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Abstract-- Clustering is a typical method of grouping data 
points in an unsupervised learning environment. The 
performance of most clustering algorithms is dependent on the 
accurate estimate of the cluster number, which is always 
unknown in the real applications. In this paper, we propose a 
new parametric approach, which starts with an estimate of the 
local distribution and efficiently avoids pre-assuming the cluster 
number.  This clustering program is applied to both artificial 
and benchmark data classification and its performance is 
proven better than the well-known k-means algorithm. 

I. INTRODUCTION 

The clustering problem is defined as a problem of 
classifying a group of data points into a number of clusters 
without any prior knowledge about data structure, to produce 
a concise representation of the data. It is a fundamental 
means for multivariate data analysis widely used in numerous 
applications, especially in pattern recognition. 

Clustering techniques have been investigated extensively 
for decades. The existing approaches to data clustering 
include statistical approach (e.g., the K-means algorithm, 
[Yub 95]), optimization approach (e.g. branch and bound 
method [Che95A], simulated annealing technique [Sel91]), 
and neural network approach (e.g., HEC [Mao96]).  Some 
special techniques, such as fuzzy clustering [Kar94], 
[Che95B] and classification based on mixtures [Che88], are 
hot topics of study. 

According to [Fun 90], the existing clustering methods can 
be divided into two approaches. One is the parametric 
approach, and the other one is the nonparametric one. 

The widely used K-means method is one example of the 
parametric approach. In this method, a criterion is given, and 
data is arranged into a pre-assigned number of groups to 
optimize the criterion. Another kind of parametric approach 
assumes some mathematical form to express the data 
distribution, such as summation of normal distributions 
[Tit85]. Both approaches are developed based on the view of 
the global data structure and are ready to be improved in 
combination with other optimization methods. However, the 
performance of all this kind of methods depends on the 
assumption of the cluster number, which is hard to estimate 
beforehand in real applications. 

In the nonparametric approach, data are grouped according 
to the valleys of the density function, such as in the valley-
seeking method [Sal93]. This method does not require 
knowledge of the number of clusters beforehand. But since its 
performance is, in general, very sensitive to the control 
parameters and the data distribution, its application is limited. 

Furthermore, the resulting clusters of nonparametric 
clustering procedures contain the tails of other distributions 
and do not contain their own tails. 

In our study, a new approach is derived to express data 
distribution with a Multi-Gaussian method. This approach is 
a parametric one, but it does not pre-assume the number of 
clusters, making it more suitable for many applications. In the 
next section, this approach is described in detail. Applications 
of the resulting algorithm to some artificial data sets and to 
the well-known IRIS data are provided in Section 3. Section 
4 gives the conclusions.  

II. CLUSTERING PROGRAM 

As discussed before, the fatal shortcoming of the 
parametric approach is its dependence on the pre-assumed 
cluster number.  To resolve this problem in our method, 
clustering starts with an estimate of the local distribution.  
We construct small clusters, called seed clusters, according to 
the local distribution, and then merge those whose 
distributions are consistent with each other. 

The problem of clustering the signal data can be 
decomposed into two subproblems: 
♦ Extraction of the seed clusters – Cluster Growth program 
♦ Merging of clusters with a similar distribution of data – 

Cluster Merge program 
The clustering process moves from small, local clusters that 
capture information about the density of local data points 
towards bigger clusters with a specified probability density 
function.  Their merging is performed in order to reduce the 
complexity of data representation as well as to provide 
statistically supported generalization ability for classification. 

2.1 CLUSTER GROWTH PROGRAM 

In the Cluster Growth program, seed clusters are constructed 
in the following way.  First, one point is chosen randomly to 
initiate the cluster, and then the cluster absorbs the external 
nearest neighbors. Here the nearest neighbor of the cluster is 
defined as the point whose distance to the cluster is shortest.   
The distance from a point to a cluster is defined as its 
distance to the nearest point in this cluster. This distance will 
be compared with the threshold, Thd_Growth. If it is less 
than the threshold, this point will be absorbed and the process 
will be repeated for the next nearest neighbor; otherwise, the 
cluster growth is terminated. Fig.1 shows the cluster growth 
process. 

In Fig.1, the point represented by the circle is the initial 
point. The arrows show the process of cluster growth.  In this 
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way, the seed clusters are constructed based on the local 
distribution learned by the Cluster Growth program. Since no 
prior knowledge is needed, any structure of data can be 
followed, and the cluster growth can be terminated 
automatically according to the local distribution. 

 

Fig. 1 Cluster growth process 
 

2.1.2 THRESHOLD ESTIMATION 

Based on the above description, threshold selection is 
critical to the Cluster Growth program.  To find its value, 
statistical properties of the minimum distance between every 
two data points, called MD, is studied. These statistical 
properties are decided by the local distribution of data points. 
Throughout the clustering process, the exact distributions of 
data points are unknown and need to be approximated. 
Considering the complexity of high dimensional distributions, 
practical selection of approximating functions is limited to 
either normal or uniform model. Gaussian distribution is often 
an attractive choice based on its limited number of parameters. 
However, since a cluster constructed by the seed cluster 
growth program often contains very few samples, usually the 
concerned region is too small to obtain a statistical estimate of 
normal parameters, such as covariance matrix. Therefore, it is 
practical to assume that data samples in a local neighborhood 
follow a uniform, rather than Gaussian distribution.  

In our study, the statistics of MD are studied for N data 
points which are uniformly distributed in the D-dimensional 
cube with a side size equal to A. The experimental results 
show that the distributions of MD and its average value for 
each group, called AMD are determined by N, D and A.  
 
 

 

 

 

 

           ( a) MD distribution   (b)  AMD distribution 

Fig. 2 A distribution of MD and AMD(where N=400,D=2, A=1) 

Their distributions have the following features: (Fig.2 
gives an example distribution of MD and AMD ) 
1) The distributions of both MD and AMD are asymmetric, 

with the lower bound closer to the mean value than the 
upper bound. 

2) The distributions of both MD and AMD are dependent 
on the values of N and D. When N or D increases, the 
curves of the distributions become narrower. 

3) The AMD has a definite lower bound which is larger 
than 0. 
The upper bound of MD (represented as Y, on Fig. 2(a)) 

defines values of Thd_growth with normalized A.  As 
analyzed, the Thd_growth is in a positive proportion to the 
real value of the scale factor Ar. That is, 

 rAYgrowthThd *_ =                       (1) 
So the value of Ar is necessary in the estimation of the 
Thd_growth, but it cannot be obtained directly from the input 
data because the cluster distribution is unknown.  However, 
we can calculate AMD based on the selected samples in the 
current cluster. Fortunately, the AMD value is in a positive 
proportion to the scale factor A as well. Therefore, if we can 
get a specific value Z of AMD with normalized A, and given 
N and D, Ar can be estimated using the value of AMD 
observed in the current cluster, AMDr, from the following 
equation 

Z
AMDA r

r =                 (2) 

Since AMD is not a constant but a random variable, there is a 
problem of choosing a Z value from the distribution of AMD. 
Since we consider Thd_growth as the maximum distance to 
absorb the samples, it is reasonable to take the lower bound 
of AMD as a specific value for Z. 
By plugging equation (2) into (1), we get: 
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Fig. 3 Spread as a function of N with D=1,2,3,4 

Since Y and Z can be estimated from the experiment results, 
then the Spread, which is defined as Y/Z, is easy to obtain.  
Fig. 3 shows the Spread values for different N and D.  Thus 
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by combining the observed average mean value, AMDr, and 
Spread we can estimate dynamically the threshold value by 
(3). The threshold value will control the cluster growing 
termination. 

2.2  CLUSTER MERGING  

After the cluster growth program, we get a lot of small 
seed clusters, some of which overlap each other. Next, the 
clusters coming from a consistent distribution should be 
selected, and merged into a single cluster. The problem is 
choosing which clusters to merge. The Cluster Merge 
program proposed in this section is based on a similarity 
between the pdf (Possibility Density Function) estimates 
before and after merging. In the following discussion, a 
selection rule is defined, and then the program is described. 

2.2.1 THE SELECTION RULE --NOA 

 For each cluster, we approximate its distribution by 
Gaussian pdf. The process of merging is driven by the 
replacement of the multi-Gaussian by the single Gaussian 
distribution. 

Consider two seed clusters, A and B. Their approximate 

Gaussian distributions are pdfA ~ ),( AAmN Σ  and pdfB 

~ ),( AAmN Σ .  The two distributions form a multi-Gaussian 
approximation, represented by pdfW.  Suppose that the points 
in two clusters are from one Gaussian distribution and should 
be merged. The distribution after merging is another 
Gaussian, pdfM. The resulting functioins, pdfW and pdfM 
approximate an unknown distribution of the same group of 
points. They overlap each other and produce two areas: the 
overlapped area and non-overlapped area. Fig. 4 shows the 
relationship between pdfA, pdfB, pdfW and pdfM. The non-
overlapped area is marked with a shadow. When pdfA and 
pdfB are obtained form the same Gaussian distribution, pdfW 
and pdfM are closer, and the non-overlapped area is smaller 
(theoretically approaches 0) . 

 
 
 

 

 

 

 

 

 

Fig. 4 An illustration demonstrating the non-overlapped area 

The cluster merging process is set up to replace pdfW 
with pdfM and to simplify the pdf approximation. Assuming 

that pdfW is close to the true distribution, we want to reduce 
the error created by the merging process through selecting 
clusters carefully.  So the similarity between pdfW and pdfM 
is used as a direct rule for the selection. The size of the non-
overlapped area, represented as NOA, can be used to estimate 
this similarity. 

In our algorithm, we randomly generated two groups of 
points based on distributions of the seed clusters. The 
calculation of NOA is done based on those points. This way, 
we can control the number of points concerned and reduce 
the influence of any insufficiency of the points in the seed 
clusters used for calculations required in the Mote Carlo 
integration used to obtain the NOA. The obtained NOA will 
be compared to the threshold Thd_Merge set empirically to 
determine if the two clusters should be merged. 

Thd_Merge is estimated based on a sequence of 
experiments, which calculates the NOA on two groups of 
randomly generated data. For simplicity, our experiments are 
done on the data groups in one-dimensional uniform 
distribution. Since NOA shows the relationship of two groups 
and is not affected by the dimension and distribution of the 
data groups, this assumption does not lose its generality in 
higher dimensions. Fig. 5 shows NOA values with different 
distance between two means of the groups, (represented as 
Distance) and different size ratio of two groups (represented 
as R_size). Based on results of statistical analysis, we make 
the following observations: 

• When Distance increases, NOA values increase 
monotonically. This agrees with the real situation: when 
the distance between two means increases, the distribution 
of  two clusters have a greater separation, and the 
possibility of merging declines.  

 

 

 

 

 

 

 

 

Fig. 5  NOA as a function of Distance and R_size 

• When R_size increases, the NOA value decreases and 
its slope vs. Distance is smaller. This is expected as well, 
since when the ratio of two cluster sizes increases, the 
smaller one has less of an impact on the approximations of 
pdfW and pdfM. Consider the extreme situation when 
cluster B compared to A is so small that it can be ignored.  
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PdfM and pdfW are both close to pdfA, and NOA will be 
small, independent of cluster B’s location.  In this situation, 
the slope of NOA vs. Distance is 0, and no threshold can be 
found.  Fortunately, we need not consider an R_size with a 
large value (i.e. larger than 25) since we can set its limits in 
the cluster growth program.   Fig. 6 gives the curve of 
NOA vs. R_size with Distance equal to (SizeA+SizeB)/2, 
where two clusters barely touch each other (which is a cut 
in the middle of Fig.5 ). The threshold value of NOA that  
can be used for cluster merging (Thd_Merge) can be read 
directly from this curve. 

 
 

 

 

 

 

Fig. 6 NOA vs. R_size when two clusters touch each other( Distance = 
(SizeA+SizeB)/2) 

2.2.2 MERGING PROCESS 

Suppose that we have a number of seed clusters from 
different classes. The procedure used to apply the NOA 
threshold to cluster merging has the following steps: 

Step 1: Calculate the NOA values between every two 
clusters. For each cluster I, find its partner J, whose NOA 
is the smallest one. 

Step 2: If the partner cluster J is from the same class as 
the current cluster I, their NOA is compared with 
Thd_Merge. If the NOA value is less than Thd_Merge, 
proceed to step 4; otherwise, change the current cluster 
and return to Step 1. 

Step 3: If the partner cluster J is from a different class 
than the current cluster I, cluster I can not be merged 
with any other clusters. Change the current cluster and 
go back to Step 1. 

Step 4: Merge Cluster J and I and Return to Step 1. 

III. CLUSTERING RESULTS OF EXAMPLES 

In this section, we investigate the performance of this 
clustering algorithm on several data sets. Comparisons are 
made with the well-known k-means algorithm. Since k-means 
algorithm needs additional process to estimate the number of 
clusters beforehand, for simplicity, we show its performance 
with the same number of clusters which is detected by our 
clustering algorithm. Most time, this assumption gives the 
best clustering result. 
1. The first artificial data set includes two clusters with 

Gaussian distributions as shown in Fig.7. The distance 
between two clusters, that is the distance between two 
means of clusters, changes from )(2 21 σσ +•  to 

)(3 21 σσ +• , where 1σ and 2σ are the standard deviation 
of two clusters. Experimental results show that our 
clustering algorithm produces the same results as k-
means algorithm. Fig.7(a),7(b) show the clustering 
results of both algorithms when the distance between two 
clusters is )(2 21 σσ +• . 
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Fig.7 clustering results on the artificial data I 
(a)  the clustering result of our clustering algorithm; 

(b)  the clustering result of the k-mean algorithm 
 

2. The ability of our algorithm to find the optimal position 
of a cluster’s centroid is shown also in the following 
examples. This artificial data set is closer to the real 
world data, as shown in figure 8(a). There are four 
obvious clusters, whose distributions are not strictly 
Gaussian. In this case,k-means algorithm cannot find the 
‘correct’ centroid’s positions of these four clusters. As 
shown in Fig. 8(b). The partitioning result of our 
algorithm is shown in Fig.8(c). 

3. We have also applied our algorithm to Fisher’s “iris” 
data [Jam85]. The data set consists of two sepal and two 
petal measurements from 150 irises, 50 from each 
species (1, Setosa, 2, Versicolor, 3, Virginica). From 
[Jam85], we know that group 1 is well separated from 
groups 2 and 3, but 2 and 3 overlap. Both our algorithm 
and k-means method did a good job to separate the first 
group, but misclassify several points of group2 to 
group3.  For the partitioning with these three clusters, 
our algorithm has correctly classified 145 out of 150, or 
95% of the irises, while the performance of the k-means 
algorithm classified 90% of the iris data correctly.  So 
that the algorithm developed in this study is better than 
the K-mean algorithm in performance. 

The computational cost of the algorithm presented in this 
paper is heavy compared to that of k-means algorithm.  To 
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cluster the iris data, our algorithm needs 20 seconds while k-
means only needs about 1.5 seconds on a PC with a speed of 
233MHz. With the additional process to find the number of 
clusters, which is required by the k-means algorithm, this 
difference can be reduced. However, it is still an important 
problem, especially in high dimension. This larger 
computational cost is related to the calculation of NOA. A 
more efficient computational method with a similar accuracy 
is currently under investigation. 
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  (c) 
Fig. 8 clustering results on the artificial data II 

(a) the original data set; (b) the clustering result of our clustering algorithm; 
(c) the clustering result of the k-mean algorithm; 

VI. CONCLUSION 

Many algorithms have been devised for clustering.  They 
are divided into two categories: the parametric approach and 
the nonparametric approach. The clustering method described 
in this paper is a parametric approach.  It starts with an 
estimate of the local distribution, which efficiently avoids 
pre-assuming the cluster number. Then the seed clusters that 
come from a similar distribution are merged by this 

algorithm. This clustering program was applied to both 
artificial and benchmark data classification and its 
performance is proven better than the well-known k-means 
algorithm. 
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