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able to map each input noncode word to an output noncode 
word, and thus, the SCD property of the whole checker is not 
lost. 

Examples illustrating the points a, b, and c have been given in 
another report [171. 

V. CONCLUSIONS 
The paper discusses some important aspects of self-checking 

checkers and highlights some problems concerning the necessity 
of the fault secure property for SCD checkers. Some authors have 
claimed that in order to ensure the exercising of the final checker in 
a complex self-checking system, the partial self-testing checkers need 
the fault secure property and some other authors claimed that if the 
partial checkers are SCD, the SFS property is needed as well. Clearly 
the fault secure property is not useful for self-testing checkers. For 
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checker. 
The SFS property may he useful in case the exercising of the 

final checker is established by simulation of the whole self-checking 
system under the fault free condition. In some cases this technique can 
be used successfully. But in several other cases this simulation can 
be too complex indeed unpractical even for the SCD/SFS checkers. 
It is also possible that the system does never generate a vector set 
which exercises the final checker and of course the simulation cannot 
ensure the final checker exercising (it just can be used to check if 
this exercising is ensured). Then, the exercising of the final checker 
must be ensured by one of the previously proposed techniques and 
the SFS property of the partial checkers is not useful. The conclusion 
is that the basic property for checkers is the SCD property (which 
includes the self-testing property as a particular case), any checker 
design must verify it. 
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Hierarchical Analysis of High 
Frequency Interconnect Networks 

Janusz A. Starzyk 

Abstract- Interconnect networks are analyzed using symbolic fre- 
quency domain analysis and an exact model of a distributed line. The 
analyzed network must have a tree structure and may contain transmis- 
sion lines as well as other linear two-ports with specified transmission 
matrices. Any regular portion of the interconnect network is analyzed 
hierarchically with significant savings in analysis time. Numerical Laplace 
transform inversion is used to obtain time domain solutions. The event 
driven approach is adopted to reduce analysis time. Time complexity of 
the method depends on the regularity of the analyzed network, and can 
be as low as a logarithmic function of the number of elements for a 
hierarchically organized tree structure. 

I. INTRODUCTION 
Transmission line effects were not a serious concern when signal 

wavelength was much larger than the dimensions of the designed 
digital circuits. But in recent years, in circuits with finer features and 
higher signal frequencies, transmission line effects are of concern at 
all interconnections [l]. In the advanced BiMOS/CMOS circuits, the 
signal rise time is comparable to propagation delays, and transmission 
line behavior has to be considered. 
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Timing analyzers tried to deal with the analysis of interconnections 
by using simplified models, usually RC trees, and either estimating 
the interconnect delay [2]-[5] or approximating its response [6]-[1 I]. 
Estimation of the delay is simpler, and can be done with a reasonable 
accuracy and significant reduction in the analysis time. However, as 
signal frequencies are being increased, there is a growing need to 
consider the analog behavior, due to the increasing effect of line 
inductances. 

In [5 ]  exact r-c-g models of distributed lines were used, in order to 
improve the accuracy of the predicted time delays. Accuracy of the 
RC ladder approximation of a distributed line was studied in [12], 
1131 and, in general, depends on the type of material used to build 
a distributed line, as well as the number and type of sections in the 
ladder approximation. Another tendency in the interconnect analysis, 
is a consideration of the line inductance and the coupling capacitance, 
in order to evaluate waveforms of the response which, if applied to 
a digital circuit, may cause unintended switching. This behavior may 
go undetected by methods based on the RC trees, even when the 
double time-constant models are used [14]. 

The asymptotic waveform evaluation method presented in [6] 
satisfies most of the requirements of high frequency interconnect 
network analysis. It approximates the response of a circuit with 
floating capacitors, grounded resistors, inductors, and controlled 
sources. Its accuracy depends on the number of moments used, 
and the method is equivalent to RC tree methods if only the first 
moments are used. The method is from one to two orders of 
magnitude faster than HSPICE. A generalization of the asymptotic 
waveform evaluation method was presented in [IO],  where authors 
introduced the moment polynomial nodal analysis combined with the 
nodal analysis to solve the interconnect networks. This generalization 
permits the analysis of networks with distributed elements. Different 
generalization of the asymptotic waveform evaluation, presented in 
[ I  I], included lossy coupled transmission lines and nonlinear loads. 

Another type of approximation in the interconnect analysis was 
used in [9], where driving point admittance of an RC tree was approx- 
imated in order to improve the simulation accuracy. A noteworthy 
approach was developed in [ 151, where state equations in the complex 
frequency domain and the inverse Laplace transform were used to 
obtain time domain solutions. The inverse Fourier transformation 
of the frequency domain scattering parameters was used in [I61 to 
determine the impulse response of transmission lines. Recently, Pade 
approximations of the transmission line’s characteristic admittance 
and the exponential propagation function were used to derive a 
recursive convolution formulation [ 171. This method can be applied 
to lossy transmission lines terminated with nonlinear elements and is 
one to two orders of magnitude faster than Spice3.e. 

In this paper, a method for the analysis of a tree of transmission 
lines and other two-ports is presented. Exact models are used for 
transmission lines with all r-I-c-g parameters specified. This way any 
approximation introduced by discrete models of transmission lines 
is avoided. Discrete elements can be inserted between transmission 
lines and may contain floating capacitors, grounded resistors, in- 
ductors, and controlled sources. If the interconnect network has a 
regular structure, which is often the case in VLSI design, it may 
be represented in a hierarchical form. The method uses network 
equations in the complex frequency domain and an event-driven 
approach to compute the inverse Laplace transform only when the 
response changes more than a prespecified limit. In addition, a 
hierarchical analysis is used in order to reduce simulation time in 
regular structures. As a result, a hierarchically organized interconnect 
network can be analyzed in logarithmic time. This method is very 
efficient, particularly when hierarchical structures are present, and 
produces accurate results. 

I I I 1 4i vss 

Fig. 1. A simple interconnect network. 

The paper is organized as follows. First, the problem and the 
main objective of this work are stated. Errors related to the discrete 
approximation of distributed lines are briefly discussed. The main 
steps of the interconnect network analysis method are presented in 
Section 111. In the next section the concept of hierarchical analysis is 
introduced and the basic steps of the related algorithms are explained. 
Then, in Section V, time domain solution based on the inverse 
Laplace transform is discussed. Finally, in Section VI, computational 
complexity of the method is discussed, and its time requirements are 
compared with the requirements of the Advice program. 

11. STATEMENT OF THE PROBLEM 

The interconnect networks considered in this paper are tree struc- 
tures, which contain linear two-ports described by their transmission 
matrices. In particular, transmission lines can be represented exactly 
by the complex frequency domain solutions of differential equations 
which relate line voltages and currents. Using these solutions, the 
lines’ transmission matrices can be formulated. Lumped elements, 
like floating capacitors and inductors, can be inserted at any place 
of the tree structure. One of the nonground nodes is assumed to be 
the input, and one or more are the outputs. A simple interconnect 
network is shown in Fig. 1. 

Much more complex structures of interconnect networks are 
used in VLSI designs. These structures-such as clock and control 
lines-show a large degree of regularity in hierarchically organized 
designs. Identification of such hierarchically organized structures is 
facilitated in VLSI design, where hierarchical design tools are used, 
and where many subsystems have regular, cellular organization. 

Binary trees are used as the basic structures. Other networks are 
converted to this format before analysis. Such conversion is simply 
realized by the insertion of two-ports having the unit transmission 
matrices. Since binary trees have simple, regular stmctures, the 
algorithms which use these trees are fast, and have a simple source 
code. 

The problem is to find network responses on the specified outputs 
to any signal for which the Laplace transform can be determined. 
While many techniques exist to solve this problem, the aim is to 
do it in  a minimum time. The reason for focusing the effort on the 
analysis time is the ever growing size and complexity of VLSI circuits 
and a need to perform interconnect network analysis more efficiently. 

111. ANALYSIS OF THE TREE NETWORKS 

The basic structure of the interconnect networks considered in 
this paper is a binary tree with branches being either transmission 
lines, discrete two-ports, or hierarchically organized structures of 
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transmission lines. While a discrete approximation of distributed 
elements is widely used and can give a good approximation of 
the resulting signals [2]-[9], [12], [13], a direct representation of 
transmission lines is used here in order to reduce computations and 
improve waveform accuracy. 

Sakurai [I21 studied the accuracy of approximation of the trans- 
mission line delay by the RC ladder using different numbers of RC 
sections and different topologies. He showed that a relatively large 
number of r sections is required to obtain a small time delay error. 
For instance, eight r sections are needed to reduce the error below 
lo%, and more than 15 such sections are needed to reduce the error 
below 5%. Much better results can be obtained if T or II sections 
are used where the required number of sections is smaller. Selection 
of the optimum number of RC sections needed to approximate a 
distributed RC element for a given signal bandwidth was given 
in [13]. The accuracy, in general, depends on the load, network 
topology, and the number of elements used. 

In addition to the delay errors, significant waveform deviations 
may occur. These errors may be more important than timing errors, 
if additional switching is overlooked as a result of using discrete 
models. Since the method discussed in this paper uses exact models of 
transmission lines, the only errors in the interconnect network analysis 
are the numerical errors related to the inverse Laplace transform, and 
roundoff errors, which depend on the machine's accuracy. Errors of 
the numerical inversion can be minimized by increasing the accuracy 
of the procedure used for the inverse Laplace transform. 

Analysis of a tree network is performed first in the complex 
frequency domain. Next, time domain solutions are obtained by using 
the event driven inverse Laplace transform. The remaining part of 
this section and the following section are devoted to the s-domain 
analysis. Time domain analysis is discussed in Section V. 

3.1 .  Frequency Domain Analysis 
All the two ports in the network are presented by their transmis- 

sion matrices which relate input and output variables on two-port 
terminals. In particular, a transmission line is represented by a matrix 

(1) 1 cosh($) Zfs inh($)  

cosh( yl) 

where y = J ( R + s L ) ( G + s C ) ,  and Z, = 
J ( R +  s L ) / ( G +  sC) ,  1 is the length of the line, s if the 
complex frequency (variable in the Laplace transform), and 
R, L, C,  and G are per unit length line parameters. A single 
horizontal element (e.g., floating capacitor) is represented by a 
two-port described by 

where Z ( s )  is the impedance of this discrete element at a given 
complex frequency, and a single vertical element is represented by 

(3) 

Other two-ports may be used as long as their transmission matrices are 
defined as functions of the complex frequency. Transmission matrices 
of all branches are evaluated during the first step of interconnect 
network analysis. 

The hierarchical structures in this paper are defined in terms of 
the composite transmission lines, and are analyzed in Section IV. 
A result of this analysis is a transmission matrix, which describes 
the hierarchical structure, and is evaluated at a single complex 
frequency s. 

Next, the load and input admittances are computed at each tree 
node. The load admittance of a tree node is obtained by adding the 
input admittances of the branches connected to this node and the 
admittance of a discrete load at this node. The input admittance of a 
branch is a function of loads and two-port parameters of the entire 
subtree structure connected to its output. All these admittances can 
be evaluated very efficiently using a recursive tree folding procedure. 
The procedure is fairly straightforward and is omitted for simplicity 
of the presentation. 

As the last stage of the complex frequency domain analysis, the 
required transfer functions from the mot to the specific outputs are 
computed. This analysis is also straightforward and uses a property of 
the cascade connection of two-ports. The transmission matrix of such 
a connection equals to the product of transmission matrices of the 
constitute two-ports. Such a product can be obtained very efficiently 
for identical two-ports. 

3.2 .  Algorithm 

Let T* denote the transmission matrix of the branch B,. Let Y,  be 
a load admittance of the ith node of the tree, and Xnt he the input 
admittance of the branch B,. The basic steps of the algorithm for 
analysis of the tree networks can be summarized as follows: 

Compute the transmission matrix of each branch. 
Compute the discrete load admittance at each node. 
Compute the input admittance of each branch. 
Compute the load admittance of each node. 
For each output find a transmission matrix 

T =  T,,ndi,T,,zd,p ...Tzou, 
where i l , i z , . . .  , imUt are the indices of branches on the 
unique path from the root to the output node, and n d ,  is the 
transmission matrix, which represents the load effect of the 
stray branches at the ith node of the tree (a stray branch is 
a branch not included in the unique path from a given output 
node to the root). Matrix T l d ,  is computed as 

(4) 

and Y f d ,  = 
of the next branch in the path from the input to the output. 
For each output find the transfer function 

- Kn,_,,t, where inext  stands for the index 

where A and B are the elements of T. 
Each of these steps takes time proportional to either the number 

of nodes or the number of branches in the tree. Since the number of 
branches in a tree is equal to the number of nodes minus one, we 
see that this algorithm can be completed in time which is a linear 
function of the number of branches. 

IV. HIERARCHICAL ANALYSIS 

This section presents hierarchical analysis of the interconnect 
network, in which at least one branch is described by a hierarchically 
organized structure (HOS). A HOS is an interconnect structure of 
identical cells. Each cell may contain transmission lines, discrete two- 
ports and HOS's. If a cell contains no HOS then it is considered a 
simple branch, otherwise the hierarchy level of the HOS is increased 
by one. This kind of structure corresponds to a hierarchically designed 
VLSI subcircuit which contains an array of identical cells, each 
composed of another array of lower level cells. Each HOS is 
described in the analysis program in its unexpanded form for easier 
identification and for hierarchical analysis. 
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The concept of hierarchical analysis is based on two observa- 
tions. The first observation relates to the identical branches. If the 
branches are identical, then only one of them has to be analyzed. 
All such branches have identical transmission matrices. The second 
observation relates to the identical subtrees. The input admittances of 
such subtrees are equal. Using these two observations, considerable 
processing time is saved, which otherwise would be spent on the 
simulation of identical structures. 

Let us compare the computing effort needed to analyze a single 
HOS with a similar effort for the flat network analysis. Assume first, 
that a single level of a hierarchical structure is analyzed, and that the 
two-ports, which represent the subcircuits at this level, are identical 
and connected in a specific, regular way. A typical, regular connection 
of two-ports on a single hierarchy level is the cascade connection. 
Other connections, for instance serial or parallel connection of two- 
ports, are possible. The only requirement is that they are repeated in 
every substructure on the same level of hierarchy. 

These regular connections of two-ports are analyzed very effi- 
ciently. For instance, the cascade connection of identical two ports can 
be analyzed in constant time, independent of the number of cascaded 
two-ports. This analysis is performed using the eigenvalues and the 
characteristic equation of the transmission matrices describing the 
cascaded two-ports. A detailed discussion of this type of analysis is 
presented in the Appendix. 

The analysis time for the same structure in the flat network is, in 
the best case, proportional to the number of sections. Therefore, the 
analysis which recognizes the regularity of this structure, is up to n 
times faster, where n is the total number of identical two-ports in the 
regular substructure. An exact n times speed-up cannot be achieved 
due to the processing time needed for handling the interconnection of 
the two-ports, however, the savings in time are still very significant. 

Now, suppose that on the next hierarchy level similar savings are 
obtained, and analysis time of the second level sections is reduced m 
times. The combined savings in time for the two level hierarchy is 
proportional to the product of n and m. If the hierarchy is organized 
so that each level has the same number of sections, for instance n ,  
then the k level hierarchical structure can he analyzed up to n k  times 
faster than the flat level network. In other words, while a flat level 
network analysis requires time which is at least proportional to the 
number of nodes in the regular structure (linear time performance), 
a hierarchical analysis can be performed in time proportional to the 
logarithm of the number of nodes. While this performance is based on 
the theoretical study of the presented method, numerical simulation 
confirmed this speed-up over the linear algorithms. 

4.1. Evaluation of Transfer Functions in Hierarchical Analysis 

Transfer functions in hierarchical analysis are evaluated by the 
algorithm presented in Section 3.2, with the exception that each HOS 
must first be analyzed to obtain its transmission matrix (Step 1 of 
the algorithm). This analysis depends on the internal structure of 
the HOS, the number of hierarchy levels, and the number of identical 
cells on each level. Regularity of interconnections is used to facilitate 
this analysis. For instance, if a HOS contains a cascade of identical 
cells, the analysis presented in the Appendix is executed to obtain 
its transmission matrix. 

The HOS analysis starts at the lowest level in order to obtain 
transmission matrices of the cells on the higher level. Then, on 
the higher level, these transmission matrices are used to compute 
the transmission matrices of still higher level cells, and the process 
continues until the top level HOS is analyzed. Note that this analysis 
does not consider the actual input and output terminals of the 
interconnect analysis and can be executed very efficiently. Steps 2 4  

... ... ... ... "6 
I 
I 
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Fig. 2. 
two level HOS, (c) illustration of the intermediate stage of HOS analysis. 

A hierarchically organized structure (a) cascade of n sections, (b) 

are executed as before, with the transmittance matrices of HOS's used 
whenever a branch is not a simple structure. 

Example 1: As an example of the HOS analysis, consider the 
two-level HOS shown in Fig. 2(a). It contains a cascade of n identical 
two-ports, each representing the HOS of the lower level. Each HOS 
of the lower level contains a two-port with transmission matrix TI 
and a cascade of m identical two-ports with transmission matrices 
Tz, terminated with a discrete load I'. The expanded two-level HOS 
is shown in Fig. 2(b). The following values are determined during 
the HOS analysis: 

1) The transmission matrices of the cascades in the lower level 
HOS's are equal to TZm. 

2) The transmission matrices of the lower level HOS's are equal 
to 

where Xn = ( C , + D , Y ) / ( A ,  +B,Y) and A,,B, ,C, ,  
and D,, are the parameters of the matrix T;". 

3) The transmission matrix of the higher level HOS is equal to 
T" . 

After all HOS's are analyzed, the transfer functions from the input 
to the individual outputs can be evaluated. If an output is at the output 
node of the hierarchical branch, or a branch which represents a single 
two-port, then the transfer functions are evaluated as discussed in 
Step 5 (Section 3.2). The procedure must be modified only when 
the output is inside a hierarchical structure. In fact, the only change 
in the procedure is the evaluation of T,,,, (the last matrix in the 
product computed in Step 5 of the algorithm) and YOut (needed in 
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Step 6), since these values are not readily available after the HOS 
analysis step. 

First, let us discuss the evaluation of T,,,,. Let us consider a 
cascade of 11 identical two-ports and assume that the output is inside 
the kth two-port (see Fig. 2(a)). Depending on the two-port's internal 
structure, different ways of evaluating the transfer function from 
its input to the internal point can be utilized. The most typical 
structures used in the interconnect networks are r and T cells, built 
of transmission lines or HOS's with discrete loads at their outputs. 
In order to illustrate the procedure, let us assume that each cell is a 
r section with the horizontal two-port being a simple transmission 
line, and the vertical two-port being a lower level HOS (similar to 
Fig. 2(b)). 

The transfer function from the input to the output of section k is 
equal to T'. At this point the cascade is broken in two parts (see Fig. 
2(c)). The first part from the cascade's input to the output of section 
k (represented by its transmission matrix T'), and the rest from the 
output of section k to the output of the cascade. The stray admittance 
l i d k  at the output of section k is equal to the input admittance of 
the rest of the cascade, terminated with the load admittance of the 
cascade, and can be obtained from 

where A--k, Bn--k,CII--lc. and D,,-L are parameters of the trans- 
mission matrix T"-k ,  and k;r is the load of the cascade. At the 
highest hierarchy level, the load admittance 1i.1 is evaluated during 
the analysis as the load admittance at the output node (Step 4 of the 
algorithm). At all the lower levels, this load is equal to the admittance 
of the discrete load at the end of the cascade. 

Having Tk and lidk first use (4) to evaluate l?c~i and then evaluate 
T,,", 

TzoL,t = T'Tl<IkT,+IO~~,. (6) 

In this equation T,+lOut stands for the transmission matrix of the 
lower level sections, starting from the output of the section k ,  at 
the present level, to the desired output (on one or more hierarchy 
levels below). As we can see, this equation is recursive in nature, 
and T,+lOut can be evaluated in a similar way as TtoL,, until the 
lowest level is reached. At the lowest level the formula is reduced to 

Finally, ILI is evaluated. If the output is defined at the output of 
the section k at a specific hierarchy level then 

l:>,,l = l idk  (8) 

where l i d L  is the load admittance computed from (5) at the given 
level, otherwise it is the discrete load admittance of the output 
transmission line. 

V. TIME DOMAIN SOLUTION 

The analyses discussed in Sections 111 and IV are performed in the 
complex frequency domain. The time domain response on a specific 
output is obtained by multiplying the corresponding transfer function 
by the Laplace transform of the input signal, and finding the inverse 
Laplace transform. In this section an event driven approach to the 
inverse Laplace transform is described. Using this approach, the 
number of explicit time domain evaluations and related frequency 
domain analyses is reduced without sacrificing the solution accuracy. 

5.1. Inverse Laplace Transform 

To obtain the output function value in time domain i i ( t ) ,  from its 
Laplace transform 1 ?( s), the numerical Laplace transform inversion 
technique presented in [18] is used. The desired accuracy of the 
Laplace inversion is controlled by choosing the order of Pade 
approximation of e". In this work, Pade approximation with the 
denominator degree -21 = 8 and the numerator degree N = 6 was 
selected, which gives 15 correct terms of Taylor expansion of e s t .  
This selection gives sufficient accuracy for interconnect analysis. If a 
higher accuracy is desired, then more terms of the Taylor expansion 
of cat must be matched. However, this increases computation$l cost. 

For the selected algorithm, the poles 2 L  and the residues I<, from 
the table presented in [I91 are used. Let us suppose that V ( s ) ,  
which is a Laplace transform of 7 8 ( t ) ,  is known. The inverse Laplace 
transform is computed using 

(9) 

where .It' = M/2. We see that for the selected accuracy of the 
inverse Laplace transform. four values of 1 7 ( s )  have to be computed 
at each time point t at discrete frequencies s, = &/f. When a 
more accurate method, with a larger number of poles, is selected, 
then the number of complex function evaluations increases. First, 
each complex frequency value 1-( .st ) is obtained by performing the 
complex domain analysis to obtain the transfer function value at a 
specific frequency as discussed in Sections I11 and IV. Then, this 
transfer function value is multiplied by the Laplace transform of the 
input signal. 

5.2.  Time Prediction 

Fast event driven simulators, like the one presented in [20], 
evaluate a circuit response only during the time when the voltage 
in a specified region of the circuit changes by a given value. This 
approach saves analysis time, since the circuit is not analyzed when 
its responses do not change or change by a small amount. A similar 
approach is adopted in this work and is combined with the inverse 
Laplace transform. In what follows the event driven time prediction 
is discussed. 

Assume that the circuit response at the three most recent time points 
was evaluated. The next time point, at which a response changes by a 
specific amount, will be predicted using the quadratic approximation. 
Note that if the response was changing very slowly at the recent 
time points, this approximation yields the next time point far away 
from the most recent one. In general, this reduces the number of time 
points in which the time domain solution is evaluated. Savings due 
to this controlled time step depend on the variation of the network 
responses. 

Let us assume that t--2. tLl and t o  are the most recent time points, 
and r i ( t L a ) .  r , ( t L l ) ,  and ( , ( t o )  are the corresponding function values. 
Find a unique parabola, which passes through these three points, and 
use it to find the closest time point tt at which the function value 
will be r j ( t o )  + At' or r , ( t o )  - A V ,  where AI' is a specified voltage 
deviation. The computational cost for performing this time prediction 
is that of the solution of a single quadratic equation. 

Next, the inverse Laplace transform of the output voltage at t l  is 
found. If the obtained value differs from { , ( t o )  by more than AV, the 
time increment is reduced twice and the output function evaluation 
is repeated. Notice that the accuracy of the solution evaluated at the 
new time point does not depend on the increment in time. The error 
depends only on the selected order of the inverse Laplace method 
and can be reduced to the satisfactory level. 
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TABLE I 
PERFORMANCE COMPARISONS 

circuit number of time in sec 
name lines elements nodes Connect Advice 

netl6-1 16 32 18 8 55 
net16-8 16 256 130 8 98 
net136-1 136 272 138 12 102 
net136-8 136 2176 1090 12 477 
net528-1 528 1056 530 5 298 
net528-8 528 8448 4226 5 2593 

The event driven approach is by itself a significant reduction in 
analysis time particularly in digital circuits, where signals do not 
change for longer periods of time. Savings of two to three orders 
of magnitude for the event driven simulation over the variable step, 
variable order integration methods were reported [20]. 

VI. COMPUTER SIMULATION RESULTS 

The complexity of the presented method is linear with the number 
of different two-ports analyzed. This statement has two important 
implications on the computing time of the algorithm based on the 
presented method. First, the number of two-ports is smaller than the 
number of nodes in the network, particularly if several ladder sections 
are used to model a transmission line. Other efficient algorithms for 
the interconnect analysis may also be linear or nearly linear (e.g., the 
algorithm presented in [7]), but they depend on the number of nodes 
in the discrete model of the transmission line. Second, if the HOS’s 
are parts of the interconnect network, then the effective number 
of two-ports for interconnect analysis is reduced to the number 
of different transmission lines. This reduces the complexity of the 
method to a logarithmic one and gives savings in time, which may 
be very significant in the regular VLSI designs. 

The interconnect analysis program Connect, which realizes this 
method, has been written in C++ and implemented on Sun work- 
stations at A M T  Bell Laboratories. In order to demonstrate the 
efficiency of the presented method, the analysis time required by 
the Connect program was compared with the time needed by Advice, 
a general circuit simulator used in A M T  Bell Labs. [21]. The results 
of this comparison are presented in Table I. Both programs were run 
on Sun-3/60 and results represent combined user time and system 
time for analysis. 

In Table I, the numbers of elements and nodes correspond to 
discrete models simulated by the Advice program, while the number 
of lines corresponds to distributed models simulated by the Connect 
program. The number of nodes in the case of the distributed lines 
modeled by a single r section each, is equal to the number of lines 
plus 2. The speedup factor is larger for larger structures, for which 
effectiveness of the hierarchical analysis becomes more evident, 
and where any overhead related to necessary preprocessing is less 
significant. 

VII. CONCLUSION 

A new method for the interconnect networks analysis has been 
developed. This method uses exact models of transmission lines and 
accepts any two-port which can be described by its transmission 
matrix. The method simulates event driven behavior, since the output 
is computed only at time instances at which it is expected to change 
by a specific amount. Numerical inverse Laplace transform is used 
to obtain time domain solutions. This method works much faster 
on the interconnect networks than any known timing simulator, and 
gives accurate results. Savings in time are most significant when 
the analyzed structures are regular and are described hierarchically. 

The method has been implemented in C++ on Sun workstations. The 
computer program Connect, which realizes this method, was tested on 
several interconnect networks and compared with the circuit simulator 
Advice. The results of these tests are presented. 

VIE. APPENDIX 

Evaluation of the Cascade Connection 

that the transmission matrix of a single two-port is equal to 
Consider a cascade connection of n identical two-ports. Assume 

Then the transmission matrix of the entire chain is T” and T” can 
be obtained using eigenvalues and the characteristic equation of the 
matrix T .  Since T is a 2 x 2 matrix, its eigenvalues can be obtained 
directly from: 

X 1 . p  = 0.5 A + D f J ( A  - D ) 2  + 4BC), ( 
where A,B,C,  and D are the coefficients of the matrix T. In the 
special case of T being a transmission matrix of a transmission line 
( I )  we get 

X1.z = e x p ( W ) .  (12) 

Using the Cayley-Hamilton theorem, nth power of the matrix T can 
be computed from 

T“ = a,,T + A I .  (13) 

where U , ,  = (X;-X,”)/(X,-X,),and;~,, = (-X,XY+XIX;)/(XI- 
X Z ) .  For instance, using (I) ,  (12) and (13) the transmission matrix 
T” of a cascade of n identical transmission lines is 

cosh(nyl) Z, sinh(n7l) 
cosh(n7l) ] ‘ (14) 

which is a well known result for the transmission lines. In a special 
case, when the two eigenvalues are equal, then a, = d-’ and 
!L, = (-n + 1)X” .  
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