
298 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

Dynamic Probability Estimator for Machine Learning
Janusz A. Starzyk, Senior Member, IEEE, and Feng Wang

Abstract—An efficient algorithm for dynamic estimation of
probabilities without division on unlimited number of input data
is presented. The method estimates probabilities of the sampled
data from the raw sample count, while keeping the total count
value constant. Accuracy of the estimate depends on the counter
size, rather than on the total number of data points. Estimator
follows variations of the incoming data probability within a fixed
window size, without explicit implementation of the windowing
technique. Total design area is very small and all probabilities
are estimated concurrently. Dynamic probability estimator was
implemented using a programmable gate array from Xilinx. The
performance of this implementation is evaluated in terms of the
area efficiency and execution time. This method is suitable for the
highly integrated design of artificial neural networks where a large
number of dynamic probability estimators can work concurrently.

Index Terms—Classification, entropy, machine learning, neural
network hardware, probability estimator.

I. INTRODUCTION

HARDWARE implementation of neural networks and
learning machines gains popularity as integrated circuits

are now being fabricated in deep submicron technologies and
access to powerful programmable devices like FPGAs [1]–[3],
facilitates design of complex systems. Machines use different
measures to estimate the quality of learning and the ability of
extracted features to solve a given classification task [4]–[6].
For instance, statistical learning uses information theory to de-
termine the entropy of the training data and apply it to estimate
the quality of learning [7]–[9]. This, in turn, requires estimation
of probabilities based on the training data [8]–[10]. Probability
estimates are critical for fining such useful learning measures
as classic Kullback-Leibler information number and log-like-
lihood [11]. In addition, other machine learning methods like
kernel based clustering [12], independent component analysis
[13], [14], a-posteriori parameter estimation [15], blind signal
separation [16], [17], and activation function neurons [18]
benefit from probability estimation of training data.

Proportions may be used to provide such estimates, and con-
fidence intervals, which depend on the size of the training data
set, determine the estimation accuracy [5], [19]. Learning ma-
chines, like neural networks, use many computing processing
units working in parallel [3], [20]. In such machines, propor-
tions must be estimated using simple architecture to save the
machine cost and increase the integration level.

In general, calculating proportion requires a counter and a di-
vider. While counters have relatively simple hardware, dividers
are complex and may be too slow for real time calculations. For

Manuscript received April 15, 2003; revised October 23, 2003.
The authors are with the School of Electrical Engineering and Computer Sci-

ence, Ohio University, Athens, OH 45701 USA (e-mail: Starzyk@bobcat.ent.
ohiou.edu).

Digital Object Identifier 10.1109/TNN.2004.824254

instance a single 8-bit divider requires 61 LUTs and eight clock
cycles to divide [21]. Another problem is the limited size of
counters, which limits the maximum number of data that can
be used for training. On-line machine learning must accept any
number of training data, therefore no specific preset counter size
can satisfy all possible applications. Finally, if learning is orga-
nized within dynamically changing environment, when propor-
tions vary with time, an approach is needed to have a dynamic
estimation of probabilities. While this could be accomplished
using a walking window approach, its implementation would
require dynamical storage of the counter values in the memory
with size proportional to the window size. This, in turn, would
require additional hardware resources. This paper presents a
method and its hardware implementation to estimate probabil-
ities in open learning environment, where no specified limits
exist on the amount of the training data. No divider is required
and probabilities can be adjusted dynamically.

II. ESTIMATING PROBABILITIES

Let us first consider a stationary case, when the estimated
probabilities are constant. Let us assume a fixed number of
classes with probabilities and assume that

(1)

These probabilities can be estimated by proportions

(2)

where, are counts for individual classes and is the total
count. Assuming that the training data are uncorrelated, and that
they are presented sequentially one at a time, the proportions
will converge to probabilities with the confidence intervals that
depend on the number of training data. In simple arithmetic units
with a finite size counters (for instance 8 bits), there is a problem
of counter overflow.

To address this problem, let us first analyze the case when the
total sum reached its maximum count and any in-
crease would cause an overflow. If this happens, simply divide
the total count and count of all classes by 2 and con-
tinue counting. Each time the overflow occurs, is reduced
to and the count continues until the next overflow con-
dition. We define the observation period between two successive
overflows as the overflow interval.

Division by 2 is very easy in hardware and this operation
would correctly estimate proportions with the confidence
interval depending on the maximum count of the total
counter. This method introduces a small random error if the
fractional part is truncated, however, unlike in the random walk,

1045-9227/04$20.00 © 2004 IEEE

STARZYK AND WANG: DPE FOR MACHINE LEARNING 299

this error does not accumulate, since the sum and the error are
divided by 2 at each overflow.

To prove this assertion let us consider the effect of a single
such division step on the accuracy of the estimated proportion.
After division by 2, the count for each class is replaced by

and the total count is replaced by
where and are the class and total count before

the overflow and and are the class and total count
after the overflow. Using these values the class probabilities are
estimated from

(3)

where and are the truncated values obtained from
and after division by 2 (in hardware obtained by using

right shift by 1 bit). Truncation errors and are equal to
0 or 1, depending on the least significant bit of and ,
respectively. Notice that and

.
After a new total value reaches a new overflow interval

begins, all previously counted values are divided by 2, and new
probabilities are estimated from

(4)

where and are the truncated values obtained from
and after division by 2. In addition, we have

and
.

In general, after steps of such process (i.e., in the -th
overflow interval) class probabilities are estimated from the fol-
lowing:

(5)

where and are the truncated values ob-
tained from and after right shift by bits.
Notice, that since each and each ,
then the error series in the numerator and denominator have an
upper bound of a geometrical series , so both
error terms are limited by 1.

Lemma 1: Errors in probability estimation due to the
rounding of division in the described procedure do not accu-
mulate when counting continues over many overflow intervals.
Errors to the estimated values and in (5) have an upper
bound of 1.

Proof: So far, we assumed that r.h.s. expression in (5) in-
deed approximates the probability of each class data. To prove

Lemma 1 let us analyze the case of each class having a spec-
ified fixed probability value . Since each represents
its corresponding class count and represents the total
count added after the last overflow, then their individual rates
also approximate class probabilities .
Using this we can now estimate the following expression:

(6)

where and .
Consider the error term in (6)

(7)

Since , then . The class
probability estimation has the largest error when probabilities
are close to , but these (and lower) probabilities cannot
be reliably estimated using a counter with the maximum count

, since their confidence intervals are large, as discussed in
Section II-B.

In addition, the method effectively implements a windowing
approach, since the most recent data probability affects the es-
timated proportions the most, and the historical data loses its
importance exponentially with the number of overflows.

Lemma 2: The importance of historical data as expressed by
their estimate of a class probability is exponentially reduced
with each overflow.

Proof: Consider the estimate of a class proba-
bility expressed by (6) and replace each using

, where is th class probability
estimated using count in overflow interval. Assume,
without loosing any generality that all .
Then

(8)

Since the historical data correspond to samples collected in ear-
lier overflow intervals, they have larger values. Their proba-
bilities are weighted lower as they are multiplied by in
(8).

The effective discounting of earlier samples allows for adjust-
ment of probability estimates in case the individual class prob-
ability changes over time. However, unlike the sliding window

300 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

approach, where discounting of historical data is binary, in this
algorithm, a group of historical data receives exponentially de-
clining weight, until their weight is truncated to zero after
overflow intervals, where is the number of bits in the counter
used. The window obtained is also a sliding window, although
each time the window slides by data points and keeps
exponentially declining weight of the past data. We define this
kind of windowing a soft window.

One problem with this approach is a need of divider to deter-
mine proportions. However, when the total count is constant and
equals to division is not necessary, as each count rep-
resents the fractional part of the corresponding proportion. The
following algorithm accomplishes the task of keeping the total
count near , while adjusting individual counts according to
the current estimate of their proportions.

A. Basic Dynamic Probability Estimator Algorithm (BDPE)

In the following BDPE algorithm, class probabilities are
estimated as . Therefore, with set as a power of
2, no division is required.

1) Set the class count and the cumulative sums of all the
classes to zero, , for ;

2) For a training data determine the class to which this
data belongs;

3) Increase the class count by one;
4) Increase the cumulative sums of all the classes

, ;
5) For all the classes, if set

and reduce the corresponding count by one;
6) If no more training data, stop, else go to 2.

Some insight into the working of this algorithm may be gained
by understanding the meaning of the cumulative sums of all the
classes’ and their role in adjusting the sample count for each
class. The major idea behind this algorithm is to keep the total
sum .

Let us first prove numerical stability of the algorithm.
Lemma 3: BDPE algorithm employs a self correcting mech-

anism for each class count producing a steady state in which

where (9)

Proof: Suppose that in contradiction to Lemma 3, is
consistently greater than , , , where
is an iterative step of the algorithm. The algorithm adjusts the
sample count of each class by after iterative steps when
the cumulative sum for this class reaches

(10)
from which we have

Let us consider the expected value of an adjustment made to
a sample count by this algorithm after iterative steps. Since
the algorithm reduces by 1 after iterative steps, then the
expected reduction is

(11)

Fig. 1. Total count values in a steady state for 8-bit counters.

while the expected increase in the class count resulting from its
frequency of occurrence is . So, the expected new
value of the sample count is in general smaller than the old value
as

(12)

In a similar way we can observe that the opposite adjustment
happens when is consistently smaller than , thus the algo-
rithm keeps each sample stable and its value oscillates around

It is easy to show that the total count is kept near as
.

As illustrated in Fig. 1, this algorithm produces stable total
sum, which allows us to use the individual class counts as pro-
portions without division. Notice that this total count was never
set or checked by the algorithm explicitly.

Total count values presented in Fig. 1 are shown as a function
of the sample index when the sample index significantly exceeds
the maximum count value set to 256 in this example (for
8-bit counters). The following example illustrates the use of the
BDPE algorithm.

Example 1: Fig. 2 shows the result of an example simu-
lation of the BDPE algorithm to estimate class probabilities
in a four-class problem. In this example the maximum count

was set to 256 which corresponds to an 8 bit counter. The
training sample index was set to 2000, well beyond the max-
imum counter size. In this example data points from four classes
were generated with class probabilities set to 0.1, 0.2, 0.5, and
0.2 respectively. Fig. 3 shows the corresponding counts of each
class counter as a function of training sample index.

The jitter in the total count values observed in Fig. 1 is related
to the mechanism of adjusting the individual classes count in
the BDPE algorithm. In general, a class probability in any over-
flow interval is not a rational number and can be expressed by

(13)

where is integer.

STARZYK AND WANG: DPE FOR MACHINE LEARNING 301

Fig. 2. Probabilities estimated from proportions.

Fig. 3. Counter values n for all classes and the total count n .

For instance, if is used to calculate the cumulative sum
instead of , the cumulative sum is overestimated, and
according to Lemma 3, it will be adjusted downwards. These
adjustments cause a small integer noise in the total count value.
This noise increases slightly when the number of classes under
observation is larger, due to the increased probability that two
or more classes will have they count simultaneously overesti-
mated or underestimated. This is illustrated in Fig. 4, where total
count is displayed as a function of the sample index for eight
and 12 classes respectively. These results were obtained with
the counter size of 10 bits.

Under the assumption that individual class errors are statisti-
cally independent, we can estimate an error of total count by

(14)

Fig. 4. Total count values for different number of classes.

Fig. 5. Standard deviation of the total count for various counter size and
number of classes.

This is illustrated in Fig. 5, where standard deviation of the
total count is shown as a function of the class number and the

302 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

Fig. 6. Class probabilities estimated by 10-bit counters.

counter size. Notice that the absolute value of the total count
error does not depend on the counter size. This square root de-
pendence of the standard deviation of the total count from
is a confirmation that individual class errors are statistically
independent.

In all cases the increase in the counter size improves the res-
olution of the process, as the total count remains stable and the
confidence intervals are smaller as discussed in Section II-C.

B. Probability Adjustments in BDPE

The developed method of estimating proportions satisfies
adaptability requirement by discounting the historical data
with the soft window approach. This means that the probability
estimation follows the changes in a probability value. This is
illustrated in the following example:

Example 2: Fig. 6 shows simulation results in which
probabilities of classes 1,2, and 3 were changing linearly from
0.1–0.3, from 0.2–0.1, and from 0.5–0.4, respectively and
class 4 probability was set to 0.2. As we can see, probability
estimates follows the changes in the probability values. These
results were obtained with 40 000 training data and 10-bit
counters.

However, the changes of probability values are fully imple-
mented only after the soft window moves to the new sample
location. This means that in the transition period, probabilities
reflect walking average values between old and new probability
estimates.

This is illustrated in Fig. 7, where after 20 000 samples, prob-
abilities of classes 1,2, and 3 changed abruptly from 0.1, 0.2, and
0.5 to 0.3, 0.1, and 0.4, respectively.

As we can see, the probabilities were fully adjusted to the new
values after about 3000 samples that correspond to three times

for this counter size.

C. Confidence Interval

An important practical problem is the estimation of the con-
fidence interval that sets limits for a probability calculated from

Fig. 7. Class probabilities with an abrupt change estimated by 10 bit counters.

proportion with a set degree of statistical confidence in the re-
sult. Many methods to estimate this interval exists in the liter-
ature from a classical Wilson interval [22], through Clopper-
Pearson equal tail binomial test [23], arcsine interval introduced
by Bickel [24], logit transform described by Stone [25], with
modifications by Cox [26] and Sunter [27], the likelelihood ratio
interval by Rao [28], to a simple and stable Agresti-Coull in-
terval [29]. A recent paper by Brown et al. [30] clarifies some
of the misunderstandings in the confidence interval estimation,
pointing out a chaotic coverage properties of the standard and
widely used Wald confidence interval [29].

We compare accuracy of the results obtained in our work
against the Agresti-Coull interval, which is recommended in
[30] for the number of samples larger than 40, as relatively
simple to compute, and preferable over the standard Wald in-
terval, even for the small sample size (see also [31]). For

statistical confidence the upper and lower limits of the
confidence intervals using the method of Agresti and Coull are
given by

(15)

(16)

where is the probability of an individual class estimated from
proportion, is the number of samples, and denotes the
variant value from the standard normal distribution such that the
area to the right of the value is . For instance, is 1.645
in case of 95% confidence interval. The limitation of these two
expressions is not critical for our application, since the sample
size in this algorithm is at least 256 (which corresponds to 8-bit
counters).

Confidence intervals shrink with the increase in the number
of samples. Fig. 8 shows the upper and the lower limit of 95%
confidence interval (and) for

STARZYK AND WANG: DPE FOR MACHINE LEARNING 303

Fig. 8. Limits of the confidence intervals for p = 0:2.

as a function of the logarithm of the sample number (number
of the counter bits).

Fig. 9 shows the size of the 95% confidence interval (com-
puted as a difference between the upper and the lower limit de-
viation from the estimated probability) for selected probability
values as a function of the logarithm of the sample number.

Accuracy of the probability estimates in the proposed algo-
rithm is limited by the precision of the counters used. For in-
stance, in Example 1, we used 8-bit precision, so the size of the
confidence interval is set by the maximum count (256) rather
than the number of samples used (2000). According to the esti-
mates from Fig. 9, with probability set to 0.2 and 256 samples,
we can expect the accuracy of estimate to stay within .
This accuracy was attained by estimates shown in Fig. 2.

However, if the same data was used to estimate probabilities
with 12-bits counter, then the probability estimates were much
closer to the specified values as shown on Fig. 10.

Probability estimate accuracy further increases as the counter
size grows as is shown in Fig. 11, where probability estimates of
classes 2 and 4 are shown for the counter of 16 bits. As we can
see, they are estimated with the relative error of which
is within the limits of the confidence interval for sample size
(see Fig. 8).

For smaller number of samples, probability estimates are
within the limits of the confidence interval evaluated from

(15) and (16). The full precision of the proposed algorithm
is reached only after the total number of samples received
reaches . Once this limit is reached, the precision does not
increase with additional samples received.

III. DEALING WITH INITIAL CONDITIONS

As can be observed on Fig. 3, until the total sum reaches
its maximum value, individual counts do not represent proba-
bilities, and during this phase division by is required to
estimate the probabilities. To alleviate this problem, we mod-
ified the DBPE algorithm. The idea behind this modification is
to dynamically adjust the individual class counts such that

can reach sooner than in DBPE algo-
rithm. Therefore, in steps 3. and 5. of the probability estimation
algorithm we will increment and decrement by instead of
1. Initially, is set to , and gradually (with the increase
of the sample index) it is reduced to 1. It is equivalent to as-
signing the corresponding class probability to 1 after the first
observed sample. Then, if two samples are observed from two
different classes, each class probability is reduced to 1/2, with
four samples observed, probabilities are assigned based on the
samples distribution, and the adjustment of each probability is
by 1/4, and so on. As the number of samples grows, adjustments
of probabilities expressed by changes in the value of become
finer and finer by using smaller increment counter , until
reaches the final value of 1. The changes of are by the powers
of 2 to avoid division. The resulting algorithm is as follows:

A. DPE Algorithm

1) Set the class count and the initial cumulative sums of all
the classes to zero , for , and
set the counter increment to , set the deceleration
index to 1, set the deceleration counter to 1;

2) For a training data determine the class to which this
data belongs;

3) Increase the class count by ;
4) Increase the cumulative sums of all the classes by

, ;
5) For all the classes, if set

and reduce the corresponding class count by ;
6) If the deceleration counter equals to the deceleration

index, set , ;
7) If no more training data, stop, else increase the decelera-

tion counter by 1 and go to 2.
In this algorithm, the deceleration index specifies how many

samples need to be received before the counter increment is di-
vided by 2 (to refine the probability adjustment step), and the
deceleration counter counts how many samples elapsed since
the last adjustment. Notice that when reaches 1, then DPE al-
gorithm continues the same way as BDPE algorithm. In the DPE
algorithm all divisions are divisions by a power of 2, so they can
be easily implemented by a binary shift. Results of this new al-
gorithm are shown on Fig. 12, which shows the corresponding
counts of each class counter as a function of the training sample
index for 8-bit counters.

Like the original method, this algorithm produces a stable
total sum (shown in Fig. 13), which allows us to use the indi-

304 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

Fig. 9. 95% confidence intervals for different probabilities.

Fig. 10. Class probabilities estimated by 12-bit counters.

Fig. 11. Class probabilities estimated by 16-bit counters.

Fig. 12. Counter values n for all classes and the total count n for 8-bit
counters.

Fig. 13. Total count values in a steady state for 8-bit counters.

STARZYK AND WANG: DPE FOR MACHINE LEARNING 305

Fig. 14. DPE in a serial structure.

vidual class counts as proportions without division. However,
unlike in the original method this stable total sum is reached
much earlier.

IV. HARDWARE FOR DPE

Computing speed and design area is of a great concern in
this implementation of the DPE. The proposed structure con-
sists of two main parts: the process controller and probabilities
estimator (PE). The process controller controls the data flow of
the PEs; the PE classifies the input data and estimates probabil-
ities of the corresponding class. The input data class is coded by

bit binary code, such that maximum of class probabilities
can be estimated. The number of the PE’s is in proportion to the
number of classes.

A simple sequential DPE with training data
coded as 2-dimensional input , and outputs

that estimate probabilities of the
four classes coded by the input code , is shown in Fig. 14.
Many classification problems involve high dimensional inputs
and a large number of classes [32]. This structure can be easily
expanded to -dimensional input codes that can be used to
classify classes. The training data enter the DPE at the rising
edge of the sample clock signal, Sample_CLK. The sample
clock cycle is defined as the time needed by the DPE to com-
plete its calculations. CLK is the global clock which determines
speed of the circuit operation. Eight-bit class probabilities are
calculated and output serially from this module at the falling
edge of a data valid signal.

In this serial structure, each DPE consists of two RAM based
shift registers and one 1 bit full adder. These two shift registers,
store the cumulative sums and individual class counts . The
class counts change with the input data accumulation at var-
ious time instances. To update the values of all counters in one
sample cycle, two processes are executed. The first process in-
creases cumulative sums of all classes

(17)

and stores them by shifting the output of one bit adder back
to . If this operation causes the adder to overflow, the Over-
flow flag is set to 1, otherwise . A binary signal
Class_index is set to 1 when input data represents given class
(e.g.,), which is detected by the Class_index
decoder in Fig. 14, otherwise . The second
process calculates as follows [see (18) at the bottom of the
page]. where . replaces defined in DPE algorithm
and is initialized to , since the maximum value of eight
bits register is 255. is divided by 2 when deceleration counter

overflows. The deceleration counter is initialized to ,
increases by 1 every sample cycle, and is reloaded with the in-
verse of when it overflows. Process control signal CEACC
is set in the first process and is cleared during the second one.
The count is output in a serial format, and the falling edge
of data_valid signal indicates validation of the count signal. At
that point, all estimated probabilities can be read concurrently
from the corresponding outputs.

when
when

(18)

306 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

Fig. 15. Simulation results produced by the test bench.

Fig. 16. Error introduced by DPE in hardware for 8-bit counters.

Functional verification and simulation were performed in
Modelsim. Fig. 15 shows a snapshot of the waveform produced
by the test bench counter_tb. The input vectors, and , were
generated in Matlab.

Since eight-bit raw count value is used to approximate the
probabilities, those approximations introduce errors in this im-
plementation. The error induced by DPE in hardware is shown
in Fig. 16. This figure shows the difference between simulated
result obtained from Matlab and the hardware results. The max-
imum deviation is about 0.1% after 256 points, when enough
training data have entered the DPE. In addition, the probabili-
ties generated by the DPE in hardware meet the 95% confidence
interval limits given by (15) and (16), as shown in Fig. 17.

A. Discussion of the Hardware Cost and Performance

The design was implemented on a Xilinx Virtex FPGA
(XCV1000, speed grade -4). Fig. 18 shows the area required
for the probability estimator’s implementation with different
number of classes incorporated in the design. The area cost is in
proportion to the number of classes for probability estimation.
Each class occupies from 26/4 slices to 98/32 slices, when the
number of classes increases from 4 to 32.

Other straightforward methods to estimate probabilities from
proportions may be used, such as the floating point accumula-
tion and division. This alternative method requires both floating-
point divider and adder, which come at a significant increase in
the area comparing to the proposed approach. A single 32 bits

Fig. 17. Probabilities output from the DPE in the hardware for 8-bit counters.

Fig. 18. Implementation results with different number of classes in terms of
slices.

floating point divider implemented on Xilinx Virtex chip costs
1632 slices, which is five hundred times of the area of DPE, at
the performance of 44 MHz [33]. Also the floating-point adder
requires 590 slices with its implementation on Virtex chip at the
performance of 46 MHz [34]. Implementing many such floating
point devices for the concurrent operation of processing compo-
nents would be prohibitively expensive.

Two parts of the logic, the process control logic, and the PE,
contribute to the area cost of the design. Since the process con-
trol logic can be shared by all counts, the cost of each probability
calculation unit decreases as the number of classes increases.
The area of PE is nearly fixed. It only changes when for a large
number of classes the dimensionality of the input data (number
of bits of the class input code on Fig. 14), exceeds the maximum
number of inputs of one LUT. This would require some increase
in the design area. Combining all these factors, the area cost as a
function of the number of classes is as illustrated in the Fig. 19.
This area decreases with the increase of the class number. From
this figure we can estimate the area increase per one class to be
on the level of three slices in a Xilinx Virtex FPGA.

The timing performance of the DPE is also acceptable. It only
needs 20 cycles from the rising edge of the sample clock to

STARZYK AND WANG: DPE FOR MACHINE LEARNING 307

Fig. 19. Area of each DPE as a function of the class number.

Fig. 20. Timing diagram from the initial condition.

the output of all the probabilities. The critical data path of the
design extends from the inputs and to the output of the last
bit of each probability value. The largest portion of this delay
occurs in the two additions. Their delay is about 232 nsec. The
timing diagram of DPE including the initial condition is shown
in Fig. 20. The obtained waveforms correspond to the simulation
results.

V. CONCLUSION

This paper presents design and analysis of a DPE. The de-
signed circuit uses a minimum hardware area (about three slices
per class) to concurrently estimate class probabilities on an un-
limited number of input data without division. The probabili-
ties are estimated without division, which significantly reduces
hardware requirements and the processing time. Class probabil-
ities are estimated dynamically with 20 clock cycles per each
update. This circuit is suitable for massively parallel computa-
tions required in on-line machine learning and in implementa-
tion of artificial neural networks.

REFERENCES

[1] N. Izeboudjen, A. Farah, S. Titri, and H. Boumeridja, “Digital imple-
mentation of artificial neural networks: From VHDL description to
FPGA implementation,” in Proc. Int. Work-Conf. Artificial and Natural
Neural Networks, IWANN’99, vol. 2, June 1999, pp. 139–148.

[2] J. Waldemark, M. Millberg, T. Lindblad, K. Valdemark, and V. Be-
canovic, “Implementation of a pulse coupled neural network in FPGA,”
Int. J. Neural Syst., vol. 10, pp. 171–177, June 2000.

[3] J. G. Elredge and B. L. Hutchings, “RRANN: A hardware implementa-
tion of the backpropagation algorithm using reconfigurable FPGAS,” in
Proc. IEEE Int. Conf. Neural Networks, June 1994, pp. 77–80.

[4] S. Kumar, J. Ghosh, and M. M. Crawford, “Best-bases feature extraction
algorithms for classification of hyperspectral data,” IEEE Trans. Geosci.
Remote Sensing, vol. 39, pp. 1368–1379, July 2001.

[5] X. Yao and Y. Liu, “Making use of population information in evolu-
tionary artificial neural networks,” IEEE Trans. Syst., Man, Cybern. B,
vol. 28, pp. 417–425, June 1998.

[6] Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with negative
correlation learning,” IEEE Trans. Evol. Comput., vol. 4, pp. 380–387,
Nov. 2000.

[7] M. Bichsel and P. Seitz, “Minimum class entropy: A maximum infor-
mation approach to layered networks,” Neural Networks, vol. 2, pp.
133–141, 1989.

[8] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for
best basis selection,” IEEE Trans. Inform. Theory, vol. 38, pp. 713–718,
Mar. 1992.

[9] J. Starzyk and Z. Zhu, “Software simulation of a self-organizing
learning array system,” in Proc. 6th IASTED Int. Conf. Artificial
Intelligence and Soft Comp.(ASC 2002), Banff, Alberta, Canada, July
17–19, 2002.

[10] F. Kanaya and K. Nakagawa, “Correspondence on the practical implica-
tion of mutual information for statistical decision making,” IEEE Trans.
Inform. Theory, vol. 37, pp. 1151–1156, July 1991.

[11] S. Kullback and R. A. Leibler, “On information and sufficiency ,” in The
Annals of Mathematical Statistics, 1951, vol. 22, pp. 79–86.

[12] M. Girolami, “Mercer kernel based clustering in feature space,” IEEE
Trans. Neural Networks, vol. 13, pp. 780–784, Apr. 2001.

[13] S. Fiori, “Hybrid independent component analysis by adaptive LUT ac-
tivation function neurons,” Neural Networks, vol. 15, no. 1, pp. 85–94,
Jan. 2002.

[14] M. Girolami, “An alternative perspective on adaptive independent
component analysis algorithms,” Neural Comput., vol. 10, no. 8, pp.
2103–2114, 1998.

[15] L. C. Parra, C. Spence, P. Sajda, A. Ziehe, and K.-R. Müller, “Unmixing
hyperspectral data,” Advances Neural Info. Processing Syst., pp.
942–948, 2000.

[16] A. J. Bell and T. J. Sejnowski, “An information maximization approach
to blind separation and blind deconvolution,” Neural Comput., vol. 7,
no. 6, pp. 1129–1159, 1995.

[17] S. Amari, A. Cichocki, and H. H. Yang, “A new learning algorithm for
blind signal separation,” in Advances in Neural Information Processing
Systems 8. Cambridge, MA: MIT Press, 1996.

[18] S. Fiori, “Nonsymmetric PDF estimation by artificial neurons: Appli-
cation to statistical characterization of reinforced composites,” IEEE
Trans. Neural Networks, vol. 14, pp. 959–962, July 2003.

[19] M. K. Titsias and A. C. Likas, “Shared kernel models for class condi-
tional density estimation,” IEEE Trans. Neural Networks, vol. 12, pp.
987–997, Sept. 2001.

[20] R. Gaeda, J. Cerda, F. Ballester, and A. Mocholi, “Artificial neural net-
work implementation on a single FPGA of a pipelined on-line back-
propagation,” in Proc. IEEE 13th Int. Symp. System Synthesis, 2000, pp.
225–230.

[21] “Logic Core Generator: Pipelined Divider V2.0,” Xilinx Corporation,
2000.

[22] E. B. Wilson, “Probable inference, the law of succession, and statistical
inference,” J. Amer. Stat. Assoc., vol. 22, pp. 209–212, 1927.

[23] C. J. Clopper and E. S. Pearson, “The use of confidence or fiducial limits
illustrated in the case of the binomial,” Biometrika, vol. 26, pp. 404–13,
1934.

[24] P. Bickel and K. Doksum, Mathematical Statistics. Englewood Cliffs,
NJ: Prentice-Hall, 1977.

[25] C. J. Stone, A Course in Probability and Statistics Duxbury, Belmont,
1995.

[26] D. R. Cox and E. J. Snell, Analysis of Binary Data, 2 ed. London, U.K.:
Chapman and Hall, 1989.

[27] T. J. Santner and D. E. Duffy, The Statistical Analysis of Discrete
Data. Berlin: Springer-Verlag, 1989.

[28] C. R. Rao, Linear Statistical Inference and Its Applications. New York:
Wiley, 1973.

[29] A. Agresti and B. A. Coull, “Approximate is better than “exact” for in-
terval estimation of binomial proportions,” The Amer. Statistician, vol.
52, pp. 119–126, 1998.

308 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

[30] L. D. Brown, T. Cai, and A. DasGupta, “Interval estimation for a bino-
mial proportion,” Statistical Science, vol. 16, pp. 101–133, 2001.

[31] E-Handbook of Statistical Methods. [Online]. Available:
http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm

[32] S. Kumar, J. Ghosh, and M. M. Crawford, “Hierarchical fusion of mul-
tiple classifiers for hyperspectral data analysis,” Pattern Analysis Ap-
plicat., vol. 5, pp. 210–220, 2002.

[33] “Alliance Core: DFPDIV Floating Point Divider,” Xilinx Corporation,
2001.

[34] “Alliance core: DFPADD Floating Point Adder,” Xilinx Corporation,
2001.

Janusz A. Starzyk (SM’83) received the M.S.
degree in applied mathematics and the Ph.D. degree
in electrical engineering from Warsaw University
of Technology, Warsaw, Poland, in 1971 and 1976,
respectively.

From 1977 to 1981, he was an Assistant Professor
at the Institute of Electronics Fundamentals, Warsaw
University of Technology, Warsaw, Poland. From
1981 to 1983, he was a Postdoctorate Fellow and Re-
search Engineer at McMaster University, Hamilton,
Canada. In 1983, he joined the Department of

Electrical and Computer Engineering, Ohio University, Athens, where he is
currently a Professor of electrical engineering and computer science. He has
cooperated with the National Institute of Standards and Technology in the
area of testing and mixed signal fault diagnosis. He has been a consultant to
AT&T Bell Laboratories, Sarnoff Research, Sverdrup Technology, Magnolia
Broadband, and Magnetek Corporation. His current research is in the areas of
self-organizing learning machines, neural networks, rough sets, VLSI design
and test of mixed signal CMOS circuits, and reconfigurable design for wireless
communication.

Feng Wang received the B.S. degree in electronics
engineering from Fudan University, Shanghai, China,
in 1997. He is currently working toward the M.S. de-
gree at Ohio University, Athens.

From 1997 to 2002, he was a Design Engineer with
Texas Instruments joint venture, and Intel China Soft-
ware Laboratory, China, where he was engaged in
system design. His research interests include recon-
figurable design, machine learning and VLSI design.

