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Abstract. This paper investigates a mechanism for reliable generation of sparse 
code in a sparsely connected, hierarchical, learning memory. Activity reduction 
is accomplished with local competitions that suppress activities of unselected 
neurons so that costly global competition is avoided. The learning ability and 
the memory characteristics of the proposed winner-take-all network and an 
oligarchy-take-all network are demonstrated using experimental results. The 
proposed models have the features of a learning memory essential to the 
development of machine intelligence.  
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1 Introduction 

In this paper we describe a learning memory built as a hierarchical, self-organizing 
network in which many neurons activated at lower levels represent detailed features, 
while very few neurons activated at higher levels represent objects and concepts in the 
sensory pathway [1]. By recognizing the distinctive features of patterns in a sensory 
pathway, such a memory may be made to be efficient, fault-tolerant, and to a useful 
degree, invariant. Lower level features may be related to multiple objects represented 
at higher levels. Accordingly, the number of neurons increases up the hierarchy with 
the neurons at lower levels making divergent connections with those on higher levels 
[2]. This calls to mind the expansion in number of neurons along the human visual 
pathway (e.g., a million geniculate body neurons drive 200 million V1 neurons [3]). 

Self-organization is a critical aspect of the human brain in which learning occurs in 
an unsupervised way. Presentation of a pattern activates specific neurons in the 
sensory pathway. Gradually, neuronal activities are reduced at higher levels of the 
hierarchy, and sparse data representations, usually referred to as “sparse codes”, are 
built. The idea of “sparse coding” emerged in several earlier works [4][5]. In recent 
years, various experimental and theoretical studies have supported the assumption that 
information in real brains is represented by a relatively small number of active 
neurons out of a large neuronal population [6][[7][3].  

In this paper, we implement the novel idea of performing pathway selections in 
sparse network structures. Self-organization and sparse coding are obtained by means 



of localized, winner-take-all (WTA) competitions and Hebbian learning. In addition, 
an oligarchy-take-all (OTA) concept and its mechanism is proposed that produces 
redundant, fault tolerant, information coding. 

This paper is organized as follows. In section 2, a winner network is described that 
produces sparse coding and activity reduction in the learning memory. In section 3, an 
OTA network is described that produces unsupervised, self-organizing, learning with 
distributed information representations. Section 4 demonstrates the learning 
capabilities of the winner and the OTA networks using experimental results. Finally, 
our method of sparse coding in sparse structures is summarized in section 5. 

2 The Winner Network 

In the process of extracting information from data, we expect to predictably reduce 
neuronal activities at each level of a sensory pathway. Accordingly, a competition is 
required at each level. In unsupervised learning, we need to find the neuron in the 
network that has the best match to the input data. In neural networks, such a neuron, is 
usually determined using a WTA network [8][9]. A WTA network is usually 
implemented based on competitive neural network in which inhibitory lateral links 
and recurrent links are utilized, as shown in Fig. 1. The outputs iteratively suppress 
the signal strength among each other and the neuron with maximum signal strength 
will stay as the only active neuron when the competition is done. For a large memory, 
with many neurons on the top level, a global WTA operation is complex, inaccurate 
and costly. Moreover, average competition time increases as the likelihood of similar 
signal strengths increases in large WTA networks. 
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Fig. 1. WTA network as competitive neural network 

The use of sparse connections between neurons can, at the same time, improve 
efficiency and reduce energy consumption. However, sparse connections between 
neurons on different hierarchical levels may fail to transmit enough information along 
the hierarchy for reliable feature extraction and pattern recognition. In a local network 
model for cognition, called an “R-net” [10][11], secondary neurons, with random 
connections to a fraction of primary neurons in other layers, effectively provide 
almost complete connectivity between primary neurons pairs. While R-nets provide 
large capacity, associative memories, they were not used for feature extraction and 
sparse coding in the original work. 

The R-net concept is expanded in this work by using secondary neurons to fully 
connect primary neurons on lower levels to primary neurons on higher levels through 
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the secondary neurons of a sparsely connected network. The network has an 
increasing number of neurons on the higher levels, and all neurons on the same level 
have an equal number of input links from neurons on the lower level. The number of 
secondary levels between primary levels affects the overall network sparsity. More 
secondary levels can be used to increase the network sparsity. Such sparsely 
connected network with secondary levels is defined as winner network and illustrated 
in Fig. 2. 
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Fig. 2. Primary level and secondary level in winner network 

The initial random input weights to each neuron are scaled to have a sum of 
squared weights equal to 1, which places them on the unit multidimensional sphere. 
Because a neuron becomes active when its input weight vector is similar to its input 
pattern, spreading the input weights uniformly on the unit-sphere increases the 
memory capacity of the winner network. Furthermore, the normalization of the 
weights maintains the overall input signal level so that the output signal strength of 
neurons, and accordingly the output of the network, will not be greatly affected by the 
number of input connections. 

In a feed-forward computation, each neuron combines its weighted inputs using a 
thresholded activation function. Only when the signal strength is higher than the 
activation threshold can the neuron send a signal to its post-synaptic neurons. 
Eventually, the neurons on the highest level will have different levels of activation, 
and the most strongly activated neuron (the global winner) is used to represent the 
input pattern. In this work, the competition to find the global winner is replaced by 
small-scale WTA circuits in local regions in the winner network as described next. 

In a sparsely connected network, each neuron on the lower level connects to a 
group of neurons on the next higher level. The winning neuron at this level is found 
by comparing neuronal activities. In Hebbian learning, weight adjustments reduce the 
plasticity of the winning neuron’s connections. Therefore, a local winner should not 
only have the maximum response to the input, but also its connections should be 
flexible enough to be adjusted towards the input pattern so that the local winner is, 
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where Ni
level+1is a set of post-synaptic neurons on level (level+1) driven by a neuron i, 

Ni
level is a set of pre-synaptic neurons that project onto neuron j on level (level), and ρji 



denotes the plasticity of the link between pre-synaptic neuron i and post-synaptic 
neuron j, as shown in Fig. 3(a).  
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Fig. 3. (a) Interconnection structure to determine a local winner, (b) The winner network 

Such local competition can be easily implemented using a current-mode WTA 
circuit [12]. A local winner neuron, for example N4

level+1 in Fig. 3(a), will pass its 
signal strength to its pre-synaptic neuron N4

level, and all other post-synaptic branches 
connecting neuron N4

level with the losing nodes will be logically cut off. Such local 
competition is done first on the highest level. The signal strengths of neurons which 
win in their corresponding local competitions propagate down to the lower levels and 
the same procedure continues until the first input layer is reached. 

The global winning neuron on the top level depends on the results of all local 
competitions. Subsequently, the signal strength of the global winner is propagated 
down to all lower-level neurons which connect to the global winner. Most of the 
branches not connected to the global winner are logically cut off, while the branches 
of the global winner are kept active. All the branches that propagate the local winner 
signal down the hierarchy form the winner network, as shown in Fig. 3(b). 

Depending on the connectivity structure, one or more winner networks can be 
found. By properly choosing the connectivity structure, we may guarantee that all of 
the input neurons are in a single winner network so that the output level contains a 
single winner.  

Let us use a 3-layer winner network (1 input level, 2 secondary levels and 1 output 
level) as an example. The network has 64 primary input neurons and 4096 output 
neurons with 256 and 1024 secondary neurons, respectively. The number of active 
neurons in the top level decreases with increasing numbers of input connections. As 
shown in Fig.4, when the number of input links to each neuron is more than 8, a 
single winner neuron in the top level is achieved. 

Since the branches logically cut off during local competition will not contribute to 
post-synaptic neuronal activities, the synaptic strengths are recalculated only for 
branches in the winner network.  

As all the branches of the winner network are used, the signal strength of pathways 
to the global winner are not reduced. However, due to the logically disconnected 
branches, the signal strength of pathways to other output neurons are suppressed. As a 
result, an input pattern activates only some of the neurons in the winner networks. 
The weights are only adjusted using Hebbian learning for links in winner networks to 
reinforce the activation level of the global winner. After updating, weights are scaled 
so that they are still spread on the unit-sphere.  
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In general, the winner network with secondary neurons and sparse connections, 
builds sparse representations in three steps: sending data up through the hierarchy, 
finding the winner network and global winner by using local competitions, and 
training. The winner network finds the global winner efficiently without iterations 
usually adopted in MAXNET [8][9]. It provides an effective and efficient solution to 
the problem of finding global winners in large networks. The advantages of sparse 
winner networks are significant for large size memories. 
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Fig. 4. Effect of number of input connections to neurons 

3 Winner Network with Oligarchy-Takes-All 

The recognition using a single-neuron representation scheme in the winner 
network can easily fail because of noise, fault, variant views of the same object, or 
learning of other input patterns due to an overlap between activation pathways. In 
order to have distributed, redundant data representations, an OTA network is 
proposed in this work to use a small group of neurons as input representations.  

In an OTA network, the winning neurons in the oligarchy are found directly in a 
feed-forward process instead of the 3-step procedure used in the winner network as 
described in section 2. Neurons in the 2nd layer combine weighted inputs and use a 
threshold activation function as in the winner network. Each neuron in the 2nd layer 
competes in a local competition. The projections onto losing nodes are logically cut 
off. The same Hebbian learning as is used in the winner network is carried out on the 
logically connected links. Afterwards, the signal strengths of the 2nd level are 
recalculated considering only effects of the active links. The procedure is continued 
until the top level of hierarchy is reached. Only active neurons on each level are able 
to send the information up the hierarchy. The group of active neurons on the top level 
provides redundant distributed coding of the input pattern. When similar patterns are 
presented, it is expected that similar groups of neurons will be activated. Similar input 
patterns can be recognized from the similarities of their highest level representations. 



4 Experimental results 

The learning abilities of the proposed models were tested on the 3-layer network 
described in section 2. The weights of connections were randomly initialized within 
the range [-1, 1]. A set of handwritten digits from the benchmark database [13] 
containing data in the range [-1, 1] was used to train the winner network or OTA 
networks. All patterns have 8 by 8 grey pixel inputs, as shown in Fig. 5. Each input 
pattern activates between 26 and 34 out of 4096 neurons on the top level. The groups 
of active neurons in the OTA network for each digit are shown in Table 1. On 
average, each pattern activates 28.3 out of 4096 neurons on the top level with the 
minimum number of 26 neurons and the maximum number of 34 neurons. 

 
Fig. 5. Ten typical patterns for each digit 

Table 1. Active neuron index in the OTA network for handwritten digit patterns 

digit Active Neuron index in OTA network
0 72 91 365 371 1103 1198 1432 1639 …
1 237 291 377 730 887 1085 1193 1218 …
2 294 329 339 771 845 1163 1325 1382 …
3 109 122 237 350 353 564 690 758 …
4 188 199 219 276 307 535 800 1068 …
5 103 175 390 450 535 602 695 1008 …
6 68 282 350 369 423 523 538 798 …
7 237 761 784 1060 1193 1218 1402 1479 …
8 35 71 695 801 876 1028 1198 1206 …
9 184 235 237 271 277 329 759 812 …  

The ability of the network to classify was tested by changing 5 randomly selected 
bits of each training pattern. Comparing the OTA neurons obtained during training 
with those activated by the variant patterns, we find that the OTA network 
successfully recognizes 100% of the variant patterns. It is expected that changing 
more bits of the original patterns will degrade recognition performance. However, the 
tolerance of the OTA network for such change is expected to be better than that of the 
winner network. Fig. 6 compares the performances of the winner network and the 
OTA network for different numbers of changed bits in the training patterns based on 
10 Monte-Carlo trials. We note that increasing the number of changed bits in the 
patterns quickly degrades the winner network’s performance on this recognition task. 
When the number of bits changed is larger than 20, the recognition correctness stays 
around 10%. However,10% is the accuracy level for random recognition for 10 digit 
patterns recognition. It means that when the number of changed bits is over 20, the 
winner network is not able to make useful recognition. As anticipated, the OTA 
network has much better fault tolerance and it is resistant to this degradation of 
recognition correctness. 
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Fig. 6. Recognition performance of the OTA network and the winner network 

5. Conclusions 

This paper investigates a mechanism for reliably producing sparse coding in 
sparsely connected networks and building high capacity memory with redundant 
coding into sensory pathways. Activity reduction is accomplished with local rather 
than global competition, which reduces hardware requirements and computational 
cost of self-organizing learning. High memory capacity is obtained by means of layers 
of secondary neurons with optimized numbers of interconnections. In the winner 
network, each pattern activates a dominant neuron as its representation. In the OTA 
network, a pattern triggers a distributed group of neurons. With OTA, information is 
redundantly coded so that recognition is more reliable and robust. The learning ability 
of the winner network is demonstrated using experimental results. The proposed 
models produce features of a learning memory that may prove essential for 
developing machine intelligence. 
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