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Abstract— This paper presents a neural model that learns
episodic traces in response to a continuous stream of sensory
input and feedback received from the environment. The proposed
model, based on fusion adaptive resonance theory (ART) net-
work, extracts key events and encodes spatio-temporal relations
between events by creating cognitive nodes dynamically. The
model further incorporates a novel memory search procedure,
which performs a continuous parallel search of stored episodic
traces. Combined with a mechanism of gradual forgetting, the
model is able to achieve a high level of memory performance and
robustness, while controlling memory consumption over time.
We present experimental studies, where the proposed episodic
memory model is evaluated based on the memory consumption
for encoding events and episodes as well as recall accuracy using
partial and erroneous cues. Our experimental results show that:
1) the model produces highly robust performance in encoding and
recalling events and episodes even with incomplete and noisy
cues; 2) the model provides enhanced performance in a noisy
environment due to the process of forgetting; and 3) compared
with prior models of spatio-temporal memory, our model shows
a higher tolerance toward noise and errors in the retrieval cues.

Index Terms— Adaptive resonance theory-based network,
agent, episodic memory, forgetting, hierarchical structure, mem-
ory robustness, Unreal Tournament.

I. INTRODUCTION

EPISODIC memory is a special class of memory system
that allows one to remember his/her own experiences

in an explicit and conscious manner [1]. Although episodic
memory is considered to be less important than semantic
memory, recent research has found episodic memory to be
crucial in supporting many cognitive capabilities, including
concept formation, representation of events in spatio-temporal
dimension, and record of progress in goal processing [2].
Additional evidences from cognitive neuroscience also imply
its importance during learning about context and about con-
figurations of stimuli. In particular, Morgan and Squire have
shown that during reinforcement learning tasks, hippocampus
(an area of the brain believed to be the place of episodic mem-
ory) is critical for representing relationships between stimuli
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independent of their associations with reinforcement [3]. The
specific functionalities mentioned above suggest that episodic
memory should not be just a storage of one’s past experiences,
but should support the representation of complex concep-
tual and spatio-temporal relations among one’s experienced
events and situations. Many existing computational models
of episodic memory have been capable of encoding events
and relations between events (e.g., [4] and [5]). However,
most still have limitations in capturing complex concepts and
situations. On the other hand, those models supporting the
intricate relations of concepts and events are not able to
process complex sequences of events (e.g., [6]–[8]).

In this paper, we present a computational model called
electromagnetic adaptive resonance theory (EM-ART) for
encoding of episodic memory in terms of events as well as
spatio-temporal relations between events. The model can be
incorporated into an autonomous agent for encoding its indi-
vidual experience, which can be retrieved later for reasoning
in real time. Based on a generalization of fusion adaptive
resonance theory (ART) [9], the EM-ART model supports
event encoding in the form of multiple-modal patterns. An
episodic encoding scheme is introduced that allows temporal
sequences of events to be learned and recognized. The model
further incorporates a novel memory search procedure, which
performs parallel search of stored episodic traces continuously
in response to potentially imperfect search cues. Extending
from our previous work presented in [10], we further enhance
EM-ART with a mechanism of gradual forgetting. The for-
getting mechanism removes unimportant and outdated events
from the episodic memory and enables the model to maintain
a manageable level of memory consumption over a possibly
infinite time period. This is a feature crucially required by
real-time systems.

We have conducted experimental studies on the proposed
model through two different applications. The first appli-
cation is a word recognition task, wherein the proposed
model is used to learn a set of words. The performance
is measured by the accuracies of retrieving the learned
words given their noisy versions. Compared with existing
models of spatio-temporal memory, the experiment results
show that the EM-ART model is one of the best mod-
els in terms of retrieval performance. We also evaluate
EM-ART in a first person shooting game called Unreal Tour-
nament, wherein EM-ART is used to learn episodic memory
based on an agent’s encounters in the game. Experiments
show that EM-ART produces a robust level of performance in
encoding and recalling events and episodes using various types
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of input queries, involving incomplete and noisy cues. This
is in comparison with the long term memory (LTM) model,
which is another best performing model in the word recogni-
tion task. By further examining the effects of forgetting, we
find that the incorporated forgetting mechanism also promotes
more efficient and robust learning by continuously pruning
erroneous and outdated patterns.

The rest of this paper is organized as follows. Section II
discusses the issues and challenges. Section III presents
the architecture of our proposed episodic memory model.
Sections IV and V present the algorithms and processes
for event and episode encoding and retrieval, respectively.
Section VI discusses the forgetting mechanism incorporated
in the proposed model. Sections VII and VIII investigate the
performance and robustness of the proposed model in the
word recognition task and the shooting game, respectively.
Section IX provides a brief discussion and comparison of
selected work on episodic memory models. The final section
concludes and highlights future work.

II. ISSUES AND CHALLENGES

A. Memory Formation

As discussed in Section I, two basic elements of episodic
memory are events and episodes. An event can be described
as a snapshot of experience. Usually, by aggregating attributes
of interest, a remembered event can be used to answer critical
questions about the corresponding experience, such as what,
where, and when. On the other hand, an episode can be
considered as a temporal sequence of events.

To enable efficient encoding of events and episodes, an
episodic memory model should be able to distinguish between
distinct events and episodes with a well-defined matching
scheme. The basic challenge regarding building the memory
storage matching scheme is, on one hand, the novelty detection
should be sufficiently strict to distinguish highly similar but
semantically different events (e.g., “Mary borrowed a book
from Emma yesterday” is different from “Mary borrowed a
book from Bob yesterday”). On the other hand, it should also
be loose enough to tolerate minor differences for events within
a single episode, such as slight changes within observed events
and their temporal order. Hence, the critical characteristic for
the matching scheme is its high efficiency in determining the
significant differences while tolerating all minor variances for
both events and episodes encoding. Therefore, an efficient
matching scheme should also lead to a parsimonious memory
storage as well as faster memory operations.

B. Memory Retrieval

We identify three major tasks in episodic memory retrieval,
namely event detection, episode recognition, and episode
recall, described as follows.

1) Event detection refers to the recognition of a previously
learned event based on a possibly incomplete description
of the current situation. The episodic memory model
should be able to search for similar memorized events,
which can be used to complete or refine the given
description.

2) Episode recognition refers to the identification of a
stored episode in the episodic memory in response to a
partial event sequence. Following the effect of episode
recognition, episodic memory model may also perform
event completion if the presented event sequence has
missing parts. Two basic requirements of episode recog-
nition include: 1) tolerance to incomplete cues, which
only form parts of the stored episodes and 2) tolerance
to errors, for example, noise in event attributes and
variations in the order of event sequences.

3) Episode recall is the playback of episode(s) in response
to an external cue, such as “what did I do yesterday?
When a cue is presented, episodic memory answers the
cue with the most closely matched episode according
to its similarity. During the episode playback, com-
pared with the stored information, an exemplar cue may
present minor disparities in individual event representa-
tions as well as their temporal orderings. The episodic
memory model should be able to identify and tolerate
this imperfection during recall.

C. Forgetting

Many studies (e.g., [11] and [12]) have indicated that
the memory traces in the hippocampus are not permanent
and are occasionally transferred to neocortical areas in the
brain through a consolidation processes. This implies that
forgetting should exist in episodic memory to avoid possi-
ble information overflow. Forgetting in the episodic memory
helps to preserve and strengthen important or frequently used
episodes, and remove (or forget) unimportant ones. Forgetting
is not only a natural and desired characteristic of biological
intelligence, it is also a prevalent operation in continuous
real time artificial models that gradually learn how to operate
in a given environment. More importantly, it is a necessary
condition for promoting efficient memory storage, as well as
fast and accurate operation of episodic memory in real-time
environments.

D. Summary

Taking the above into consideration, an episodic mem-
ory model should satisfy the following basic requirements:
1) efficient event representation describing complex situations
and events; 2) efficient episode representation for explor-
ing spatio-temporal relations among events which form the
episode; 3) well-defined generalizations on representations,
which accurately distinguish critical and irrelevant differences
among them (for both events and episodes); 4) high level
of tolerance to incomplete or noisy cues; 5) fast mem-
ory operations, including memory encoding and retrieving;
6) tracking the importance of events and episodes in real
time based on rewards, surprises, emotions, interpretation, and
access frequency; and 7) forgetting mechanism to deal with the
limited memory capacity.

III. PROPOSED MODEL

Our proposed episodic memory model, called EM-ART,
is built by hierarchically joining two multichannel self-
organizing fusion ART neural networks. Based on ART [13],
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which has led to a steadily developed family of neural learning
architectures [14], [15], fusion ART dynamics offers a set of
universal computational processes for encoding, recognition,
and reproduction of patterns.

As shown in Fig. 1, the model consists of three layers of
memory fields: F1, F2, and F3. The F1 layer is connected
with the working memory to hold the activation values of all
situational attributes. Based on the F1 pattern of activations, a
cognitive node in F2 is selected and activated as a recognition
of the event. Following that, the activation pattern of an
incoming event can be learned by adjusting the weights in
the connections between F1 and F2.

Besides categorizing events, the F2 layer also acts as a
medium-term memory buffer for event activations. A sequence
of events produces a series of activations in F2. The activations
in F2 decay over time such that a graded pattern of activations
is formed representing the order of the sequence. This activity
pattern, which represents an episode, is similarly learned as
weighted connections between F2 and the selected category
in F3.

Once an episode is recognized through a selected node in
F3, the complete episode can be reproduced by a top down
activation process (readout) from F3 to F2. The events in the
episode can also be reproduced by reading out the activations
from F2 to F1 following the order of the sequence held in the
F2 layer.

The computational principles and algorithms used for
encoding, storing, and retrieving events and episodes are
described in details in the following sections.

IV. EVENT ENCODING AND RETRIEVAL

An event consists of attributes characterizing what, where,
and when an event occurs. Fig. 2 shows an example of the
structure of an input event based on the Unreal Tournament
domain [16]. This structure is also used in the experiments
for evaluating EM-ART. In the structure shown, the location
is expressed using a 3-D cartesian coordinate system; other
task and internal states include the observed distance from the
enemy (another agent), the availability of collectable items,
and the agent’s health and ammo level.

There are four behavior choices (actions) available for the
agent, including running around, collecting items, escaping
from battle, and engaging in fire. The consequence of a battle
situation (e.g., kill and damages) is presented to the model as
a reward value.

A. Fusion ART

Fusion ART network is used to learn individual events
encoded as weighted connections between the F1 and F2
layers. In this case, an event is represented as a multichannel
input vector. Fig. 3 illustrates the fusion ART architecture,
which may be viewed as an ART network with multiple input
fields. Each event’s attribute is represented as the activity of
a node in the corresponding input field.

For completeness, a summary of the fusion ART dynamics
is given below.

Fig. 1. Proposed neural network architecture of the episodic model.

Fig. 2. Event encoding.

Fig. 3. Fusion ART architecture.

Input Vectors: Let Ik = (I k
1 , I k

2 , . . . , I k
n ) denote an input

vector, where I k
i ∈ [0, 1] indicates the input i to channel k, for

k = 1, . . . , n. With complement coding, the input vector Ik is
augmented with a complement vector Īk such that Ī k

i = 1− I k
i .

Input Fields: Let Fk
1 denote an input field that holds the

input pattern for channel k. Let xk = (xk
1 , xk

2 , . . . , xk
n ) be the

activity vector of Fk
1 receiving the input vector Ik (including

the complement).
Category Fields: Let Fi denote a category field and i > 1

indicate that it is the i th field. The standard multichannel
ART has only one category field, which is F2. Let y =
(y1, y2, . . . , ym) be the activity vector of F2.

Weight Vectors: Let wk
j denote the weight vector associated

with the j th node in F2 for learning the input pattern in Fk
1 .

Parameters: Each field’s dynamics is determined by choice
parameters αk ≥ 0, learning rate parameters βk ∈ [0, 1],
contribution parameters γ k ∈ [0, 1], and vigilance parameters
ρk ∈ [0, 1].

The dynamics of a multichannel ART can be considered as
a system of continuous resonance search processes comprising
the basic operations as follows.

Code Activation: A node j in F2 is activated by the choice
function

Tj =
n∑

k=1

γ k
|xk ∧ wk

j |
αk + |wk

j |
(1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi , qi ), and the norm |.| is defined by |p| ≡ ∑

i pi for
vectors p and q.

Code Competition: A code competition process selects a
F2 node with the highest choice function value. The winner
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is indexed at J where

TJ = max{Tj : for all F2 node j}. (2)

When a category choice is made at node J , yJ = 1; and
y j = 0 for all j �= J indicating a winner-take-all strategy.

Template Matching: A template matching process checks if
resonance occurs. Specifically, for each channel k, it checks
if the match function mk

J of the chosen node J meets its
vigilance criterion such that

mk
J =
|xk ∧ wk

J |
|xk| ≥ ρk . (3)

If any of the vigilance constraints is violated, mismatch
reset occurs or TJ is set to 0 for the duration of the input
presentation. Another F2 node J is selected using choice
function and code competition until a resonance is achieved.
If no selected node in F2 meets the vigilance, an uncommitted
node is recruited in F2 as a new category node.

Template Learning: Once a resonance occurs, for each
channel k, the weight vector wk

J is modified by the following
learning rule:

wk(new)
J = (1− βk)wk(old)

J + βk
(

xk ∧ wk(old)
J

)
. (4)

Activity Readout: The chosen F2 node J may perform a
readout of its weight vectors to an input field Fk

1 such that
xk(new) = wk

J .
A fusion ART network, consisting of different input (output)

fields and a category field, is a flexible architecture that can be
made for a wide variety of purposes. The neural network can
learn and categorize inputs and can be made to map a category
to some predefined fields by a readout process to produce
the output. Another important feature of the fusion ART
network is that no separate phase of operation is necessary for
conducting recognition (activation) and learning. Learning can
be conducted by adjusting the weighted connections while the
network searches and selects the best matching node. When
no existing node can be matched, a new node is allocated to
represent the new pattern. Hence, the network can grow in
response to novel patterns.

B. Algorithm for Event Encoding and Retrieval

Based on the above description of fusion ART, an event can
be encoded as an input vector to the network such as the one
shown in Fig. 2.

The recognition task can be realized by a bottom-up acti-
vation given the input vector, using the standard operations
of fusion ART. On the other hand, the top-down activation
(readout operation) achieves the recall task. Fig. 4 illustrates
the bottom-up and top-down operations for learning, recogni-
tion, and recalling an event.

More specifically, the algorithm for learning and recogniz-
ing events can be described as Algorithm 1.

The algorithm for event recognition and encoding is
designed to handle complex sequences, involving repetition
of events. The iteration condition in line 3 Algorithm 1
ensures that the same node will not be selected if it has
been selected previously as a matching category in the same

Algorithm 1 Event Encoding

1 Given an input pattern of event as vector Ik in F1
2 Activate every node j in F2 by choice function

Tj =∑n
k=1 γ k |xk∧wk

j |
αk+|wk

j |
3 select node J such that TJ = max{Tj : for all F2

node j},
4 set node activation yJ ← 1

5 WHILE match function mk
J = |x

k∧wk
J |

|xk | < ρk

(not in resonance)
OR J was selected previously

6 deselect and reset J by TJ ← 0, yJ ← 0
7 select another node J with TJ =

max{Tj : for all F2 node j}
8 IF no matching (resonance) J can be found in F2

9 THEN let J ← J 0, where J 0 is a newly recruited
uncommitted node in F2

10 learn J as a novel event with wk(new)
J = xk

Fig. 4. Operations between F1 and F2.

episode. This leads to the creation of a new event category
when the event pattern is repeated in a sequence (episode).
One important parameter for event recognition and encoding
is ρk , the vigilance parameter for each input channel k in F1.
The vigilance values are used as thresholds for the template
matching process, as described in Section IV-A. If the same
vigilance value is applied to all input channels in F1 layer,
ρe is introduced to represent this unified vigilance value for
encoding and retrieval of events.

V. EPISODE LEARNING AND RETRIEVAL

A. Episode Representation and Learning Algorithm

A crucial part of episodic memory is to encode the sequen-
tial or temporal order between events. However, in the standard
model of fusion ART, this feature of sequential representation
is missing. The EM model proposed in this paper extends the
fusion ART model so that it can associate and group patterns
across time.

Specifically, we adopt the method of invariance princi-
ple [17], [18], which suggests that activation values can be
retained in a working memory (neural field) in such a way
that the temporal order in which they occur are encoded by
their activity patterns. To retain the temporal order, each entry
of activation item multiplicatively modifies the activity of all
previous items. Based on the multiplying factor, an analog
pattern emerges in the neural field reflecting the order the
events are presented. Thus, the temporal order of items in
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a sequence, encoded as relative ratios between their values,
remains invariant.

This method emulates the characteristic of serial learn-
ing conforming psychological data about human working
memory [17]. The approach can be simplified by replacing
multiplication with adding/subtracting operations, which is
called gradient encoding, and has been successfully applied to
iFALCON, a belief-desire-intention agent architecture com-
prised of fusion ARTs [19].

To represent a sequence in our EM model, the invariance
principle is applied, so that an activation value in F2 indicates
a time point or a position in an ordered sequence. The most
recently activated node in F2 has the maximum activation of 1,
while the previously selected ones are multiplied by a certain
factor decaying the values over time. Suppose t0, t1, t2, . . . , tn
denote the time points in an increasing order, and yti is the
activity value of the node that is activated or selected at time
ti , the activation values in F2 form a certain pattern such
that yti > yti−1 > yti−2 > · · · > yti−n holds where ti is
the current or the latest time point. This pattern of activation
also possesses or exhibits the so-called recency effect in short-
term memory, in which a recently presented item has a higher
chance to be recalled from the memory.

The process of episode learning in EM-ART is shown in
Fig. 5. While a newly activated node has an activation of 1,
the activation value of any other node j in F2 is decayed in
each time step so that y(new)

j = y(old)
j (1− τ ), where y j is the

activation value of the j th node in F2 and τ ∈ (0, 1) is the
decaying factor.

Concurrently, the sequential pattern can be stored as
weighted connections in the fusion ART network. As men-
tioned previously, F2 and F3 can be considered, respectively,
as the input field and category field of another fusion ART
neural network with a single input field only. Each node in
F3 represents an episode encoded as a pattern of sequential
order according to the invariance principle in its weighted
connections. The overall algorithm of episode learning can
be described as Algorithm 2.

One important parameter used in the episode learning
algorithm is ρs , the vigilance parameter in the F2 field. The
vigilance parameter is used as a threshold for the template
matching process as described in Section IV-A.

B. Episode Retrieval

After the episodes are learned, any such episode can be
recalled using various types of cues. A cue for the retrieval
can be a partial sequence of any episode starting from the
beginning or any position in the sequence. Based on the cue,
the entire episode can be reproduced through the read out
operation. An important characteristic of EM-ART is that the
retrieval can be done in a robust manner as the activation and
matching processes comprise analog patterns. This feature is
useful when the cue for retrieval is imperfect or noisy. The
approximate retrieval is also made possible by the use of fusion
ART as the basic computational model for all parts of the EM.
For example, lowering the vigilance parameter ρs of F2 can
make it more tolerant to noises or incomplete cues.

Algorithm 2 Episode Activation and Learning

1 FOR EACH subsequent event in episode S
2 select a resonance node J in F2 based on input

Ik in F1
3 let node activation yJ ← 1 (or a predefined maximum

value)
4 FOR EACH previously selected node i in F2

5 decay its activation by y(new)
i = y(old)

i (1− τ )

or 0 if y(old)
i ≤ 0

6 Given activation vector y formed in F2 after the
subsequent presentation of S

7 select a resonance node J ′ in F3 based on activation
vector y

8 learn its associated weight vector as w′(new)
J = y if S

is a novel episode

Fig. 5. Operations between F2 and F3.

To retrieve an episode based on a less specific cue, such
as a subsequence of episode, a continuous search process is
applied, in which the activity pattern of the cue is formed
in F2 while the F3 nodes are activated and selected at the
same time through the resonance search process. As long as a
matching node is not found (still less than ρe), the next event
is received activating another node in F2 while all other nodes
are decayed. For a cue as a partial episode, the missing event
can mean no more new activation in F2 while other nodes are
still decayed. The algorithm for recognizing an episode based
on imperfect cues can be described in Algorithm 3.

Once an episode is recognized, the complete pattern of
sequence can be reproduced readily in the F2 layer by the read
out operation from the selected node in F3 to the nodes in F2.
However, to reproduce the complete episode as a sequence
of events, the corresponding values in F1 layer must be
reproduced one at a time following the sequential order of the
events in the episode. EM-ART uses a vector complementing
the values in F2 before reading out the complete events in
F1. After the sequential pattern is read out to the field in F2
which can be expressed as vector y, a complementing vector
y can be produced so that for every element i in the vector,
yi = 1 − yi . Given the vector y, the node corresponding to
the largest element in y is selected first to be read out to the
F1 fields. Subsequently, the current selected element in the
vector is suppressed by resetting it to zero, and the next largest
is selected for reading out until everything is suppressed.
In this way, the whole events of the retrieved episode can
be reproduced in the right order.
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Algorithm 3 Episode Recognition

1 FOR EACH incoming event
2 select a resonance node J in F2 based on the

corresponding event
3 let node activation yJ ← 1 (or maximum)
4 FOR EACH previously selected node i in F2

5 decay its activation by y(new)
i = y(old)

i (1− τ )

or 0 if y(old)
i ≤ 0

7 select a resonance node J ′ in F3 based on y in F2
8 IF J ′ can be found THEN exit loop

C. Complexity Analysis

Consider the task of encoding m episodes with n unique
events. We suppose each event contains a fixed set of t
attributes and among the m episodes, there is a maximum of
L events and an average of l events within each episode. In
the following, we shall investigate the complexity of EM-ART
in terms of the memory space and time required for learning
and retrieving an episodes.

Space Complexity: As discussed in Section IV-B, for encod-
ing n unique events, EM-ART requires n category nodes
in the F2 layer, each encoding an event as a multimodal
pattern stored in the 2t weighted connections to the F1 layer.
Therefore, the total number of connections between the F2 and
F1 layer is 2nt . In addition, EM-ART encodes each episode
as a F3 category node fully connected to all the n F2 nodes,
where each weight to a F2 node indicates the time position
of the corresponding event within the episode. The exact
encoding of these m episodes thus requires an EM-ART model
with m nodes in F3 layer and 2mn connections between F2
and F3 layers. Summing the space requirement for encoding
events and episodes, the total number of nodes and weights in
EM-ART model are m + n and 2nt + 2mn, respectively.
However, when generalization is allowed, the actual space
requirement can be reduced by lowering the corresponding
vigilance values (i.e., ρe and ρs ).

Time Complexity: We identify comparison and multiplica-
tion to be the most critical operations during the encoding and
retrieving processes in EM-ART. As described in Section IV-B,
encoding an event requires a total of O(nt) comparison opera-
tions during the resonance search process of fusion ART. After
which, EM-ART averagely takes O(lnt) processing steps to
produce a series of activations in the F2 layer, representing the
order of the sequence to learn. Then, the activated F2 pattern
is matched against all patterns previously stored in the F2−F3
network and learned as a new category node in F3 layer.
Suppose there are already m episodes stored in this model,
episode learning in the F2 − F3 network takes a processing
time of O(mn2). Therefore, the time complexity of encoding
an episode in EM-ART is O(ntl + mn2). Similarly, consider
an EM-ART with m episodes and n events, the time required
to retrieve an episode is also in the order of O(ntl + mn2).

VI. FORGETTING IN EPISODIC MEMORY

Forgetting in episodic memory is essential to preserve and
strengthen important and/or frequently used experiences, while

removing unimportant or rarely occurred ones. Preventing
ever-growing storage is a crucial aspect when dealing with
continuous real-time operations. The forgetting mechanism
should periodically check all stored events for their frequencies
of use and the level of importance. Rarely-rehearsed events in
episodic memory will be quickly forgotten while frequently-
active ones will last longer.

In the proposed episodic memory model, a memory strength
value s j ∈ [0, 1], is associated with each event encoded by a
F2 node. Initially, s j is set to sinit and gradually decays by
decay factor δs ∈ [0, 1]. Upon an event reactivation, s j is
increased by an amount proportional to a reinforcement rate
rs ∈ [0, 1]. The strength of an event e j at time t can be
computed as follows:

s j (t) =
⎧
⎨

⎩

sinit e is just created at t
s j (t − 1)+ (1− s j (t − 1))rs e is reactivated at t
s j (t − 1)(1− δs) otherwise.

An event having s j falling below a threshold ts ∈ [0, 1]
will be removed from episodic memory together with all of its
weighted connections to/from other event and episode nodes.

The determination of parametric values on sinit and δs

is mainly based on the nature of the associated application
domain. Multiple values on these parameters can be included
in one single episodic model. The various values on sinit and
δs should be based on all related factors, such as rewards,
prediction surprises, and emotions. Generally, the events with
greater rewards, prediction surprises, and/or emotions should
be stored in episodic memory for a longer time period. Hence,
it should be associated with a higher value of sinit and/or a
smaller value for δs .

VII. BENCHMARK COMPARISON

In this section, we compare the performance of the proposed
model with other sequential memory methods to be discussed
in Section IX for a word recognition task. In this task, we com-
pare the performance of different models for the typoglycemia
phenomena based on the following benchmark presented in
[20]: “I cnduo’t bvleiee taht I culod aulaclty uesdtannrd waht
I was rdnaieg. Unisg the icndeblire pweor of the hmuan mnid,
aocdcrnig to rseecrah at Cmabrigde Uinervtisy, it dseno’t
mttaer in waht oderr the lterets in a wrod are, the olny
irpoamtnt tihng is taht the frsit and lsat ltteer be in the rhgit
pclae. The rset can be a taotl mses and you can sitll raed it
whoutit a pboerlm. Tihs is bucseae the huamn mnid deos not
raed ervey ltteer by istlef, but the wrod as a wlohe. Aaznmig,
huh? Yaeh and I awlyas tghhuot slelinpg was ipmorantt!
See if yuor fdreins can raed tihs too.”

To perform such benchmark test, each letter in the recog-
nition test is fed into EM-ART model as an input vector one
at a time. The input vector consists of 26 attributes, each of
which represents a letter in the alphabet. At any time, only
one attribute in the vector can be set to 1 to indicate the
current letter read by the EM model. In the model, each letter
is learned as an event node in F1, while a unique word is
encoded as an episode node in F2 describing the ordering of
its included letters (i.e., events).
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We trained the EM model using all corresponding corrected
words indicated by the typoglycemia test. With a vigilance
of 1 at both the event and episode levels (ρe = ρs = 1),
the model creates 26 event nodes and 73 episodes nodes,
which corresponds to the 26 letters and 73 unique words in
the typoglycemia test. After building the EM model, we load
the test passage with all the misspelled words. Therefore, the
model performance can be examined by the memory retrieval
subject to the noisy cues with erroneous ordering.

We compare the performance with several other meth-
ods, including Markov chain [i.e., hidden Markov model
(HMM)], Levenshtein distance method, and a spatio-temporal
network model called LTM model, (i.e., long-term mem-
ory), as reported in [21]. LTM performs anticipation-based
spatio-temporal learning that can store and retrieve complex
sequences. Similar with EM-ART, LTM applies hierarchical
network structure to encode complex events and their spatio-
temporal sequences. To learn a text passage, a low-level neuron
in LTM is used to learn a letter. The words can then be grouped
and recognized into an upper-level neuron as a sequence of
letters. As each typoglycemia word is forwarded as test inputs,
the word learned by the neuron with the highest activation
(i.e., highest similarity with the test word) is chosen as the
prediction. The number of states and the minimum discrete
density value is set to 6 and 10−4 as suggested by [21]. On
the other hand, HMM method trains one HMM model for
each unique word, wherein each observation symbol refers an
unique letter in the alphabet. During typoglycemia test, the
trained models are compared through their log-likelihood for
each test word. The word with the highest likelihood is then
retrieved as the predicted word. In this test, the HMM method
is implemented based on the online toolbox available in [22].
The parameter setting follows those given in [23] for the word
recognition tasks. Among the key parameters, the number of
states and the minimum discrete density value are set to 6 and
10−4, respectively. Another method compared in this test, the
Levenshtein distance method, calculates the Levenshtein dis-
tance between each typoglycemia word with the learned words
and retrieves the word with the minimum distance. Random
selection is conducted if there are several learned words with
the same minimum distance. The distance between two words
in Levenshtein distance method is defined as minimum number
of edits (replacement, deletion, or addition of a letter) needed
to transform one word into the other. The space and time
complexity of the various methods and models are shown
in Table I. The deriving details are omitted due to the space
limitation.

As shown in Fig. 6, although Levenshtein distance method
requires the least space and processing time, it can only
achieve an accuracy of 89.36% in retrieving the typoglycemia
text. HMM can correctly retrieve 94.67% of the learned words
from all words in the test. However, it requires intensive
training of each word as one model. Both EM-ART and
LTM models have 100% retrieval accuracy. By further com-
paring their space and time complexity, EM-ART employs
less computational resources than LTM model to achieve the
same level of retrieval performance as shown by Table I.
These results show that EM-ART provides better recognition

Fig. 6. Performance comparison on the word recognition benchmark.

TABLE I

COMPARISON OF SPACE AND TIME COMPLEXITY ON

RECOGNITION BENCHMARK

EM-ART LTM HMM
Levenshtein

Distance

Space

complexity O(nt + mn) O(n2t +mL2) O(mnl) O(ml)

Time

complexity O(ntl +mn2) O(n2t L + mL3) mn2l NA

(learning)

Time

complexity O(ntl +mn2) O(n2t L + mL3) mn2l O(ml2)

(retrieving)

performance compared to HMM and Levenshtein distance
method in the typoglycemia test. LTM has a similar perfor-
mance as EM-ART by tolerating all errors while recalling the
whole misspelled paragraph.

VIII. CASE STUDY IN A GAME DOMAIN

A. Episode Learning by a Game Agent

In this section, we study the performance of EM-ART
in a first-person shooter game environment called Unreal
Tournament (UT). In the UT environment, each nonplayer
character (NPC) agent receives events describing the situation
it experiences. The EM-ART model is used to learn episodic
traces of those events, which are subsequently subjected to
various recall tasks for performance evaluation. During the
games, each NPC further embeds a reinforcement learning
model based on [24] to guide its interactions with the game
environment by continually optimizing the action policies, in
a similar fashion to that of [25] and [26].

In our EM-ART model, an event can be represented as
a vector, as shown in Fig. 2. Those events experienced by
an agent during a battle, together with their mutual temporal
relations, form an episode in the game. In this section, we
investigate the experience of an agent from 100 battles (i.e.,
episodes) played in the game. During these 100 battles, there
are 7735 events. The number of events within an episode varies
from seven to over 250.
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B. Episode Retrieval by a Game Agent

We build several exemplar EM-ART models using various
vigilance values to access their effect on both episode learning
and retrieval. Table II shows the memory sizes of the EM-ART
models based on different vigilance setting, described by the
total number of events and episodes in the built models. As
reported in Table II, the size of memory shows almost no
change as the vigilance at the episode level (i.e., ρs ) drops
from 1.0 to 0.9; meanwhile, a 0.05 decrease on event-level
vigilance ((i.e., ρe) leads to a 60% reduction in the number
of events by merging highly similar events into a single
event node. The sensitivity of model over vigilance values
reveals one remarkable characteristic of the UT domain—the
similarity between events is relatively high, while most of
exemplar episodes are distinct from each other.

After the EM-ART models are built, various tests are con-
ducted to evaluate the accuracy of memory retrieval, subject
to variations in cues, described as follows: 1) the cue is a
full/partial event sequence of a recorded episode starting from
the beginning/end/arbitary location of the episode and 2) the
cue is a noisy or erroneous full length event sequence of the
recorded episodes. In the retrieval test, the retrieval accuracy
is measured using the ratio of the number of the correctly
retrieved episodes over the total number of cues applied. We
also further investigate the influence of different levels of
vigilance on the model’s performance at both the event and
episode levels, indicated by the vigilance values of ρe and
ρs , respectively. For the ease of the parameter setting, all our
experiments use a standard vigilance value (ρe) throughout
all the fields in the F1 layer. We evaluated the performance of
EM-ART under a range of vigilance values from 0.5 to 1.0
at both event (i.e., ρe) and episode (i.e., ρs) level. Due to the
large amount and high similarity of results, in this paper, we
only present the model performance under a narrower range
of vigilance values from 0.9 to 1.0.

1) Retrieving from beginning of episodes: In this retrieval
test, we extract partial sequences from the beginning of the
recorded episodes as cues for retrieving the episodes. The cues
are of different lengths, ranging from whole to 1/2, 1/3, 1/4,
and 1/5 of the length of the episodes. Table III (a) shows the
retrieval accuracy using cues of various length under different
vigilance values. We observe that the model can accurately
retrieve all stored episodes based on partial cues with different
lengths with ρe of 1.0. With a lower ρe value of 0.95, the
built model can still give a retrieval accuracy of 88% while
reducing the number of encoded event nodes and connections
by 60%. With ρe = 0.95, a higher retrieval accuracy can be
typically provided by a longer cue. Meanwhile, the abstraction
at the episode level (indicated by the value of ρs ) shows
an insignificant impact on the performance due to the data
characteristics discussed previously.

2) Retrieving from end of episodes: In this retrieval
test, cues are extracted from the tail of the recorded
episodes. Similarly, cues of various length are used, rang-
ing from whole to 1/2, 1/3, 1/4, and 1/5 of the original
length of the episodes. Table III (b) shows the retrieval
accuracy using cues of different length under various vigilance
values of ρs . We see that the test shows similar performance

Algorithm 4 Generation of Noisy Events

Input: Error rate r ∈ (0, 100)
1 FOR EACH event in the original dataset
2 FOR EACH attribute a in the event
3 generate a random number, rand = random

number (1, 100)
4 IF rand ≤ r , a′ = 1− a

TABLE II

EM MODEL SIZES AT VARIOUS VIGILANCES

(ρe, ρs )
Number of
episodes

Number
of events

Number of
weights

F1− F2(k)

Number of
weights

F2− F3(k)

(1.0, 1.0) 100 6705 509 1341

(1.0, 0.9) 100 6705 509 1341

(0.95, 1.0) 98 2692 294 527

(0.95, 0.9) 98 2692 294 527

patterns as those observed by retrieving from the beginning
of episodes. Besides, the tests lead to an equal or better
retrieval performance (i.e., at least 96% recognition rate)
compared with retrieving from the beginning of episodes. The
difference in performance can be observed by introducing the
multiplicative decay process described in Section V-A. Given
partial length cues from the beginning of episodes, this process
tends to produce small differences between event activations
and weighted connections encoded in the episode nodes.

3) Retrieving from arbitrary location of episodes: In this
retrieval test, cues are extracted from the recorded episodes
starting from randomly selected locations. Each such partial
cue is forwarded to the model for episode retrieval. The cues
are of different lengths, ranging from whole to 1/2, 1/3, 1/4,
and 1/5 of the length of the episodes. Table III (c) shows the
retrieval accuracy under various vigilance values. As indicated,
the test provides similar retrieval performance as those by
retrieving from beginning and end of episodes.

4) Retrieving with noisy events: To test the robustness
of the model, we have further conducted the retrieval test
with noisy data. Two types of errors are applied in the
test as follows: 1) error in individual event’s attributes and
2) error in event ordering within a complete sequence. This
test investigates the model’s robustness in dealing with the
first type of noise. The corresponding noisy data set is directly
derived from the original data set using the method described
in Algorithm 4, with a specified error rate.

We test the model with various error rates on event represen-
tation and the results are shown in Table IV (a). The test shows
that the built model can correctly retrieve at least 90% of all
episodes with an error rate as high as 20%, at an event vigi-
lance of 1. However, the performance drops to roughly 70% as
the error rate reaches 30%. We further observe that, to achieve
a high retrieval accuracy with noisy cues, the model requires
a high vigilance ρe for event recognition in the F2 layer,
and the vigilance ρs for sequence recognition in the F3 layer
shows a relatively limited impact on the model performance.
The results show that for event recognition, a higher vigilance



1582 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, OCTOBER 2012

TABLE III

ACCURACIES (IN %) OF RETRIEVING WITH INCOMPLETE CUES

Cue type (ρe, ρs ) Cue length
Full length 1/2 length 1/3 length 1/4 length 1/5 length

(1.0, 1.0) 100 100 100 100 100
(a) Partial cues from the beginning of episodes (1.0, 0.9) 100 100 100 100 100

(0.95, 1.0) 98 93 93 89 88
(0.95, 0.9) 98 93 93 89 88

Full length 1/2 length 1/3 length 1/4 length 1/5 length
(1.0, 1.0) 100 100 100 100 100

(b) Partial cues from the end of episodes (1.0, 0.9) 100 100 100 100 100
(0.95, 1.0) 98 98 98 97 96
(0.95, 0.9) 98 98 98 97 96

Full length 1/2 length 1/3 length 1/4 length 1/5 length
(1.0, 1.0) 100 100 100 100 100

(c) Partial cues from arbitrary location of episodes (1.0, 0.9) 100 100 100 99 98
(0.95, 1.0) 98 97 93 88 85
(0.95, 0.9) 98 94 90 90 90

(ρe) is required to distinguish the highly similar but conceptu-
ally different events. In contrast, episode recognition should be
able to tolerate minor changes within events and their temporal
orders, which is achieved by lowering its vigilance (ρs ). By
setting appropriate vigilance values, the model tackles the
challenge of building an efficient memory storage matching
scheme as stated in Section II.

5) Retrieving with noisy episodes: In this section, we test
the model reliability in dealing with the second type of noise.
The corresponding noisy data set is derived from the original
data set using the method described in Algorithm 5, given the
desired rate of noise. In Algorithm 5, S.ei refers to the i th
event within a stored episode/sequence S.

We test the model with various error rates on sequence
representations and the results are shown in Table IV (b). To
achieve tolerance to high level of noise, the model requires a
relatively high event vigilance (ρe). With an event vigilance
of 1, the model can achieve 100% retrieval accuracy with an
error rate as high as 20%.

6) Retrieving with noisy events and partial episodes: We
further investigate the retrieval performance of EM-ART by
combining the two kinds of cue imperfections (i.e., partial
length and noisy data) presented previously. To produce a
set of noisy and partial cues, we generate two noisy data
sets with 10% and 20% error on event representation as
described in Algorithm 4. Then, the experiments from Section
VIII-B1 to VIII-B3 are repeated with the vigilance level of
ρe = ρs = 1.0. As shown in Table V, when more errors are
added into the cues, EM-ART shows a degradation of retrieval
performance across all types of partial cues. Generally, the
performance difference using different types of partial cues
widens as more noises are presented, in such a way that the
performance is higher with longer cues and partial cues at the
end of the episodes. This performance pattern is consistent
with the results shown in Paragraph VIII-B-(a)–(c).

C. Comparison With a LTM Model

As EM-ART and the LTM (i.e., LTM) model [21] show
a similar level of performance on the word recognition tests

TABLE IV

ACCURACIES (IN %) OF RETRIEVING WITH NOISY CUES

Cue type (ρe, ρs )
Error Rate

5% 10% 20% 30%
(a) Full length cues (1.0, 1.0) 97 97 92 76
with various level (1.0, 0.9) 97 97 92 76
of noises on event (0.95, 1.0) 96 95 87 63
representation (0.95, 0.9) 96 95 87 63

5% 10% 15% 20%
(b) Full length cues (1.0, 1.0) 100 100 100 100
with various level (1.0, 0.9) 100 100 100 100
of noises on sequence (0.95, 1.0) 98 98 98 97
representation (0.95, 0.9) 98 98 97 97

described in Section VII, we conduct further performance
comparison between these two models by repeating the
retrieval tests conducted in Section VIII-B. In addition, we
investigate and compare the retrieval performance of the two
models with an error rate of up to 50% in the cues at both the
episode and event levels. The comparison between the two
models is based on their retrieval accuracies with the best
parameter settings tried. As the retrieval tests show that the
performance of both models is almost the same with partial
cues, only the retrieval results with noisy cues are presented
in this paper.

Fig. 7 shows the accuracy for retrieving episodes when
noises are introduced to each individual event in an episode.
Although both models provide lower performance as more
noises are added, EM-ART can retrieve more correct episodes
than the LTM model across all noise levels. While the LTM
model shows a dramatic drop in performance as the error rate
grows beyond 20%, EM-ART can still correctly retrieve at
least 75% of the episodes with 30% noise. The performance
difference between the two models, however, is most sig-
nificant when dealing with noises in the event ordering. As
shown in Fig. 8, a steady drop of accuracy level in the LTM
model starts at 15% noise and continues with higher error
rates. In contrast, the proposed model always successfully
retrieves the correct episodes even though the error rate has
reached 50%.
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Algorithm 5 Generation of Noisy Episodes
Input: Error rate r ∈ (0, 100)
1 FOR EACH episode S in the original dataset
2 DO rand = random number (1, total number o f episodes stored)
3 WHILE Srand = S or Srand.length ≤ 
S.length ∗ r/100�
4 x1 = random number 1 to (S.length − 
S.length ∗ r/100� + 1)
5 x2 = random number 1 to (Srand .length − 
S.length ∗ r/100� + 1)
6 FOR i = 0 to 
S.length ∗ r/100� − 1,
7 S.ex1+i ← S(rand).ex2+i

TABLE V

ACCURACIES (IN %) OF RETRIEVING WITH NOISY AND PARTIAL CUES

Cue type Error
rate

Full
length

Cue
1/2

length

1/3
length

1/4
length

1/5
length

(a) Retrieval 10% 97 99 97 96 94

from beginning 20% 92 81 75 75 64

(b) Retrieval 10% 97 97 97 96 96

from end 20% 92 90 84 80 76

(c) Retrieval from 10% 97 96 97 93 90

arbitrary location 20% 92 91 82 79 64

Fig. 7. Performance comparison for retrieving with various error rates on
event representation.

The results above confirm that the proposed neural model
for episodic memory can deal with imperfect cues and tolerate
noises by doing approximate retrieval through the resonance
search. The model is also more tolerant to noises and errors
in memory cues than the LTM model.

D. Clustering Performance on Synthetic Sequence Data

In this section, we investigate the behavior of EM-ART in
clustering sequence patterns using synthetic data sets. Each
synthetic sequence data set consists of four groups of patterns,
generated from four seed patterns using a specific method and
distribution. The four seed patterns are denoted as “AJ,” “JA,”
“KT,” and “TK,” where “AJ” for example consists of letters
running to A to J in alphabetical order and “JA” consists
of letters running from J to A in reverse alphabetical order.
Among the four seed patterns, some patterns, for example
“AJ” and “JA,” have totally overlapping letters. However,
certain patterns, for example “AJ” and “TK,” do not share any
letter at all. We generate a total of four synthetic data sets.

Fig. 8. Performance comparison for retrieving with various error rates on
sequence representation.

The first two, called e10 and e25, are generated by toggling
letters in the sequences with 10% and 25% probability, respec-
tively, simulating errors in letter (event) recognition. The other
two, called s20 and s40, are generated by switching the order
of letter pairs in the sequences with 20% and 40% probability,
respectively. For each data set, EM-ART is tasked to discover
the groupings (clusters) under various vigilance settings.

The results as summarized in Table VI, show that, with a
strict vigilance of 1, EM-ART creates one cluster for each
distinct pattern. As the vigilance is relaxed, EM-ART starts
to group similar patterns into clusters. At the extreme case,
EM-ART groups all patterns into one cluster for vigilance
equal or below 0.5. Somewhere in the middle, with a vigilance
value of around 0.7, EM-ART is able to detect the original
four clusters, tolerating the cluster distributions in e10 and
e25. In comparison, EM-ART is significantly more robust
in tolerating the variations in letter (event) sequences. With
a fairly broad range of vigilance values from 0.8 to 0.95,
EM-ART is able to detect the original four clusters, tolerating
the cluster distributions in s20 and s40.

E. Analysis on Effects of Forgetting

Signals from environment are subject to noises. Through its
one-shot learning, EM-ART encodes all the incoming events
into its storage, regardless of the validity of the information.
To deal with this problem, a forgetting mechanism is applied
based on principles as follows: the noisy experiences are
typically subjected to continuous decaying of their memory
strength and eventually deleted from episodic memory due
to low reactivation frequency, while a consistently happening
experience tends to be preserved by high repetitions. In
this way, not only does forgetting help episodic memory to
maintain a manageable memory size in the long term, it
also enhances the robustness and reliability of the model’s
performance in a noisy environment.

In this section, we simulate four sets of noisy training data
as shown in Algorithm 6. In Algorithm 6, Setorig.ei refers to
the i th event within a dataset, Setorig, based on the temporal
sequence recorded. By setting r to 5, 10, 15, and 20, we
generate four noisy data sets, each with 77 350 events and
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Algorithm 6 Generation of Noisy Training Set

Input: Error rate r ∈ (0, 100), original data set Setorig, an
empty data set Set_r and the total number of events
(with duplication) n

Output: Data set Set_r
1 FOR i = 1 to n
2 Set_r.ei ← Setorig.ei

3 FOR j = 1 to 4
4 FOR k = 1 to n
5 Set_r.e j∗n+k ← Setorig.ek

6 FOR EACH attribute a in the event Set_r.e j∗n+k

7 SET rand = random number 1− 100
8 IF rand ≤ r , a′ = 1− a

TABLE VI

NUMBER OF CLUSTERS AT DIFFERENT ρs

ρs e10 e25 s20 s40 ρs e10 e25 s20 s40

1.00 126 296 76 117 0.70 4 4 3 3

0.95 54 135 4 4 0.65 3 3 3 3

0.90 27 53 4 4 0.60 3 3 3 3

0.85 14 21 4 4 0.55 2 2 2 2

0.80 8 13 4 4 0.50 1 1 1 1

0.75 4 6 3 3

1000 episodes. The generated data sets, respectively, contain-
ing 5%, 10%, 15%, and 20% errors on their event representa-
tion (and named, respectively, as Set_5, Set_10, Set_15, and
Set_20) are used to train the episodic memory models. We
then examine the performance of the trained models through
retrieval tests, subject to various partial and noisy cues. Again,
we measure the retrieval performance based on how many
actual episodes can be correctly retrieved in a trial using the
same type of cues. The performance is also compared with
the original EM-ART without the forgetting mechanism.

We set the initial confidence sinit = 0.5, decay factor
δs = 10−4, reinforcement rate rs = 0.5, strength threshold
ts = 0.1, and vigilance ρ = 0.5 for event learning, and
sinit = 0.5, decay factor δs = 0.008, reinforcement rate
rs = 0.5, strength threshold ts = 0.1, and vigilance ρ = 0.95
for episode learning. We train EM-ART for each generated
training data set with a different level of noise. The memory
size of the evaluated models is given in Table VII with
comparison to their corresponding models without forgetting.
From Table VII, we observe that as the error rate increases
from 5% toward 20%, the evaluated models without forgetting
have a larger number of event and episodes nodes by 66.7%
and 9.8%, respectively. The significant increase on the memory
size reflects the increased noises presented in the training sets.
On the other hand, the models with forgetting show a marginal
increase in their sizes due to continuous recognition of and
thus deletion of noisy patterns.

After the models are built, we conduct various retrieval tests
using noisy partial cues. Two exemplar sets of experimental
results are presented with the following retrieval cues: 1) 1/3
noisy sequences of actual episodes starting from the end and

TABLE VII

COMPARISON OF MODEL SIZES AT VARIOUS ERROR RATES

Data set Number
of events

Number of
events with
forgetting

Number of
episodes

Number of
episodes with

forgetting

Set_5 8635 7258 526 230

Set_10 10570 7809 570 231

Set_15 12505 8353 571 240

Set_20 14440 8907 578 241

2) 1/5 noisy sequences of actual episodes starting from the
end. The noises on these cues are generated from the same
set of actual experiences (i.e., Dorig) using Algorithm 4. The
performance for these retrieval tests is compared with their
counterparts without forgetting.

As shown in Figs. 9 and 10, forgetting helps episodic
memory to retrieve more episodes correctly despite the reduc-
tion in memory size. The only exception is on the models
built for Set_20, wherein retrieval with 1/5 length of the
noisy sequences shows the same performance with or without
forgetting. In general, longer cues provide a better perfor-
mance for retrieval. As more noises are introduced, the model
shows higher accuracies on retrieval both with or without
forgetting. The difference in performance caused by forgetting
also reduces as the error rate increases. This may be because
higher noises tend to generate more distinct erroneous training
samples and the original experiences can be retrieved more
accurately.

IX. RELATED WORK

Many prior systems model episodic memory as traces of
events and activities stored in a linear order, wherein some
operations are designed specifically to retrieve and modify the
memory to support specific tasks (e.g., [4], [27], and [28]).
These approaches are limited to encoding simple sequential
trace structure and may not be able to learn complex relations
between events and retrieve episodes with imperfect or noisy
cues. Although some models [4] have used statistical methods
to deal with imperfect and noisy cues, they consider memory
trace as a continuous series of events with no coherent rep-
resentation of chunks of episodes as units of experience. Our
proposed model addresses this issue by representing events
as multichannel activation patterns allowing retrieval based on
partial matching. Furthermore, the fusion ART fuzzy opera-
tions and the complement coding technique enable patterns to
be generalized, so that irrelevant attributes of an event can also
be suppressed through learning.

Another approach of episodic memory modeling uses the
tree structure of a general cognitive architecture to store
episodes instead of the linear trace (e.g., [5]). Each node in
the memory tree includes some temporal information about
its occurrence so that more complex representation can be
expressed and episodes can be retrieved based on partial
match. However, as it requires storage of every snapshot of
the working memory, the system may not be efficient due
to the possibly large storage of snapshots. In contrast, our
episodic memory model clusters both individual events and
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Fig. 9. Performance comparison for retrieving with 1/3 of episodes from
end.

Fig. 10. Performance comparison for retrieving with 1/5 of episodes from
end.

their sequential patterns based on similarities instead of hold-
ing all incoming information in a trace buffer. Our approach
thus allows more compact storage and efficient processing.

On the other hand, most neural network models of episodic
memory use associative networks that store relations between
attributes of events and episodes (e.g., [6] and [7]). Although,
they can handle partial and approximate matching of events
and episodes with complex relationships, the associative model
may still be limited in recalling information based on sequen-
tial cues. Some of the existing episodic memory models have
attempted to address these challenges, in particular episode
formation. Grossberg and Merrill combine ART neural net-
work with spectral timing encoding to model timed learning
in hippocampus [29]. Although, it can rapidly and stably learn
timed conditioned responses in delayed reinforcement learning
tasks, this model is only made specifically to handle learning
timed responses but not other aspects of episodic memory,
in particular, sequential ordering and multimodal association.
SMRITI encodes events as relational structures comprised
of role-entity bindings [8], without considering their spatio-
temporal relations. Our proposed model tackles these issues by
employing two levels of fusion ART. The first level deals with
repetition by growing separate categories, while the second
level clusters sequential patterns formed at the first level so that

various lengths of complex sequential patterns can be learned
at once. Our model thus is able to explore many possible
complex relations, such as event and episode clustering as
well as complex sequential learning. Another model called
TESMECOR [30] captures complex spatio-temporal patterns
and supports retrievals based on degraded cues. Using two
neural layers consisting of nearly complete horizontal connec-
tions, the model distributively captures events and episodes
without clustering. However, our approach offers modularity
and flexibility by employing two levels of clustering that may
be used by other systems.

X. CONCLUSION

We presented a new episodic memory model called
EM-ART, based on a class of self-organizing neural networks
known as fusion ART and the technique of invariance princi-
ple. Since EM-ART allows the memory to grow dynamically
by allocating a new category node for each new pattern,
EM-ART is able to encode and learn the episodes with variable
length.

We conducted empirical experimental evaluation on
EM-ART using a first-person shooting game, as well as a
word recognition benchmark test. The experimental results
showed that the model is able to provide a superior level of
performance in encoding and recalling events and episodes
even with various types of cue imperfections, including noisy
and/or partial patterns. Our experiments on the synthetic data
sets further revealed that EM-ART is especially robust in
tolerating the variations in event sequences. In comparison,
EM-ART does not generalize as well to noise at the event level.
Finally, the experiments conducted also indicate that forgetting
promotes an effective memory consolidation of its storage such
that crucial knowledge can be kept in the memory, while the
size of the stored information was regulated by discarding
trivial and noisy information.

This paper has focused on the learning and retrieval
functions within the episodic memory model. As discussed,
episodic memory requires interactions with other related cog-
nitive components to reveal its crucial roles. For example,
the experiences stored in episodic memory may indicate more
general knowledge in the form of a more permanent storage
as semantic memory chunks. This indicates the potential
of the co-evolving episodic-semantic model. Therefore, one
immediate extension of our work is to explore its interaction
with other memory systems, especially semantic memory.
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