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Entropy-Based Optimum Test Points Selection
for Analog Fault Dictionary Techniques

Janusz A. Starzyk, Senior Member, IEEE, Dong Liu, Zhi-Hong Liu, Dale E. Nelson, and Jerzy O. Rutkowski

Abstract—An efficient method to select an optimum set of test
points for dictionary techniques in analog fault diagnosis is pro-
posed. This is done by searching for the minimum of the entropy
index based on the available test points. First, the two-dimensional
integer-coded dictionary is constructed whose entries are measure-
ments associated with faults and test points. The problem of op-
timum test points selection is, thus, transformed to the selection
of the columns that isolate the rows of the dictionary. Then, the
likelihood for a column to be chosen based on the size of its am-
biguity set is evaluated using the minimum entropy index of test
points. Finally, the test point with the minimum entropy index is
selected to construct the optimum set of test points. The proposed
entropy-based method to select a local minimum set of test points
is polynomial bounded in computational cost. The comparison be-
tween the proposed method and other reported test points selec-
tion methods is carried out by statistical experiments. The results
indicate that the proposed method more efficiently and more accu-
rately finds the locally optimum set of test points and is practical
for large scale analog systems.

Index Terms—Analog fault diagnosis, fault dictionary, rough set,
test point.

I. INTRODUCTION

ESTABILITY of analog circuits has gained more at-

tention recently due to the rapid development in analog
VLSI chips, mixed-signal systems, and system-on-chip (SoC)
products. It is usually classified into two main categories [1],
[2]: simulation-before-test (SBT), including probabilistic and
fault dictionary techniques, and simulation-after-test (SAT),
including optimization, fault verification, and parameter identi-
fication techniques.

For analog systems with mostly catastrophic faults, fault dic-
tionary techniques are popular choice [3]. A fault dictionary is a
set of measurements of the circuit-under-test (CUT) simulated
under potentially faulty conditions (including fault-free case)
and organized before the test. The measurements could be at
different test nodes, test frequencies, and sampling times. In this
paper, all of them are defined as the test points. To construct a
fault dictionary, all potential faults are listed and the stimuli type
(dc, ac, or time domain), shape, frequency, and amplitude are se-
lected. The CUT is then simulated for the fault-free case and all
faulty cases. The signatures of the responses are stored and or-
ganized in the dictionary for use in the on-line fault diagnosis.
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Before testing, the optimum selection of test points is required
to achieve the desired degree of fault diagnosis and to maintain
a reasonable computational cost. At the testing stage, the same
stimuli as those used in constructing the dictionary are applied
to the faulty CUT. The measurement signatures at selected test
points are compared with those prestored in the dictionary to
match the fault(s) to one of predefined faults or to a set of faults
according to the preset criteria.

Fault dictionary techniques are usually used to diagnose the
open or short faults [3] with possible inclusion of the para-
metric fault diagnosis [4], [5]. Fault dictionary techniques have
the advantage of minimum on-line computation, but a signifi-
cant off-line computation needed to construct the database limits
their application. Optimum selection of test points is, therefore,
important to reduce the computation cost by reducing the di-
mensionality of the fault dictionary. Simultaneously, optimum
selection of test points reduces the test cost by eliminating re-
dundant measurements. The emphasis of this paper is on the
selection of an optimum set of test points. One straightforward
solution is to have an exhaustive search for such a set with min-
imum size to fully isolate the faults. As discussed in Section III,
the exhaustive search is proven to be NP-hard. Therefore, it is
not practical, considering the computation cost, while any poly-
nomial-bounded method cannot guarantee such a global min-
imum set. The tradeoff between the desired degree of fault di-
agnosis and computation cost is to select a local minimum set.

A heuristic method for test points selection based on the con-
cept of confidence levels was proposed by Varghese et al. [6]
with an expensive complexity of O(kfn(f + n)) [7] where f
is the number of faults, n is the total number of system nodes,
and k is the number of times to compute the confidence level.
Stenbakken and Souders [8] proposed a method using the QR
factorization of a system sensitivity matrix. The complexity is
primarily determined by the complexity of QR factorization
O(n?). Abderrahman et al. [9] used sequential quadratic pro-
gramming and constraint logic programming to generate test
sets. Lin and Elcherif [3] proposed two heuristic methods based
on two criteria proposed by Hochward and Bastian [10]. The
complexities are O(f?p?) [13] and O(f?p) [7], respectively,
where p is the number of examined test nodes. Spaandonk and
Kevenaar [11] looked for a set of test points by combining the
decomposition method of system sensitivity matrix and an iter-
ative algorithm. A set of test points whose size is equal to the
rank of system sensitivity matrix is selected randomly. Then, in
the iterative algorithm, they randomly exchange a test point in
the set with a randomly selected integer in order to compute D,
the determinant of covariance matrix. The new set is accepted if
it has a lower D than the previous set. Manetti et al. [12] wrote
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a computer program by PROLOG to automatically select a set
of test points for linear analog systems. The program was based
on a knowledge base constituted by some simple rules derived
from experience and heuristic reasoning. It was an example ap-
plication of expert system. All these methods are to find a local
minimum set with complexity which is polynomial bounded.
Prasad and Pinjala [7] proposed a polynomial-bounded method
with complexity of O( fp), but the selection of hashing function
needed is difficult for general test cases. Prasad and Babu [13]
proposed four algorithms based on three strategies for inclusive
approaches and three strategies for exclusive approaches. The
complexity is O(fplog f) or O(f(p+m)logf) where m is the
number of the final selected test points, hence it is also polyno-
mial bounded. Note that the so called “minimal set” in [13] is a
local minimum set.

Test points selection techniques can be classified into two
categories: inclusive and exclusive [13]. For the inclusive ap-
proaches, the desired optimum set of test points is initialized to
be null, then a new test point is added to it if needed. For the
exclusive approach, the desired optimum set is initialized to in-
clude all available test points. Then a test point will be deleted
if its exclusion does not degrade the degree of fault diagnosis.

In this paper, a polynomial-bounded method to select a
locally minimum set of test points is proposed and compared
with the other reported methods. In Section I, an integer-coded
dictionary is constructed and its relation with rough set theory
is summarized. Then, the proposed method is described in
Section III to isolate the dictionary rows with selected columns
by searching for the minimum entropy index of test points.
Section IV demonstrates the superiority in the computational
efficiency and solution quality of the proposed entropy-based
method by comparing it with the other reported methods based
on statistical computer simulations. Finally, brief conclusions
are given in Section V.

II. INTEGER-CODED DICTIONARY METHODS
IN VIEW OF ROUGH SET THEORY

A. Integer-Coded Dictionary

There is an important phenomenon which is commonly en-
countered and difficult to solve in analog testing and fault diag-
nosis: measurement ambiguity. Distinct faults may result in the
measurements whose values are close to each other. Therefore, it
is difficult to clearly recognize the specific fault. Such faults are
said to be in the same ambiguity set associated with a specific
measurement. The concept of an ambiguity set was first intro-
duced by Hochwald and Bastian [10]. It is defined as a list of
faults which fall in a distinguished band of measurement levels,
which could be determined by Monte Carlo simulation consid-
ering component tolerances, tester errors, and the optimum par-
tition methods. For the optimum test points set to distinguish the
ambiguity sets, the integer-coded dictionary was first proposed
by Lin and Elcherif [3] and subsequently researched by Prasad
and Babu [13]. This approach proved to be an effective tool for
the optimum test points selection.

The two-dimensional integer-coded dictionary [3], or
fault-wise table [13], is constructed as follows. Its rows rep-
resent all the potential faults (including fault-free case) while
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its columns represent all the available test points. For each
test point, different ambiguity sets are classified based on
computer simulation according to a preset criterion. A specific
integer code is then assigned to each ambiguity set. Thus, the
entries of the dictionary correspond to the simulated system
responses. Note that for a given test point, distinct ambiguity
sets have distinct integer codes. However, the same integer
code can be assigned to different ambiguity sets associated with
different test points, because each test point is an independent
measurement and ambiguity sets for the same test points are
independent.

Let F = {fo, f1,..., fr} be the set of all potential faults
to be diagnosed (including the fault-free case fo) and N =
{n1,na,...,n:} bethe set of all available test points where sub-
script f is the number of potential faults and ¢ is the number of
available test points. To define the concept of diagnosable cir-
cuit, let us associate the measurement equivalent classes which
are the elements of the dictionary A as follows:

?

Vi € F(0<i< f)andVn; € N(1<j<t)
3é(fi,nj) = asj € A.

where a;; is element of the dictionary A corresponding to the
sth fault and jth test point.

Definition 1: Let A; = {avj, a1j,a2j,...,a5;} C Abea
subset of dictionary A with a single test point n;. If for any pair
of elements (a,; € Aj,aq; € Aj,p # q), we have ap; # agj,
then the CUT is diagnosable by test point n ;.

It would be optimistic to expect the CUT to become diagnos-
able by using a single test point n ;. Usually, we could have dif-
ferent faults f, and f,(p # ¢) withidentical dictionary elements
ap; = aq; = 4, where i is the integer code. Under such condi-
tions, we claim that faults f, and f, belong to an ambiguity set
S associated with test point n; and integer code ¢ where ambi-
guity set S7 is defined as follows.

Definition 2:

S) = {fm € Flam; =i,0<m < f}.

An immediate proposition as a result of Definitions 1 and 2
is obtained.

Proposition 1: The CUT corresponding to the dictionary A
is diagnosable for a set of test points N; C N if and only if for
any pair of faults { f, € F, f, € F,p # q}, there always exists
n; € N; with a,; # ag;.

The integer-coded dictionary provides information about the
ambiguity sets for each test point. In view of analog fault diag-
nosis, the purpose of test points selection is to isolate the faults
by the minimum number of test points. In view of integer-coded
dictionary, the purpose is to distinguish rows by the minimum
number of columns. Hence, the integer-coded dictionary trans-
formed the problem of test points selection into the selection of
dictionary columns to isolate the rows.

B. Application of Rough Set Theory in Test Points Selection

As pointed out in Section I, one straightforward method
of test points selection is to have an exhaustive search. The
obtained global minimum set will help to check the solution
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accuracy of any polynomial-bounded method which only guar-
antees the local minimum set. Searching for a global minimum
can be implemented by algorithms in rough set theory. As an
efficient mathematical tool to represent the knowledge that can
be extracted from the database, rough set theory has widespread
applications from data mining and decision support to artificial
intelligence (AI), information systems, pattern recognition,
and neural networks. Fault dictionary techniques, or, speaking
precisely, optimum test points selection of these techniques
are based on pattern recognition methods [2]. Conceivably,
a number of available techniques in pattern recognition will
find their applications in test points selection. Rough set theory
is not an exception. For the purpose of optimum test points
selection, the features of rough set theory, such as knowledge
representation, knowledge reduction, and imprecise knowledge
capturing, are especially useful.

In order to make use of the rough set algorithms in test points
selection, some well-recognized concepts in rough set are de-
fined with equivalent concepts in testing. In view of rough set
theory, an ambiguity set corresponds to the equivalence class
[14] or the indiscernible set [15]. The ambiguity reduction of
the fault dictionary is equivalent to the computation of reducts
and cores [14], [15] and the optimum test points selection cor-
responds to simplification of the decision table [14]. Inclusive
approaches to test points selection produce discerns [16] and
exclusive approaches produce reducts [14], [15], which can be
explained as the set of test points to diagnose the faults in the
dictionary. The concept of core [14], [15] can be explained in
view of dictionary as the indispensable measurements to sepa-
rate the faults.

The integer-coded dictionary is a special case of the deci-
sion table [14], [15]. The faults in the dictionary correspond
to the decision attributes in the decision table, while the test
points correspond to the condition attributes. The faults have
to be uniquely separated so that we can explain the faults as the
decision attributes, which are essentially integer-coded equiva-
lence classes D = (0,1,...,7n)T and are implicit in the dictio-
nary. The superscript 1" denotes transpose of vector. Hence, the
integer-coded dictionary is a special case of the decision table
with one column matrix D where no two entries are the same.
Consequently, a number of algorithms developed for the simpli-
fication of decision table and computation of reducts and cores
in the rough set theory could be applied for the optimum selec-
tion of test points.

The concepts in the optimum selection of test points and their
analogues in rough set theory are listed in Table I.

Based on the rough set theory, searching for the global min-
imum set of test points can be implemented as the following pro-
cedure, which falls into exclusive category. The first thing is to
guarantee that there is no ambiguity in the dictionary A. If ambi-
guities occur, one or both rows must be removed. Then, the core
of the dictionary A is determined. Try to remove one column in
the dictionary. If ambiguities occur after removal, the removed
column is concluded to be a part of the core. Try one column at a
time until all columns have been checked. The core is obtained
by the set of all columns which produced ambiguities. These
measurement columns must be included in each reduct. Finally,
reducts are computed. The core is first checked to see if it is

TABLE 1
TERMINOLOGY USED IN OPTIMUM TEST POINTS
SELECTION AND ROUGH SET THEORY

Concepts in optimum selection Concepts in rough set theory

integer coded dictionary, decision table
or fault-wise table

inclusive approaches

algorithms of finding discerns

exclusive approaches algorithms of finding reducts

test points set reduct

equivalence class,
or indiscernible set

ambiguity set

selection of optimum test points computation of cores and reducts

a reduct. If it is, the core is concluded as the minimum reduct.
Otherwise, add all possible combinations of the remaining test
points to the core set and check for ambiguities. The set of test
points with minimum size without producing ambiguities is the
desired reduct with minimum size.

A computer program EXPANSION written with MATLAB
is based on the above procedure to search for the global min-
imum set [16]. The above proposed rough set-based method was
shown to be NP-hard in [17] and, therefore, is computationally
expensive. The unique aim of the above rough set-based proce-
dure is to find the exact size of the minimum test set for the pur-
pose of reference for the proposed entropy-based method and
other test points selection methods.

III. ENTROPY-BASED OPTIMUM TEST POINT SELECTION

It can be shown that the computation time to search for the
global minimum set of test points is not polynomial bounded
[3]. The search for a global minimum set can be implemented by
polynomial-bounded methods, but the global minimum cannot
be guaranteed. In view of a rough set theory, the search for a
global minimum corresponds to searching for a minimum size
reduct [14]. It was proven in [17] that finding a minimum size
reduct is NP-hard; hence, there is no polynomial-bounded algo-
rithm which can guarantee the minimum set of test points.

To efficiently achieve the desired degree of fault diagnosis,
an alternative solution is to search for a local minimum set of
test points. In this paper, an entropy index computation method,
which belongs to inclusive approaches, is proposed to efficiently
search for a test points set. The idea is similar to the work by
Hartmann et al. [18] in which an entropy-based method was de-
veloped to efficiently construct decision tree. The method devel-
oped in [18] deals only with attributes of Boolean logic and is
extended in our method to deal with attributes of integer codes.

The dominant idea of the proposed method is to evaluate the
probability for each fault to be separated in accordance with
the cardinality of each ambiguity set. Assume that there are k
nonoverlapping ambiguity sets for test points n;, and F! is the
number of faults in ambiguity set S associated with test point
n; and integer code 4. The probability of a fault being isolated
from the ambiguity set S? is approximated by F7 / f where f is
the number of all potential faults listed in the dictionary. Sup-
pose that the test points are independent with each other and
the possibility for each fault happening is equal; therefore, the
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entropy-based measure, or information content () for the spe-
cific test point n; is expressed by

. Fij,  Fij By By Frj .  Fij
I(5)=— <_110g_]+_]10g_]+...+_]10g_]>
R I R 7y

k k
log f 1
= Y Fij— <Y FjlogFy
L S
Lk
= log f — 7 > Fijlog Fy; (€]
i=1
where the entropy index E(j) is defined as
f
E(j) = ZFij log Fi;. @)
i=1

The physical explanation of () is the information used to be
captured from imprecise knowledge that test point n; contains.

Because the number of all faults in a given dictionary f is
constant, the information content I(j) for the specific test point
n; in (1) is maximized with the minimization of the entropy
index E(j). If a test point n; with the minimum value of E(j)
is added to the desired test point set [V, by inclusive approach,
this will guarantee the maximal increase of information in N
by the maximal decrease of the entropy index. Consequently,
this inclusive strategy guarantees that the maximal degree of
fault diagnosis is achieved at each stage of test point inclusive
selection.

The problem of searching for the appropriate test point for
Nopt at any stage of the test points selection algorithm by inclu-
sive approach is transformed to the problem of a linear search for
a minimum value of F(j), which can be easily and efficiently
implemented.

A generalized algorithm for the proposed entropy-based
method is given as follows.

Step 1) Initialize the desired optimum set of test points Nopt
as a null set. '

Calculate the number of faults in F! (1 <j<t)for
the ambiguity set S} and the test point n.
Calculate the entropy index E(j) by (2) for the test
point nj and search for the minimum value of E(j)
for each test point except for those already included
in Nopt-

Add test point n; corresponding to the minimum
value of E(j) to the desired optimum set Nop¢. The
test point n; will not be considered for future com-
putation of entropy indices.

If the minimum value of E(j) is zero or if the new
value of E(j) is the same as the previous E(j) for
all test points, then stop.

Partition the rows of the dictionary according to the
ambiguity sets of Nop and rearrange the dictionary
by removing the rows whose size is unit in their par-
titions. Go to Step 2).

Remark 1: In Step 6), if there are m ambiguity sets for the
resulting optimum set N, create m horizontal partitions of
the dictionary.

Remark 2: 1If there is only one row in a partition in Step 6),
the corresponding fault is concluded as uniquely isolated and

Step 2)

Step 3)

Step 4)

Step 5)

Step 6)
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should be removed from the dictionary. Thus, the size of ambi-
guity sets and the size of dictionary are gradually decreasing.

Remark 3: In Step 5), a maximum information increase to
the Nop¢ is guaranteed each time by adding the test point n;
with minimum value of E(j). Such an increase is a local max-
imal information increase at each stage of the algorithm. It is
not indicated that the combination of all selected test points in
Nopt will yield the maximum information. Global minimum set
of test points can only be implemented by searching for the min-
imum value of the system entropy indices for exhaustive combi-
nations of test points, which is expensive in computer resources
and simulation time. The proposed entropy-based method is an
appropriate candidate for an efficient selection technique of the
optimum test points.

Most of methods for the optimum selection of test points
reviewed in Section I [3], [6], [8]-[10] are not polynomial
bounded. Although the method in [7] is polynomial bounded,
it is not applicable for general cases. Among the polyno-
mial-bounded algorithms in [13], the most efficient algorithm
has the complexity of O(fplog f). The efficiency of the
proposed entropy-based method is better than all of these
methods because sorting is performed on ambiguity sets whose
size is gradually reducing. Suppose that a dictionary has f rows
and n columns. After the selection of one test point to Nopt,

we obtain & smaller subdictionaries with f1, fa,..., fx rows in
each dictionary and n — 1 columns where
k
S h<r 3)
i=1

Assuming that there are p test points totally examined during
the selection process, the complexity of the sorting algorithm
for the partition in Step 6) is

O (p(frlog (f1) + f2log (f2) +--- + frlog (fx)))
<O (p(frlog f+ falog f+ -+ fulog f))
<O(fplogf). 4)

Since the complexity of the proposed method is dominated by
the complexity of the sorting algorithm, the overall complexity
of the proposed method is less than the complexity of the best
algorithm in [13] O (fplog f).

A similar entropy-based method has been presented in [19]. It
exploits the concept of the information channel and minimiza-
tion of the information deficit. The algorithm starts with the
null set of test points. The channel inputs are circuit conditions
F = {fo, f1,.--, fr}. Ambiguity sets of the jth measurement
S; = {Sj1,S;2,...} are the outputs. In such a channel, misin-
formation is equal to zero, and, therefore, the obtained relative
information is equal to the output entropy (information content),
as given by (1). This concept leads to the identical entropy index
E(j) as given by (2), and the test point that gives the minimum
index is selected at each consecutive step.

IV. EXPERIMENTS

The work on optimum selection of test points based on in-
teger-coded dictionary by Prasad and Babu [13] is the latest
comparison with the other work reported in literature. There-
fore, three inclusive methods and one exclusive method pre-
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Fig. 1. Analog filter.

sented in [13] were selected in order to illustrate the compu-
tation efficiency and solution quality of the proposed entropy-
based method.

A. Experiment on the Example of Analog Filter

The experiment is carried out on the active filter with the nom-
inal parameter values as indicated in Fig. 1. This is the same ex-
ample as in [13]. The excitation signal is a 1-kHz, 4-V sinusoidal
wave. For simplification, 18 potential catastrophic faults are de-
fined, and all 11 nodes are assumed to be accessible for the pur-
pose of demonstration (this large number of test nodes seldom
occurs in practice). The filter is then simulated by SABER.
The integer-coded dictionary is constructed by procedures in-
troduced in Section I based on simulated circuit responses, and
is shown in Table II, which is also the same as Table I'in [13]. f
is the nominal case while f;-fig are open or short faults. Test
nodes n1-n1; are the test points for selection. The experiment
is programmed by MATLAB.

In Step 1) of the proposed entropy-based algorithm described
in Section I1I, the desired optimum set of test points Ny is ini-
tialized to be null. After calculating the size of each ambiguity
set in Step 2), the entropy index E(j) for each test node is cal-
culated in Step 3) and illustrated in Table III. Node n11 has the
minimum value of entropy index 6.6. Since the condition to stop
in Step 5) is not satisfied, node n1; is selected and added to the
desired optimum set and now Nopy = {n11}. Node nqq will
not be considered for the computation of entropy indices in the
remaining iterations of the algorithm. For node 711, nine ambi-
guity sets can be identified by Definition 2, as follows:

Sot ={(f2, fia) |az11 = ara11 = 0},

Sit ={(fo, f1s)|ao11 = a1sa1 = 1},

S ={(f4)las1r =2}, Si' = {(f17) larr.11 = 3},

Sil ={(f7, fu) laz11 = a11,11 = 4}, 5%1:{(,7%) |as,11=5},

5611 = {(f9) |a9,11 = 6}7

St ={(f1, f3, fs; fr0) lar,i1 = ag 1 = ag1 = aion1 = 7},

Sa' ={(fs: fr2 f13, f15, f16) lag 11 = a1211 = a1311
=a15,11 = a16,11 = 8}

According to Step 6), dictionary in Table II is partitioned into
nine subdictionaries determined by above nine ambiguity sets
of Nopt. The result of partition is shown in Table I'V.

TABLE 11
INTEGER-CODED DICTIONARY FOR ANALOG FILTER

=
=
=}
[
=3
@
=
>
=
O
=3
(=)}
=
Q
=]
o
=]
o

nl0 | n

—_

f10
f11
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17
18

3
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TABLE 1II
RESULTS OF ENTROPY INDICES FOR THE FIRST ITERATION

Test nodes ny n, | ng | ng ns | ng n, ng | ng | no | nyy

Entropy
Indexes E() 17.217.4|17.4|17.2|12.0(11.0|10.78.92]15.0| 20.9| 6.6

TABLE IV
PARTITIONED INTEGER-CODED DICTIONARY FOR THE FIRST ITERATION

B

n;

=
S
=
<
=
&
=
&
=
3
=
&
=
=7

Ny

f
fia
fo
fis
f
fi7
f;
f1)
fs
fo
fi
f;
fg
fio
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fia
fi3
fis
fis

w

—ls ufl B> )| > &
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By Remark 2, faults {f4, fi7, f5, fo} are concluded as
uniquely isolated by measurements on node n1; and the corre-
sponding rows, therefore, should be removed from Table IV.

Repeat computation of ambiguity set sizes and entropy in-
dices on the updated dictionary. After partition and row removal,
the resulting entropy indices are shown in Table V, in which
node ng has the minimum value of E(j), 3.61. Note that n1;
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TABLE V
RESULTS OF ENTROPY INDICES FOR THE SECOND ITERATION
Test nodes ny N, N3 ny Ns Ne n; Ng Ny N1
E""°pé(;')‘dexes 481|542|542|542|553]565|421|482]361]7.71
TABLE VI
PARTITIONED INTEGER-CODED DICTIONARY AFTER THE SECOND ITERATION
nll n9 nl n2 n3 n4d n5 n6 n7 n8 nl0
2 0 1 3 2 2 3 4 3 4 4 1
f14 0 1 3 2 2 3 3 3 4 4 1
f0 1 1 3 2 2 3 3 3 4 4 1
f18 1 0 3 2 2 3 3 3 4 4 0
f7 4 1 3 2 2 3 5 4 5 5 1
f11 4 1 3 2 2 3 3 3 4 2 1
f1 7 1 0 o 0 O o o0 o0 o0 1
f3 7 1 1 o 0 o O o0 0 o 1
8 7 1 3 2 2 3 0o 0 0 0 1
f10 7 1 3 2 2 3 2 0 0 0 1
6 8 1 0 0O 0 2 3 2 3 3 1
f12 8 5 3 2 2 3 3 2 0 8 1
f13 8 4 3 2 2 3 3 2 2 8 1
f15 8 2 3 2 2 3 3 3 4 4 1
f16 8§ 3 3 2 2 3 3 3 4 4 1
TABLE VII
RESULT OF ENTROPY INDICES FOR EACH ITERATION
Test nodes n n. N3 Ny Ns ng ny Ng Ng N | Nyq

Entropy Indexes| 17.3 [ 17.5 [ 17.5 [ 17.3[12.0] 11.1] 10.7[ 893 ][ 15.1 | 20.9 ] 6.62

E() 4.81]542]|542]542]553]|565]4.21[482]361]7.71] -
1.80 | 2.40 [ 2.40 [ 2.40 [1.43]3.01]3.01[301] - [3.61
0.00]0.60]0.60]060] -- Jo60]0.60]060] - [0.60

has already been excluded from the entropy index computa-
tion. Now, Nyt = {n11,n9}. There are ten ambiguity sets for
test points n1; and ng together. The dictionary is partitioned
according to these ten ambiguity sets as shown in Table VI.
Faults { fo, fis, f6, f12, f13, f15, f16} can be uniquely isolated
this time by Remark 2, and the corresponding rows should be re-
moved from Table VI. The similar procedures continue as those
outlined in the algorithm in Section III. The computed entropy
indices for each iteration are shown in Table VII. The test points
selected in each iteration are in bold. The algorithm stopped
when the minimum value of E(j) for ny is equal to zero which
satisfies the condition for stop. The resulting optimum set of test
nodes is {n11, ng, ns,n1 } which can fully isolate all the faults
f1-f1s in the given example.

As reported in [13], a set of nodes {n11,ng, n7,ns,ng,n1}
is found to be the final solution by using Algorithm 3 and In-
clusive Strategy 2 in [13]. Obviously, the result obtained by in-
clusive method 2 in [13] is not optimum since nodes n; and ng
are redundant. The computation time of the Algorithm 3 with
Inclusive Strategy 2 in [13] is only slightly longer that the time
required by our proposed algorithm. Using the Algorithm 4 and
the exclusive Strategy 5 in [13], the final solution is found to
consist of the set of nodes {n1,ns,n9,n11} which is the same
result as obtained by the proposed algorithm. However, the com-
putation time of the exclusive algorithm in [13] is much longer.
In addition, as it will be discussed in the following statistical ex-
periments, the possibility of finding global minimum set of test
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points is much lower using the inclusive or exclusive algorithms
in [13] than using the proposed entropy-based algorithm.

Except for computation efficiency and solution quality, an-
other advantage of the proposed method is that it will not in-
crease the ambiguities and complexity for the partially diagnos-
able system. Not all systems are fully diagnosable, especially for
today’s analog systems with the increasing die size, increasing
integration complexity, and reduced accessibility. If the set of all
the available test points, such as accessible test nodes, indepen-
dent test frequencies, or valid sampling times, only describes a
partially diagnosable system, the dictionary surely contains am-
biguity sets whose elements cannot be uniquely distinguished.
Under such conditions, the proposed method will reach an op-
timum subset of the set of all available test points without de-
grading the degree of system diagnosability. That is, the number
of ambiguity sets and their complexity in the optimum set of se-
lected test points stays the same as those in the set of all available
test points.

B. Statistical Experiments

As discussed in Section III, the global minimum set of test
points can only be guaranteed by an exhaustive search which is
computationally expensive. Any efficient polynomial-bounded
algorithm for test points selection only guarantees a local min-
imum solution. If no theoretical proof can be offered to demon-
strate a specific nonexhaustive algorithm’s optimality, such an
algorithm must be tested statistically on large number of fault
dictionaries in order to conclude its computation efficiency and
qualities of the generated results.

Such statistical experiments were carried out on the randomly
computer-generated integer-coded dictionaries by using the
proposed entropy-based algorithm, three inclusive algorithms,
and one exclusive algorithm in [13], respectively. Simulta-
neously, the exhaustive search algorithm based on rough set
theory, as described in Section II, was also used here to provide
a reference to the experimented algorithms. All the simulations
are done by using MATLAB codes. Totally, there are 200
randomly computer-generated integer-coded dictionaries, and
every dictionary includes 100 simulated faults, 30 test points,
and five ambiguity sets per test point. These 200 dictionaries are
first analyzed by the exhaustive search algorithm EXPANSION
which generates all reducts of a given information system
[16]. Minimum size reduct which corresponds to the global
minimum set of test points is found by EXPANSION for each
dictionary. The size of global minimum reduct is found to be 5
for all 200 cases. The same dictionaries are analyzed by using
the proposed entropy-based method as well as three inclusive
methods and one exclusive method in [13], respectively. The
obtained statistical results concerning the solution accuracy are
shown in Table VIII.

The conclusion from Table VIII is that the proposed method
has significantly better quality in finding near-minimum solu-
tion. The global minimum sets of test points (size is 5) found by
the proposed method were found in 35.5% of all the simulated
cases, while the global minimum sets were found by the other
algorithms in only between 0% and 1.5% of all simulated cases.
Thus, the proposed entropy-based method has much higher pos-
sibility to find the global minimum set. Additionally, the pro-
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TABLE VIII
STATISTICAL RESULTS OF THE SOLUTION ACCURACY

Percentage of the optimum sets with a specific size
found by a specific method
Size of the | EXPANSION | Proposed Exclusive Inclusive Inclusive Inclusive
optimum sets Method Method Method 1 Method 2 Method 3
found
5 100 35.5 1.5 0 0.5 0.5
6 0 64.5 74.0 16.5 30.0 29.0
7 0 0 24.5 47.0 49.5 50.0
8 0 0 0 32.5 17.5 19.0
9 0 0 0 4.0 2.5 1.5
TABLE IX achieve the desired degree of fault diagnosis. Based on the
COMPUTATION TIME PER DICTIONARY integer-coded dictionary, an efficient method which finds a
Proposed|  Exclusive]  Inclusive]  Inclusive]  Inclusive ~ minimum test set is proposed in this paper. This method finds
Method Method Method 1 Method 2 Method 3 i : : :
O T 509 02 55 500 the minimum tgst set by using the entropy index of test pon?ts.
(seconds) Its complexity is proven to be less than O(fplog f). Carried

posed algorithm found 100% of the optimum sets of test points
whose sizes are at most larger by 1 (size is 5 or 6) than the exact
solution (size is 5). For the exclusive algorithm, 24.5% of the
simulated cases are found to have the near-minimum sets whose
sizes are larger by 2 (size is 7) than the exact solution. All the
three inclusive algorithms are even worse, since about 70% or
more of the simulated cases have the near-minimum sets of test
points whose sizes are larger at least by 2 (size is 7, 8, or 9) than
the exact solution.

Tested on a Pentium 586 PC with MATLAB 5.2, the average
execution time per dictionary for the experimented algorithms
is shown in Table IX. The conclusion is that the proposed algo-
rithm is more computationally efficient since it took the shortest
time (average 16.4 s) to finish one run on a single dictionary.

The scope and applicability of the proposed algorithm is
also explored by comparing it with the exhaustive search
algorithm. The relationship between the computation time and
system complexity for the exhaustive search algorithm can be
seen in [16, Fig. 1]. Computation time is proportional to the
number of potential faults (number of signals in [16, Fig. 1])
and the number of available test points (number of attributes in
[16, Fig. 1]). In addition, the larger the number of ambiguity
sets per test point, the shorter the computation time of the
exhaustive search algorithm. Therefore, the exhaustive search
algorithm is limited to small or medium size analog systems.
For large or medium systems, such as the dictionaries with
more than 40 faults and more than 40 test points ([16, Fig. 1]),
the exhaustive search is impractical. Therefore, the significance
of the proposed entropy-based method is that it offers a test
points selection method with high quality for large and medium
size systems within a reasonable computational cost.

V. CONCLUSION

Optimum selection of test points is the most important stage
in analog fault dictionary techniques. The global minimum
solution is only guaranteed by exhaustive search which is
NP-hard and, thus, is impractical for medium or large systems.
The local minimum set is, therefore, the tradeoff to efficiently

out on the same trademark circuit, it shows better solution
quality and higher computational efficiency than the other
recently reported methods. Since no theoretical proof of quality
can be given to the proposed method, statistical experiments are
utilized for its evaluation. The simulated results demonstrate
that the method is superior to other methods in its computa-
tional efficiency and quality of final solution; therefore, it is a
good candidate for testing large scale systems.
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