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Abstract—Vision-based road detection in unstructured environments is a
challenging problem as there are hardly any discernible and invariant fea-
tures that can characterize the road or its boundaries in such environments.
However, a salient and consistent feature of most roads or tracks regardless
of type of the environments is that their edges, boundaries, and even ruts
and tire tracks left by previous vehicles on the path appear to converge into
a single point known as the vanishing point. Hence, estimating this van-
ishing point plays a pivotal role in the determination of the direction of the
road. In this paper, we propose a novel methodology based on image tex-
ture analysis for the fast estimation of the vanishing point in challenging
and unstructured roads. The key attributes of the methodology consist of
the optimal local dominant orientation method that uses joint activities of
only four Gabor filters to precisely estimate the local dominant orienta-
tion at each pixel location in the image plane, the weighting of each pixel
based on its dominant orientation, and an adaptive distance-based voting
scheme for the estimation of the vanishing point. A series of quantitative
and qualitative analyses are presented using natural data sets from the De-
fense Advanced Research Projects Agency Grand Challenge projects to
demonstrate the effectiveness and the accuracy of the proposed method-
ology.

Index Terms—Dominant texture orientation, Gabor filters, vanishing-
point detection.

I. INTRODUCTION

Over the past few decades, there has been extensive research in de-
veloping autonomous navigation system (ANS) for unmanned ground
vehicles in either structured urban environments or unstructured off-
road conditions. One of the crucial parts of the ANS is the road de-
tection system, which is able to discriminate between road (traversable
path) and nonroad (nontraversable path) regions. Most of the current
road detection systems use vision sensors for road detection [1]. The
majority of vision-based road detection methods in the literature are
grouped into three main categories: edge-, region-, and texture-based
methods. Edge-based methods reduce the road detection to the extrac-
tion of road boundaries or lane markings. These approaches are more
appropriate for structured roads, where the well-painted lane mark-
ings or strong edge boundaries (i.e., curbs) are the distinct features of
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the road [1], while they may not perform well in unstructured envi-
ronments. Region-based methods look for distinct characteristics (i.e.,
color and/or texture) over local neighborhoods in order to segment
the scene to path and nonpath regions [2]. These methods are suitable
for types of environments where there is at least one unique surface
road feature to distinguish from the surroundings. They also assume
that road surfaces belong to relatively homogenous regions such as
in well-paved roads. However, in unstructured environments, there are
various types of terrain covers (soil, grass, rock, etc.) with complex geo-
metric characteristics, uncontrolled lighting, and weather conditions,
which make distinguishing road regions from surroundings extremely
difficult [3].

To overcome the shortcomings of current road detection methods,
texture-based techniques have been proposed. Instead of looking for
locally distinctive road cues, they search for a global road constraint
to distinguish road direction [4]–[7]. Texture-based methods search for
local oriented textures and then make them vote for the locations of
the road’s vanishing points. A location with maximum votes is consid-
ered as the vanishing point of the main road region. Furthermore, the
direction of the road or the road boundaries can be extracted by the in-
formation of the vanishing-point location. This paper belongs to this
group of methods.

This paper proposes a new vanishing-point estimation method for
autonomous navigation systems in rough and unstructured types of
road terrains. This paper is organized as follows: Section II describes
related vanishing-point detection algorithms. In Section III, we intro-
duce a novel optimal local dominant orientation method (OLDOM)
based on joint activities of only four Gabor filters. Section IV presents a
new voting scheme for robust vanishing-point estimation. In Section V,
we evaluate the performance of the proposed vanishing-point detection
algorithm. Finally, we summarize the results and draw conclusions in
Section VI.

II. RELATED WORK

A set of lines in the image plane that corresponds to a set of parallel
surface lines in the 3-D world space converges to a common point in the
image space known as a vanishing point. Vanishing points are widely
used in a diverse range of computer vision applications such as 3-D
interpretation. In general, a man-made environment has two or three
vanishing points, which correspond to different sets of parallels lines
of the architectural structures such as buildings and walls stretched in
the vertical or horizontal direction.

However, in the context of the cross-country environments, regard-
less of types of the roads, a unique vanishing point associated with the
most immediate straight road parts in the direction of the optical axis of
the forward-looking cameras can be determined. The vanishing point
plays an important role as a global constraint for detecting road direc-
tion, since all parallel border road lines, road edges, and even ruts and
tire tracks left by previous vehicles on the road appear to converge into
a single vanishing point [see Fig. 1(a)]. In the case of a curved road, a
single vanishing point can be estimated along the tangent directions of
the most immediate road regions [red dash lines in Fig. 1(b)] in front of
the vehicle. By estimating the vanishing-point location, the direction of
the road in front of the vehicle can be approximately determined. Later,
this can be utilized for the autonomous vehicle steering [8].

Most of the existing vanishing-point detection algorithms rely on
three steps [9]–[11]. The first step performs edge detection on the image
in order to extract the most dominant edges such as road borders or lane
markings. The next step is to determine if there are any line segments in
the image. Once all the line segments are identified, a voting procedure

Fig. 1. Vanishing point (vp) in the (a) straight and (b) curved roads.

is applied to find the intersections of the lines. The shortcoming of all
these methods is that they are based on edge detection followed by
line extraction, which may restrain the process of detecting the true
vanishing points in unstructured road conditions where there are no
apparent boundaries.

Aside from that, numerous vanishing-point detection methods have
been proposed for man-made environments that do not depend on the
edge detection step [12], [13]. These approaches search for similar
global structures and repeating patterns (e.g., walls, doors, and win-
dows) in the image to define the vanishing-point locations. However,
it is unlikely that one can identify such repeating structures in outdoor
unstructured environments.

To address the aforementioned drawbacks, Rasmussen [4] pro-
posed texture-based methods to replace the noise-sensitive edge
detection step of vanishing-point detection algorithms. Texture-based
approaches apply a bank of oriented filters such as Gabor filter banks
[4]–[6] or steerable filter banks [7], [14] and choose the orientation
corresponding to the maximum filter response as the dominant texture
orientation ����� at each pixel location ���� ��. Later, each local
dominant orientation votes for the location of road’s vanishing points.
A location with maximum votes is considered as the vanishing point
of the road.

However, in order to achieve precise orientation estimation, one
needs to apply a large number of oriented filters in all possible direc-
tions from 0� to 180�. Designing and applying a bank of differently
rotated filters is computationally expensive. To address this problem,
Freeman and Adelson [15] proposed a steerable filter in which each
arbitrary oriented filter can be formed by a linear combination of a
fixed set of basis-oriented filters. Although the steerable filter is a
more efficient approach compared with the bank of oriented filters,
it still requires steering the basis-oriented filters in all orientations
with a precise angle step size (e.g., 1� interval) and studying the
outputs of the filters as a function of their orientations to find the
maximum response as the local dominant orientation. To overcome
the drawbacks of the existing texture-based vanishing-point detection
methods, we propose a novel solution to directly estimate the local
dominant orientation based on the joint activity of four Gabor filters
with orientations ���� ���� ���� �	��� followed by an efficient and
robust voting scheme suitable for real-time applications.

III. LOCAL DOMINANT ORIENTATION ESTIMATION

In this paper, we use Gabor filters to estimate local dominant ori-
entation at each pixel location. A 2-D Gabor kernel � for a preferred
orientation �� and radial frequency �� 
 �	
� [16] can be written as

�� �� ��� �� 

���
�	�


� ��� �� �

� �� � � � (1)

where � 
 � ������ �����, � 
 �� ������� ����, � 
 	
�
is a constant, and the spatial frequency � is set to �

�
�. In order to

estimate the dominant orientation ���� at each pixel location ���� ��
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in the image, the grayscale input image ���� is convolved with a bank
of Gabor filters with predefined orientations, i.e.,

������� � ����� �� ���

�� �
��� ���

��

� � �� �� � � � � �� (2)

where � denotes the convolution operator and �� is the total number
of orientations. Finally, the Gabor energy 	� ��� is calculated as the
magnitude of the complex filter response as follows:

	� ��� � �	 ��� ����� 
 �� ��� ���
�


 (3)

The orientation corresponding to the strongest Gabor energy
response across all orientations at each pixel location is chosen as
the local dominant texture orientation. Almost all the local texture
orientation estimation methods use a bank of Gabor filters with a large
number of orientations to achieve a precise angular resolution for the
local dominant orientation ���� (�� � � in [4] and �� � �� in
[5], [6]). Therefore, in order to overcome this drawback of the existing
texture orientation detection methods, we propose a novel OLDOM to
estimate the dominant orientation as described next.

A. Optimal Local Dominant Orientation Method

Every vector in �� can be represented by a unique combination of
two linearly independent vectors. Hence, every local texture orienta-
tion in the image represented by a vector can be obtained by using
only two independent Gabor energy filter responses, which strongly
respond to that texture vector orientation. More specifically, to esti-
mate the dominant orientation ���� at each pixel location ��� �� in the
image, an input grayscale image is convolved with four oriented Gabor
filters ��, � � ���� ���� ���� �����, and Gabor energy responses are
computed for each pixel location. Each Gabor energy response is con-
sidered as a vector whose magnitude is proportional to the Gabor en-
ergy response value	���� and its direction corresponds to its preferred
orientation �. Next, these Gabor energy responses 	���� are sorted
based on their magnitudes in descending order �	�

���� � 	�

���� �
	�

���� � 	�

����� for each pixel location ��� ��. Then, the resulting
vector � of the two most dominant filter activation strengths will be
used to represent the local texture orientation as follows:

���� � ����� 
 jV���� �

�

���

	
�
�����

�� (4)

where�� and�� represent the angle of the two dominant Gabor energy
responses 	�

���� and 	�

����, respectively. Next, the estimated domi-
nant orientation ����� at pixel � is determined by

����� � �����
�����

�����

 (5)

However, if the pixel is related to a feature in the image with no ap-
parent dominant orientation, which often appears in cluttered nonroad
regions, the Gabor energy response values may be very similar for all
four orientations. In such a case, relying only on the two strongest filter
responses may result in a large estimation error of the dominant orien-
tation ����. To solve this problem, we propose to use joint activities of
all four Gabor energy responses by introducing two new vectors �����
and ����� defined as follows:

������� � 	�

����� 	�

����

������ � �����
(6)

������� � 	�

����� 	�

����

������ � �����
(7)

Fig. 2. Upward voting. Candidate vanishing-point vp is receiving supports
from possible texture orientations voters.

where �� and �� represent the angle of two new vectors ����� and
�����, respectively. Then, (4) can be replaced by these two new vectors
as follows:

���� �

�

���

������
��


 (8)

Next, the local dominant orientation at pixel location ��� �� can be
defined by (5). Therefore, the proposed OLDOM estimates the local
dominant orientation based on the joint activity of only four Gabor
filters. In Section V, we evaluate the accuracy of the proposed OLDOM
method.

IV. VANISHING POINT VOTING

Once the dominant orientation ����� is estimated at each pixel loca-
tion ��� �� of the image, a ray defined by �� � ��� ������ is drawn
upward in an accumulator space, which has the same size as the input
image. The accumulator space of all pixels is initialized to zero. If a
pixel lies on ray ��, it gets incremented by 1 provided that it is located
above point ��� ��. After rendering all the rays, a pixel with the max-
imum number of supporting rays is declared as the candidate vanishing
point vp

���
[5]. Fig. 2 demonstrates an example of the candidate van-

ishing point vp
���

with supporting texture orientations voting for its
location.

A. Weighting Method

In the conventional voting methods [4], [5], all the dominant orien-
tations that come either from the strong edges of the road or from any
random off-road region have the same influence on the voting scheme.
Therefore, it may lead to incorrect estimation of the vanishing-point
location. To resolve this effect, we propose to assign a weight to each
ray �� based on the trigonometric function of its dominant orienta-
tion ���� ������. The reason is that the vanishing point is expected to be
mostly determined by supporting rays with a range of angles closer to
vertical orientations than horizontal ones. Therefore, by weighting each
dominant orientation by its sine function, those horizontal or nearly
horizontal orientations are suppressed.

B. Voting Scheme

Although the proposed weighting method resolves the problem of
assigning a weight to each ray ��, since it allows only pixels to vote
upward, it is biased toward higher pixels in the image [4]. Hence, the
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pixels in the upper part of the image receive more votes than lower
image pixels. In order to overcome the biases to effectively estimate
the vanishing-point location, we propose a new distance-based voting
scheme.

This approach implies that each dominant orientation gives higher
vote to the points closer to it than to the points further away along its ray
��. We define a function based on the normalized Euclidean distance
between each dominant orientation location ���� �� and each point on
its ray ��. The distance value is first normalized by the maximum pos-
sible distance�� between pixel ���� �� and the intersection point of its
ray with the image perimeters (depends on the angle of its orientation).

Then, the distance function ��� ��� is computed as

��� ��� � �
� �� �

�

��

� � ��� ���� � �� � ����

(9)

where ��� ��� is the distance function, � is the distance between the dom-
inant orientation ���� �� and any point ��� � ��� on its ray ��, �� is the
normalized distance, and 	� is the variance that is experimentally set
to 0.25. Consequently, each ray �� with dominant estimated orienta-
tion �
��� is first weighted based on the sine function of its dominant
orientations ���� �
����, and then, it is multiplied by the distance func-
tion ��� ��� to give a higher vote to the points closer to its origin than to
the points further away along ray ��.

V. RESULTS AND ANALYSIS

First, to assess the accuracy of the proposed OLDOM, a set of syn-
thetic images with associated ground-truth orientations are generated.
Each image contains a white line with an intensity of 255 in a black
(zero-intensity) background. Each line crosses the center of the image
by a set angle ranging from 0� to 180� with a step size of 1�. Four ori-
ented Gabor filters �	�� 
��� �	�� ���� are applied to each pixel loca-
tion of the input image, and Gabor energy responses are calculated at
ten randomly selected points scattered from the center along each line.
The mean and the standard deviation of the estimated texture orienta-
tions for these ten points are measured and compared with the ground
truth. The error is calculated based on the difference between the actual
ground-truth orientation and the estimated orientation in degrees. The
results indicate that the proposed technique has a finite angular resolu-
tion of 1.4� (�0.75�). Such accuracy would require 128 evenly spaced
oriented filters from 0� to 180� in the conventional bank of oriented
filters methods [4]–[7].

Next, to determine the quality of our vanishing-point estimation in
unstructured environments, we conducted experiments with images
from unstructured and cross-country conditions. The data set used
for the evaluation of the proposed vanishing-point detection consists
of 500 natural images from a set of digital photographs taken on a
scouting trip along a Grand Challenge route in the Mojave Desert
[3]. The data set contains various types of ground covers (soil, rock,
etc.) with complex geometric characteristics, different illuminations
and weather conditions, and shadows. All the images are rectified and
undistorted with the size of 320� 240 and taken by a forward-looking
camera mounted in front of the vehicle.

A. Performance Metric

The vanishing-point estimation error was measured by comparing
the result of the algorithms against the vanishing-point ground truth
manually determined through human perspective perception [4]–[6].
We invited 20 participants from our department to manually mark the
vanishing-point location in each image of the data set after a brief de-
scription of the road vanishing-point concept. We assumed the distribu-

Fig. 3. Comparison of vanishing-point detection methods in an 11-bin
histogram.

TABLE I
ACCURACY COMPARISON

tion of the users’ marked points is Gaussian, and we defined the center
as the ground-truth vanishing-point location.

To measure the vanishing-point estimation error, previous methods
either determine pixel difference between the estimated van-
ishing-point location and the ground truth separately in both column
and row [4] or use one metric such as the Euclidean distance in pixels
[6] to show the quality of the vanishing-point estimation. However,
when different methods have different image resolutions, the error
in pixels is not a representative of the true performance of different
methods. For quantitative evaluation measurements, we suggest to
use the normalized Euclidean distance, where the Euclidean distance
is normalized by the size of the diagonal of the image resolution as
follows:

NormDist �
�� � ���

Diag Image
(10)

where � ���� ��� is the estimated vanishing-point location and
������ ��� is the center of the ground-truth vanishing-point location,
while “Diag Image“ is the size of the diagonal of the image. Using the
proposed metric, a value near 1 would correspond to the incorrectly
estimated vanishing-point location. A value near 0 means that the
estimated vanishing-point location is close to the location of the
ground truth.

B. Experimental Results

Here, we evaluate the performance of the proposed vanishing-point
method both quantitatively and qualitatively. In order to decrease the
computational demand to meet the real-time requirements for ANS ap-
plications, all the images in the data set are first downsized to 80 � 60
pixels by the Gaussian pyramid and then passed to the vanishing-point
detection method to find the vanishing-point location. Once the van-
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Fig. 4. Examples of vanishing-point detection for unstructured roads. First, third, and fifth row: outputs of this paper’s algorithm (black dot is the ground truth
and white dot is the estimated vanishing-point location); second, fourth and sixth row: accumulator spaces.

ishing-point location is estimated in the downscaled image, its location
is projected back to the original image size (320 � 240) to assess the
algorithm’s performance with the human-perception ground truth.

For quantitative comparison purposes, we evaluated the proposed
method results relative to the classical edge-based (Canny/Hough) van-
ishing-point detection method [11] and the two best known texture-
based vanishing-point detection algorithms for unstructured and off-
road conditions proposed in [5] and [6]. Table I shows the numerical
results in terms of the average normalized Euclidean distance error for
the data set. As shown in the Table I, our proposed method outper-
forms all vanishing-point detection algorithms significantly. As we ex-
pected, the edge-based method is not suitable for clutter unstructured
environments, where there is no clear edges and apparent parallel lines
to extract. For in-depth analysis and better comparison, we also evalu-
ated the results of our proposed method versus the edge-based method
[11], the Rasmussen method [5], and the Kong et al. method [6] in an
11-bin histogram. We consider the distance of 0.1 as a very large error,
therefore, if the normalized Euclidean distance between the estimated
vanishing-point location and the ground truth is larger than or equal
to 0.1, it is placed into the last histogram bin, as shown in Fig. 3. The
vertical axis shows the number of images in each histogram bin, and
the horizontal axis shows the normalized distance error (NormDist). A
larger number of images in the left part of the histogram depict better
results, whereas the larger values in the right part show worse cases.

The advantage of our proposed method is that it has the greatest
number of images in the left part of the histogram (i.e., low error rate)
with the smallest number of images with large errors at the right side
of the histogram.

In particular, in the Rasmussen method [5], error rates of more
than 142 images (28%) are greater than 0.1, whereas in our proposed
method, it is only less than 41 images (8%). Aside from that, the
Kong et al. method [6] shows 56 (11%) images with large error, which
is better than the Rasmussen method [5], while its performance is
degraded in the small error portions of the histogram (i.e., left part).
The NormDist error less than 0.01 in the Kong et al. method [6] occurs
in only 63 (12%) images. In contrast, our proposed method performs
significantly better in which 189 images (37%) have the normalized
distance error (NormDist) of less than 0.01. Moreover, the edge-based
method [11] shows the worst results compared with texture-based
methods, where over 335 images (67%) have the error greater
than 0.1.

Fig. 4 depicts a variety of images with estimated vanishing points
overlaid on the images showing that our proposed method estimates the
vanishing-point locations successfully in many challenging unstruc-
tured roads and illumination conditions. Note that, in curved roads, the
main vanishing point associated with the tangent directions of the most
immediate road regions in front of the vehicle is correctly estimated.

Although the algorithm is proposed for off-road unstructured
environments, it works perfectly well for structured road conditions
(straight or curved). In structured roads, many supporting oriented tex-
ture cues such as well-painted lane markings or strong edge boundaries
point to the candidate vanishing points. Fig. 5 illustrates examples
of applying our proposed method to structured road conditions. As
demonstrated, the proposed method accurately estimates the vanishing
point in structured environments as well. The estimation is even more
accurate for such structured road conditions.
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Fig. 5. Examples of vanishing-point detection for structured roads. First and third row: outputs of this paper’s algorithm (black dot is the ground truth and white
dot is the estimated vanishing-point location); second and fourth row: accumulator spaces.

VI. CONCLUSION

We have proposed a new vanishing-point estimation method for out-
door unstructured road conditions. The technique relies on the joint
activities of four Gabor filters in order to estimate the dominant orien-
tation at each pixel location in the image robustly, thereby making it
ideally suitable for real-time applications. After the dominant orienta-
tion has been estimated, in order to locate the vanishing point, a novel
voting method has been presented, which assigns an adaptive weight to
each ray drawn along a dominant orientation. Those weighted rays are
further enhanced by the distance-based voting scheme to overcome the
biases toward the higher pixels in the image. Finally, the pixel with the
maximum supporting rays is declared as the candidate vanishing point
of the main portion of the road. Furthermore, a series of quantitative and
qualitative analyses have been conducted using natural data sets from
the Defense Advanced Research Projects Agency project. The perfor-
mance in terms of accuracy of the proposed method outperforms the
state-of-the-art vanishing-point detection methods.
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