 
P( B, E) is a set of multiconnections which have the 

following properties: 

8 

Fig. 12. Terminal block. 

a) the incidence of block nodes is defined by sets B 
and E only-where B represents initial nodes and 
E represents terminal nodes of multiconnection 
edges; 

b) all other nodes (internal nodes of a block) have full 
incidences, i.e., they are initial nodes as well as 
terminal nodes of multiconnection edges, where B = 
{bl,b2;--,b,,,}, E={e,,e,;..,e,} and B U E 
c NB -the set of block nodes. 

Remark 1 
Block nodes which are not included in B U E are iso- 

lated nodes. Block nodes which are included in B (7 E 
have full incidence. 

Remark 2 
In the sense of Definition 5 the set P(B, E) contains 

k-connections with k = card (NB - B n E). 
Example 2 
Let us consider the block shown in Fig. 12. If NB = 

{1,2,3,4}, B= {1,2}, E = {3,4}, then the set P(B, E) is 
equal to { { 1,5,3}, { 2,4,6}}. According to the Definition 1 
each set of these multiconnections has different characteri- 
zations by sets W 

{1,5,3) E ‘((1,4),(2,3)) 

{2,4,6) l ‘((1,3),(2,4)). 

For another pair B = {1,2}, E = {2,3} with the common 
node 2, the set of multiconnections P(B, E) is equal to 
{{2,6,9},{3,6,7}}. In this case node 4 is isolated. The 
equivalent characterization by sets W, according to Defini- 
tion 1, is as follows: 

{{2,6,9},{3,6,7}} =P{(1,3),(4,4)}. 

The weight function of multiconnection set P(B, E) is 
defined as in (2). Note that for a block with nb block 
nodes, the number of different types of multiconnections 
sets P(B, E) is 

MR(nb) = f (‘;)’ 
i=o 

05) 

which means an important reduction in comparison with 
(14). It will be shown that multiconnections characterized 
by sets P( B, E) can be generated without duplication. 

Analysis of Middle Block 
Analysis on an intermediate level consists of evaluation 

of multiconnections of a block that result from the associa- 
tion of two (or in general, more) blocks. Let us denote the 
sets of block nodes for both blocks and the resulting block 
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by NB,, NB, and NB, respectively. When connecting two el 
blocks, some of their block nodes become internal nodes, 
which means that no other blocks are connected to these 
nodes on upper levels. These nodes will be called reducible 
nodes. 

Let us denote 
COM = NB, n NB,, the set of common nodes 

06) 
e3 f3 

RED = COM - NB, the set of reducible nodes Fig. 13. Blocks to be connected. 

P,( B,, E,), P2( B,, E2), and P( B, E)-sets of multicon- 
nections (as defined in Definition 5) for both blocks and 1 2 2 3 

resulting block, respectively. 

An important result is presented in the following theo- 
rem. 

Theorem 2 
4 

Any set of multiconnections P(B, E) can be obtained 
according to the following rule: 

P(B, E) = W(B,, E,)x P,(B,, 4) (17) 
where summation is performed over all sets of multicon- Fig. 14. Association of two blocks. 

nections P1( B,, E,) and Pz( B,, E,) satisfying conditions Remark 
B, n B,=O, E, n E,=0 An important feature of (17) is the possibility of obtain- 

RED = (B, u B2) n (E, u E2) 08) ing a set of multiconnections P( B, E) by combining whole 

and x is a Cartesian product [3] of sets P,(B,,E,) and 
groups of multiconnections from the lower level. At the 

P2( B,, E2). Sets B and E are in this case equal to 
same time, from (19) we notice that the new sign is 
attributed simultaneously to the whole group of terms 

B = B, u B, - RED, E = E, u E, - RED. P, X P2, as k and A depend only on sets B,, E,, B,, E,. 

If all element weights are different, there are no duplicate These features are of great importance in the computer 

terms in the formula (17). For every multiconnection p E P, realization because we do not have to deal with each 

the sign of p can be calculated as follows: multiconnection separately. 
Example 3 

sign p = sign pl. sign p2. ( - 1) k. A (19) Consider an association of two blocks presented in Figs. 

where 13 and 14. We have NB, = {1,2,4}, NB, = {2,3,4}. NB = 
{1,2,3}, COM= {2,4}, RED= (4). Let us calculate mul- 

P=Pl u P2, Pl E Pi> P2 E p2 ticonnections of the type P({ 1,2}, {2,3}) of the resulting 

k = min (card (E, n B, n COM), block. From the formula (17), with the condition (18), we 
obtain 

card (E, n B, n COM)) 

+ card (COM) p({l,2), {2,3)) = P,({l,4), {2,4H x P2({2M3}) 

A= ord(bll,b22,...,blm,)ord(e,,,e12,...,e,,,) u PJW, W x p2KW, WI) 

ord (b,,, b,,; . . , b,+).ord (e21, e22,. . ., e2m2) 
u p,({l,2), {2,4H x P2({4}, (3)) 
U &({I}, (4)) X P&2,4}, (233)). 

BI= {bll,b12~~~~~blml}~ El= {e,l,e,2,-~-,el,,} 

B2= {b21,b22,.--7b2mz}y E2= {e21,e22,.--,e2m2}. 

A formula similar to that of Theorem 2 can be derived for 
the case of edge decomposition. Analysis of terminal blocks 

Proof of Theorem 2 is based on the observation that each is realized in the same way as described previously. An 

element of P1( B,, E,) X P2( B,, E2) is a multiconnection of edge bisection will be considered. We denote: 

the type P( B, E), and similarly, for each element p E E,,, a cutset of a graph G; 
P( B, E) there is a unique pair of elements p1 E P1( B,, E,) G,(E,, VI), G,(E,> v,) two disconnected graphs 
and p2 E P2( B,, E2) such that p = p1p2. Therefore, multi- obtained from G after 
connection sets on both sides of (17) are equal. Since removing edges E,,; 
P,(B,, E,) and P2(B2, E2) are defined on edge disjoint NB, NB,, NB, sets of block vertices for 
subgraphs there will be no duplicate terms in (17). The sign G, G, and G,, respec- 
of multiconnections is important in realization of formulas tively, 
for transfer functions and (19) is to update the sign accord- RED = (NB, U NB, - NB) the set of reducible 
ing to the topology of the association of two blocks. nodes, 
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P C”t the set of multiconnec- 
tions formed by edges 
EC,, only. 

Theorem 3 [12] 
Any set of multiconnections P(B, E) can be obtained 

according to the following rule’ 

P(B, E) = U P,(B,, 4) x f’,(&, Ed x P&L E,) 
(20) 

where summation is performed over all sets of multicon- 
nections Pcut, with sets B,, E,, B,, E, satisfying the follow- 
ing conditions: 

B,nB,=B,nB,=E,nE,=E,nE,=0 

RED c (B, u B, u B2) n (E, u E, u E,). 

Sets B and E are then equal to 
B=B,uB,uB,-RED 

E=E,uE,uE,-RED. 

If all element weights are different, there are no dupli- 
cate terms in the formula (20). For every multiconnection 
p E P, the sign of p can be calculated as follows: 

sign p = sign pl. sign p2. sign pCUt. (21) 

Downward and Upward Hierarchical Analysis 
Now the method of analysis of terminal blocks and 

middle blocks is completed. The remaining step is the 
exploration of hierarchical structure to obtain a description 
of the initial network. 

Two approaches are possible and are called the upward 
and downward methods of analysis. The upward method 
presents many advantages over the downward method, 
including savings of computer time and memory, so the 
latter will be only briefly outlined. 

In the downward method, the analysis starts at the 
l-level (initial block) and proceeds down to the next levels 
according to the connections in the hierarchical tree. The 
substitute graphs of blocks corresponding to the middle 
nodes are analyzed. On each intermediate level the type of 
necessary functions from the next level is determined. 
Arriving at the terminal node the analysis of the terminal 
block is executed to get the necessary function of this 
block. Then one proceeds upward. For each pass through 
the middle node, the multiplication of two functions from 
the lower level is executed. After arriving at the l-level, we 
obtain a part of the function of the initial network. Many 
passes up and down the tree are necessary; much processing 
has to be performed. The formula (17) expresses a set of 
multiconnections of the middle block as a sum of products 
of multiconnection sets from lower level. Each term of this 
sum requires the above described up and down procedure. 

The downward method presented in [12], permits the 
hierarchical analysis of large networks but has the follow- 

‘This form of the formula (20), a modification of the formula presented 
in [12], has been proposed by M. Bon.. 

ing disadvantages: 

a) multiple passes through the hierarchical structure 
causes multiple calculations of the same function; 

b) complicated organization scheme; 
c) problems with efficient storage of all-symbolic re- 

sults. 

For these reasons a new form of hierarchical tree ex- 
ploration was elaborated. In the new method, only one 
pass along the hierarchical structure is necessary. The name 
upward method is due to the direction in which the decom- 
position tree is worked out-from the terminal nodes 
upward to the initial node. 

Let us describe the upward hierarchical analysis in more 
detail. First, to facilitate the organization of the algorithm, 
a specific numeration of blocks is introduced. If N is the 
number of blocks (i.e., terminal and middle nodes), we 
shall number them from 1 to N in such way that each 
ascendant has lower number than its descendants. Such a 
numeration is easy to perform, e.g., we can number nodes 
starting from level 1 and move sequentially to the lowest 
level (as in Fig. 11). With this numeration the initial block 
has always number 1. 

The upward method of analysis starts from the block 
having the number N and is performed sequentially to the 
number 1. When the terminal block is reached, the analysis 
presented in Section V is executed. When we arrive at the 
middle block, descendants of which have been previously 
analysed, the formula (17) is used. Two approaches to 
realize formula (17) are possible: 

1) 

2) 

using the substitute graph, the combinations of sets 
B,, E,, B, and E, which satisfy conditions of the 
Theorem 2 are obtained directly, or 
examining all possible combinations of multiconnec- 
tions of descendant blocks, only those which satisfy 
conditions of the Theorem 2 are retained. 

Since a simple test for combinations has been found (see 
Section V), the second approach was chosen for the al- 
gorithm and the program. The procedure ends after the 
initial block is analyzed. Then the functions of the original 
network are calculated. 

V. ALGORITHM OF UPWARD HIERARCHICAL ANALYSIS 

As can be noted from the general presentation of the 
method, there are two distinct stages in the upward 
hierarchical analysis: analysis of terminal blocks and anal- 
ysis of middle blocks. These two stages are resolved sep- 
arately and each one can be ameliorated without affecting 
the other. 

Analysis of the Terminal Block 
An algorithm to generate multiconnections of the Coates 

graph will be presented. This part of the method corre- 
sponds to the methods of direct topological analysis of 
electrical circuits. Generation of O-connections of a flow- 
graph can be converted to the problem of generation of 
disjoint cycles of a graph (see [6]). 
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Let us consider a Coates graph with n nodes. Let M be 
an incidence matrix defined as follows: M = [m ij] nX n; mii 
= the set of edges starting from the ith node and ending at 
the jth node. The set of O-connections of a flow-graph can 
be calculated from the formula 

P= U mlil X mzi,X . . . X m,, (24 
(i,;..,in)EI 

n 

where Z is the set of all permutations of numbers 
62; . ., n). There is no duplication in the formula (22). 
The sign of O-connection p E mlil X m 2i, X . . . m ni, is equal 
to (- l)n+h, where h is a number of permutations neces- 
sary to order the set i,; * *, i,. 

In the formulas for the hierarchical analysis, not only the 
set of all O-connections is necessary but also sets of mul- 
ticonnections characterized in Definition 5. This problem 
can be transformed to the generation of all O-connections 
of the modified graph as follows. 

Lemma 1: 
The set of multiconnections P(B, E) of a graph with an 

incidence matrix M is equal to the set of O-connections of 
a graph described by a matrix M(B, E). The matrix 
M( B, E) is obtained from the matrix M by deleting: 

all columns corresponding to nodes B; 
all rows corresponding to nodes E. 
Example 4 
To generate the set of multiconnections P({ 1,2}, {3,4}) 

of the graph discussed in the Example 2, let us reduce the 
incidence matrix M, where 

072 01 
093 40 

000 80 
000 56 

According to Lemma 1 the matrix M( B, E) is obtained 
from M by deleting columns 1 and 2, and rows 3 and 4. 
Hence 

Applying the formula (22) to M( B, E.) we obtain the sets 
of multiconnections P(B, E) so that 

P({V}, (34)) = { {2,4,6), {L%5}) 

as expected. 
The complete description of the block with nb block 

nodes is given by weight functions of all possible sets 
P(B, E) with B U E c NB. Different sets B, E can be 
generated in the manner described below. 

Let us numerate nodes NB from 1 to nb. For i = 
0; * *, nb, all i-element subsets of the set (1; * *, nb} are 
generated. For a given i, let ( 1 “b such subsets form the set 
K(i). Each pair of sets (m, k’), where m, k E K(i) (note 
that m may be equal to k) has a corresponding set of 
potential multiconnections P( B, E) with B = m and E = k. 
Such sets of multiconnections are generated and stored. 
Each set may be identified by its type B, E. This type may 

be coded on a single computer word. The 2%b bits would 
be occupied. Successive pairs of bits describe block nodes 
from 1 to nb. All elements b from B produce 1 on the 
position 2*b - 1 and elements e from E produce 1 on the 
position 2*e. All other positions are equal to 0. The identi- 
fication code C of a set of multiconnections P( B, E) can be 
completely calculated from the formula 

C = c 2**(2b -2)+ c 2**(2e -1). (23) 
hC5.B t?GE 

Example 5 
For the set of block nodes NB = {1,2,3,4}, 8 bits are 

occupied to code different sets of multiconnections. If 
B = {1,2} and E = {2,3} the code for P( B, E) is equal to 

C=2°+22+23+25=45. 
This coding permits an easy identification of a multicon- 
nection set by one interger number and a simple practical 
realization formula (17). 

Analysis of the Middle Block 
In the upward hierarchical method, the analysis of a 

middle block is performed at the moment when both its 
descendants have already been analyzed. The sets of mul- 
ticonnections of these blocks are stored in the computer 
memory each having its identification code. The following 
rules of block nodes numeration are to be observed (re- 
numerate if necessary): 

first group is formed of reducible nodes RED; 
second group is formed of other common nodes COM- 
RED; 
third group is formed of other block nodes. 

Both the first and second group should have the same 
numeration in blocks to be associated. We examine all 
possible combinations of functions describing two blocks. 
Let us denote the following bit fields in a computer word 
containing the code of a multiconnection: 

RED,, RED, corresponding to the nodes RED in both 
blocks (first group); 

CR,, CR, corresponding to the second group of 
nodes; 

REST,, REST, corresponding to the third group of nodes. 

The following tests are performed 

AND ( RED,, RED,) = 0 

AND(C&,C&) =o 

OR( RED,, RED,) = field having 1 on each bit. (24) 

For the chosen code of multiconnection (23), conditions 
(24) are equivalent to (18). So if any of these conditions are 
not fulfilled, the combination is rejected. In the contrary 
case, we have the combination characterized by sets of 
nodes satisfying the formulas (18). 

The code for resulting multiconnections can easily be 
composed from the parts of codes of component multicon- 
nections. Since none of the first group of nodes remains a 
block node, there is no information concerning this group. 
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TABLE I 
ORGANIZATIONOFALGOR~THMOFHIERARCHICALANALYSIS 

1.N v 

STOP 

Nodes from the second group have code equal 
OR(CR1, CR,) = CR, + CR,. As nodes from the third group 
are distinct in two blocks, their description remains 
REST,, REST,. 

General Organization of the Algorithm 
The general organization of the algorithm is presented in 

Table I. Once the proper numeration of block nodes is 
established, the analysis can be carried out as presented. 
With this numeration, analysis of any middle block is 
performed when both its descendants have been analyzed. 
The last analyzed block is the initial block. 

The all-symbolic or semi-symbolic descriptions for large 
networks are intermediate results only. These results are 
used later in various types of network analysis. 

The symbolic form of the transfer function for a large 
network contains a very large number of terms. To make 
possible the storage and to facilitate further work the 
decomposed form of results is preserved. 

A terminal block is described by the weight functions of 
its multiconnection sets. Each term of a weight function 
has the form 

t = r.sknyi (25) 

where r = numerical factor; s = Laplace variable; yi = 
symbolic admittances or symbolic element parameters. Any 
weight function is stored in the form of three vectors with 
successive elements equal: r, k and coded y,. Each func- 
tion can be recognized by its identification code (23). 

From formula (17) we see that any function for a middle 
block is expressed as a sum of products of functions from 
the lower level. In the upward hierarchical method, the 
analysis of any middle block is performed after its descen- 
dants have been previously analyzed and resulting func- 
tions stored. The function of a middle block can be stored 
in an unexpanded form containing only addresses or func- 
tions to be multiplied. A term of such.function is of the 

L 

I ,327 I 
I 

Fig. 15. Band-pass filter. 

form 

m = v.F(i)-F(k) (26) 

where u = sign of term equal to f 1, and F(i), F(k) = 
functions describing descendants of the analyzed block. 

The term m can be represented by three numbers: v and 
addresses of F(i) and F(k) stored previously. 

The analysis is terminated by analyzing the initial block. 
Therefore, the whole hierarchical structure should be run 
through. From the functions of the initial block we only 
choose the necessary ones. The given addresses send us to 
next blocks. At the end we find functions of the terminal 
block. On these functions different kinds of operations can 
be performed, depending on what kind of analysis is 
required. 

Example 6 
Let us take a practical network to illustrate the al- 

gorithm. In Fig. 15 the scheme of an analyzed band-pass 
filter is shown. Operational amplifiers are considered ideal. 
The Coates flowgraph corresponding to this network is 
shown in Fig. 16. This graph has been decomposed into 5 
terminal blocks (Fig. 17). The hierarchical structure of 
successive associations is presented in Fig. 18. 

To illustrate the analysis of the terminal blocks let us 
consider the terminal block 8. Its flowgraph is indicated in 
Fig. 16 by the dashed line. In this block the only nonempty 
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Fig. 16. Flowgraph for bandpass filter. 
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Fig. 17. Block graph. 

types of sets of multiconnections P,(B, E) are 
1) For B = {30}, E = (26) 

ICdB,E)I=F(3) =G,,G,,sC,,(G,,+G,,). 
2) For B= {26},E= (26) 

IP,(B,E)I=F(4)=(G,,+G,,) 

* hG&,, + GnGdGu + G,>l . 
3) For B= {19}, E= (26) 

If’,@, -0 = F(5) = G,G,G(G, + Gn + G,,). 
4) For B = {0}, E = (0) 

If’,@, @I = GG,(G,, + G,d 
In Table II the first three types only are shown as they 

are required for voltage transfer function evaluation. 

I IlOCk 
lumber 33 

9 26.30 

3 19,26,30 

7 12.19,26 

6 5.12.19 

5 1.5.12 

4 19,26.30 

3 12,19,30 

* 5.12,30 

1 1.30 

- 

1 

I 

Fig. 18. Tree of the hierarchical structure. 

TABLE11 
RESULTSOF SMBOLICANALYSIS 
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Association of blocks is performed according to the 
Theorem 2. For example the middle block 2 has NB = 
{ 5,12,30} and is obtained as the association of block 6 
with NB, = { 5,12,19} and block 3 with NB, = { 12,19,30} 
(see Fig. 18). For this association we have COM = NB, n 

NB, = {12,19}, RED = COM - NB = (19). Considering 
only multiconnections necessary to obtain te required 
transfer function we evaluate: 

~(21) = iM5~21, {12,30))1 

= I&({% ~~2~)lV~(WW U923OI)l 
= P(ll)F(18), 

F(22) = 14({12,30), {12,30))1 

= If’,({=}, {12})1+‘,({1%30}, {19,30})1 

- iWl9), {12))1-1~,(u2,30), (19,301)1 

= F(lO)F(19) - F(9)F(20), 

~(23) = iM15,30), {12,30))1 

= - I~~({~},{~~})l~I~~({~~,~~},{~~,~~})l 

-I-- -6-T 
- ^I 

(4 
Fig. 19. Terminal blocks of ladder decomposition. 

= - P(ll)F(19). sec. 
1.5- 

Symbolic results for the total network are shown in 
Table II. The results are presented in the unexpanded form 
as they are computed by the program. The voltage transfer 
function for the considered filter can be expressed as 

u2 I4wI~ Pm NW 
Ku= 6 = (P,({30},{30})~ 

=- 
F(25) ’ (27) 

LO- 

06 30 60 SO nodes 

The obtained formula represents the symbolic transfer 
function, which can be used in compact form or expanded 
if necessary. This network has 44 elements and conse- 

quently 44 symbolic parameters in the symbolic results. 
Fully symbolic analysis of networks of this size can require 
considerable computer time when direct topological meth- 
ods are applied. In the case of hierarchical analysis, it is 
even possible to obtain these results by hand calculations. 

Notice that for this structure, the graphs of blocks 8, 7, 
6, and 5 are isomorphic. If an isomorphism of graphs is 
detected, it is possible to execute block analysis only once 
since the symbolic descriptions of isomorphic blocks are 
identical. This permits reduction of computer time as well 
as the memory needed to store the results. 

VI. COMPUTER REALIZATION AND RESULTS 

Two computer programs were developed on the basis of 
presented algorithms. Programs FANES [12] realizes the 
downward analysis of hierarchical structure. The edge de- 
composition is used in this program. Some comparisons 
between SNAPEST, NAPPE, SNAP [14], [26] and FANES 
are presented in [12]. 

First results of the program FLOWUP realizing the 
upward hierarchical method were published in [13]. Pro- 
gram FLOWUP is written in Fortran and is implemented 
on CDC Cyber 73 and CIIHB DPS/8 computers. Memory 
demands for the program are not important and addition- 
ally two parts of the program, namely terminal and middle 

Fig. 20. Relationship between the analysis time and the number of 
nodes. 

i 

Terms 

2500 /O 
/ 

/ 

06 30 60 90 nodes 

Fig. 21. Relationship between the number of terms and the number of 
nodes. . 

block analysis, can be separated and overlayed. The BASIC 
version for the minicomputer HP9835 (or HP9845) with 
standard memory has been realized. 

Input data contains a node-to-node description of net- 
work elements. The program generates a signal flow-graph 
using element graphs obtained on the basis of modified 
admittance matrix (see Appendix). Then the hierarchical 
decomposition is automatically carried out and a structure 
of the decomposition tree is established by the program. 
Next the hierarchical analysis of the entire structure is 
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Fig. 22. Low-pass filter network. 
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Fig. 23. Relationship between the analysis time and the 
network. 

size of the 

performed starting from the graph of the highest number 
as shown in Table I. For the terminal block analysis, 
matrices of the range n X n are to be stored, where n-num- 
ber of block nodes (in general not greater than 18). The 
demand for middle block analysis is due to the number of 
block nodes. In the case of analysis of large networks, the 
most important memory demand is due to the storage of 
symbolic results. Three vectors (25), each with length equal 
to the number of terms, are necessary. When the compact 
form is used the all-symbolic form for quite large networks 
can be calculated. In the minicomputer version the succes- 
sive transfer of results to other memory supports may be 
performed during the program execution. 

Let us present now some comparative results of analysis 
with the FLOWUP program. First let us examine the 
ladder structure decomposed into different terminal blocks, 
,as shown in Fig. 19. Time of computer analysis and 
number of terms in the results are presented in Figs. 20 
and 21, where the lines a, b, c,d represent the terminal 
blocks having the structure, as shown in Fig. 19(a), (b), (c), 
and (d), respectively. The isomorphism of the terminal 
blocks was not exploited. Both time and memory depend 
linearly on the number of nodes of the analyzed ladder. 
Linear dependence is typical for all cascade connections of 
blocks. Note that both time and memory depend on the 
kind of partition performed. These computations have 
been done on a CDC Cyber 73. 

Analysis of the filter presented in Fig. 22 was executed 
on a DTS/8 GCOS. Analysis time for this filter was 
0.165 s. In the case of cascade connection of many such 
sections, we have the linear growth of computer time as 
presented in Fig. 23. The isomorphism of sections has not 
been taken into account. When connection of blocks is 
more complicated than cascade, the analysis is expected to 
be more time consuming. 

VII. CONCLUSION 

We have discussed a new method that increases the 
computation power of topological analysis due to the re- 
duction in the computer time needed for the analysis of 
large electronic networks. The approach will significantly 
affect the applications of topological methods to the analy- 
sis of large networks which was impossible even with the 
aid of the fastest computers. 

Hence, network design problems requiring topological 
analysis can be solved with the help of the symbolic form 
of results. The method preserves the advantages of direct 
methods of topological analysis such as high accuracy of 
computations and possibility of generating fully symbolical 
results. 

As the method is based on hierarchical decomposition, 
different blocks can be analyzed independently. Thus the 
use of parallel processing techniques is feasible and further 
reduction in computational time is possible. 

The restriction of the presented method in its application 
to large networks lies in the number of block nodes in each 
block. This is usually overcome by using an effective 
decomposition algorithm which minimizes the number of 
partition nodes. 

APPENDIX 

In Table III flowgraph models for chosen network ele- 
ments are shown. They are based on modified admittance 
matrices of elements and they can be directly connected 
resulting in a flowgraph of an analyzed circuit. Adding a 
new element does not alter the structure of an existing 
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TABLE III 
ELEMENT’S MODELS 

ELEMENT GRAPH EQUATIONS 

Short circuit 

, 

flowgraph-only new edges will be added according to the 
new element’s model. In equations describing the models in 
Table III symbol i, (x = a, b, c, d) indicates current di- 
rected away from the node x. 
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