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Associative Memories With Synaptic Delays
Janusz A. Starzyk , Senior Member, IEEE, Łukasz Maciura, and Adrian Horzyk , Senior Member, IEEE

Abstract— In this paper, we introduce a new concept of
associative memories in which synaptic connections of the self-
organizing neural network learn time delays between input
sequence elements. Synaptic connections represent both the
synaptic weights and expected delays between the network inputs.
This property of synaptic connections facilitates recognition of
time sequences and provides context-based associations between
sequence elements. Characteristics of time delays are learned and
are updated each time an input sequence is presented. There
are no separate learning and testing modes typically used in
other neural networks, as the network starts to predict the next
input element as soon as there is no expected input signal. The
network generates output signals useful for associative recall
and prediction. These output signals depend on the presented
input context and the knowledge stored in the graph. Such a
mode of operation is preferred for the organization of episodic
memories used to store the observed episodes and to recall them if
a sufficient context is provided. The associative sequential recall is
useful for the operation of working memory in a cognitive agent.
Test results demonstrate that the network correctly recognizes the
input sequences with variable delays and that it is more efficient
than other recently developed sequential memory networks based
on associative neurons.

Index Terms— Associative knowledge graphs, associative
memories, synaptic delays, synaptic efficacy.

I. INTRODUCTION

MEMORY plays an important role in cognitive systems,
providing it with the knowledge about its environment

and how to deal with it. Its structure self-organizes as a result
of the past observations, actions, and their consequences [1].
The learning process includes changes in the long-term mem-
ory (LTM) cells and the synaptic connections between neu-
rons. Associations between neurons reflect the context for
the learning and representation building process [2]. How-
ever, complex patterns may require storage and associations
of time domain patterns in declarative long-term memories.
Time is critical for representing various temporal processes
in the memory like scene recognition, learning of sequences
of events, reasoning, planning, activity monitoring, and
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goal-driven learning. Many computational algorithms and
organizational structures of long-term memories were designed
and analyzed over the years to prove that they can satisfy
requirements specified for such memories. Time delay neural
networks [3] store a temporal sequence in static multi-layer
feedforward networks. The recurrent neural network (RNN) is
another way for sequence learning and prediction of dynamic
responses [4]. It uses feedback links and memory of recent
states. Its training is based on the back propagation through
time method [5]. Sun and Giles [6] reviewed a spectrum of
characteristics, problems, and challenges for sequence learning
from recognition and prediction to sequential decision making.
Wang and Arbib proposed a temporal sequence learning model
based on two types of neurons [7]. The first type is a dual
neuron, which stores a decaying signal value for a short period
of time. The second type of neuron is a sequence-detecting
neuron, which fires in response to the previously learned
sequence of patterns. The developed model can reliably recall
sequences that share similar patterns. A model capable of
learning complex temporal patterns by self-organization was
proposed in [8]. This memory can anticipate and regener-
ate the next component in a sequence comparing it with
new input. A mismatch between the anticipated and actual
input triggers learning. Wang used static associative neural
networks with delayed feedback connections for learning
and predicting spatiotemporal sequences [9]. In the learning
stage, the input sequence is presented to the primary input
channel, while the corresponding expected output sequence is
simultaneously presented to the output channel. In [10], a dual-
weight neural network (DNN) scheme was developed for fast
learning, recognition, and reproduction of temporal sequences.
In a DNN, each neuron is linked to other neurons by
long-term excitatory connections and short-term inhibitory
connections. Fast learning was accomplished using two-pass
training of the temporal distance between two arbitrary pattern
occurrences. A sequential extreme learning machine model
was developed for fast sequential learning with or without
chunking [11]. More recently a neural network structure
for spatiotemporal learning and recognition inspired by the
LTM model of the human cortex was proposed [12].
The developed LTM structure is able to process real-
valued and multidimensional sequences. In a similar effort,
a fast neural network adaptation with associative pulsing
neurons (APNs) [13] was proposed. It uses a new type of APN
developed in [14]. The associative neurons that are referred to
in this paper have time delays, make easy associations, and
are simpler than spiking neurons [15].

The main contribution of this paper is to propose a memory
model in which associative connections carry information
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about expected synaptic delays for context-based sequence
recognition, prediction, and memory. We develop this model
and analyze its properties. We demonstrate how such a model
can store and retrieve associated sequential data. Finally,
we compare the performance of the proposed new type of asso-
ciative memories to the active neuro-associative knowledge
graphs (ANAKG) [13], long short-term memory (LSTM) [16]
and hierarchical temporal memory (HTM) [17]. We proved
that the proposed associative memory with synaptic delays is
more accurate and efficient than these methods.

In Section II, we describe various types of long-term declar-
ative memories and their properties. This is followed by a
description of the synaptic gates that can detect input novelty
and learn synaptic delays of the stored input sequences,
as presented in Section III. Section IV gives an overview of the
organization of synaptic delay associative knowledge graphs
(SDAKG) and its implementation algorithm responsible for
self-organization of the memory structure including the asso-
ciative learning process, signal predictions, and control flow.
Section V presents the results of the conducted experiments,
and Section VI contains conclusions.

II. LONG-TERM DECLARATIVE MEMORIES

Long-term declarative memories are divided into episodic
and semantic memories, and they require different structural
organization, storage, and recognition properties. While the
episodic memory stores personal memories and requires stor-
age and recognition of sequences, the semantic memory stores
a general knowledge and relies more on associations between
its elements. There are many artificial neural network models
used to simulate semantic and episodic memories. Associative
networks are content addressable and can retrieve stored data
based on only a part of what was stored [18]. They are
resistant to noise and can detect missing data and sensory fail-
ures [19]. RNNs developed to store and recognize sequences
use backpropagation through time and error signal to adjust
interconnection weights between neurons. As Hochreiter and
Schmidhuber [16] pointed out, this error signal vanishes
after several steps. As a result, learning and prediction may
fail for problems with long-time domain dependencies [16].
To remedy this problem, they proposed a long short-term
memory (LSTM) structure for efficient storage of sequences
with bigger and varying time-scales than classical RNNs.
Mikolov et al. [20] proposed an unsupervised algorithm that
learns fixed-length feature representations from variable-length
pieces of texts, such as sentences, paragraphs, and documents.
Similar to RNNs, this algorithm is trained to predict words in
a document given an input context. Weston et al. [21] describe
a new class of learning models called memory networks.
Memory networks combine an input content with the dynamic
knowledge base stored in the LTM to predict the output.

A hierarchical organization of memory is important for
sequence learning. The hierarchical sequence learning in
a sensory-motor system using RNNs was investigated by
Tani and Nolfi [22]. Based on their model, complex sequential
behaviors can be learned as was demonstrated in a robot arm
simulation [23]. The system was capable of dynamical self-
organization across multiple levels of learning and prediction.

Fig. 1. Organization of the artificial neuron in the hierarchical memory of
the hierarchy HTM. The HTM neuron learns by changing weights of synaptic
connections—new synapses are attached as postsynaptic neurons are activated.

George and Hawkins [24] presented a hierarchical structure for
temporal sequence learning aimed at invariant pattern recog-
nition. A columnar organization of the associative memory
was proposed by Hawkins et al. [17] where they introduced
cortical learning algorithms in which minicolumns were used
to store sequential information in structures known as HTM.
Since then, the HTMs were further developed, their properties
were analyzed and tested. Cui et al. [25] show that HTMs
can continuously learn a large number of temporal sequences
using an unsupervised learning neural network model. HTM
was shown to have similar accuracy as other state-of-the-art
sequence learning algorithms like echo state networks [26]
or LSTM [16]. However, they also show some drawbacks like
larger sensitivity to the temporal noise than the LSTM [25].

The HTM uses artificial neurons that model biological
neurons. Since biological neurons are very complex, only
some of their functionality is modeled in artificial neurons.
The organization of the artificial neurons used in the HTM is
shown in Fig. 1. A characteristic feature of these neurons not
used in most of the artificial neural networks is that they use
the equivalent of proximal and distal dendrites. In biological
neurons, proximal dendrites are close to the cell body, while
distal dendrites are further away. The proximal dendrites affect
a neuron in a linear additive way—the more synapses in these
dendrites are active, the higher the activation of the postsynap-
tic neuron. Each HTM neuron has single-proximal dendrites
with a number of synapses whose activation is summed up
at the neuron cell body. The distal dendrites are connected
to other dendrites, and they act as thresholded coincidence
detection—they affect the postsynaptic neuron activation only
when sufficiently large numbers of their synapses are active at
the same time. If any of the distal dendrites is activated, this
activates the cell body.

An efficient way to build spatiotemporal sequential memo-
ries for long-term storage of input sequences was developed
by Horzyk [14] in the form of ANAKG. The ANAKG
network is constructed from APNs that incorporate temporal
spiking in artificial neurons with associative neuron model-
ing and plasticity. These neurons learn associations between
symbols or objects defined as time-spread combinations of
activated inputs. These neurons are time-dependent and can
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Fig. 2. Neuronal structures in SDAKG networks. (a) Each time the input
signal to the observed object neuron is activated, learning takes place,
changing the weight of the interconnection link between the synaptic gate
and the object neuron. (b) If the observed object neuron is active without
associative prediction, then the learning control neuron is not activated, and the
input signal activates the learning neuron. When the imagined object neuron
is activated without activation of the input to this object neuron no learning
takes place.

be charged, relaxed, and refracted after spikes. However, they
are simpler than spiking neurons which try to reproduce
biochemical processes, while APNs only try to reproduce
functional aspects of real neurons.

The most important aspect of the adaptation and learning in
the APN is based on the efficacy of their synaptic connections,
computed accordingly to the time that elapsed between presy-
naptic and postsynaptic activities of the two neurons that were
activated in close temporal succession. The longer this period
is, the smaller the synaptic efficacy. The synaptic efficacy
significantly simplifies the adaptation process and provides an
efficient tool for organizing the network structure [28]. In this
paper, we apply the concept of the synaptic efficacy in a new
way, to obtain crisp separation properties of the stored input
sequences, as discussed in Section III.

III. SYNAPTIC GATES AND SYNAPTIC DELAYS

A. Synaptic Gates

Our novel approach to learning of temporal sequences is to
use explicit time delay information and use of synaptic gates
in the learning process of the associative neurons. Associative
learning is organized in the networks that combine imagined
object representation neurons and synaptic gates supported
by an observed object and learning neurons, as indicated
in Fig. 2. A network that combines many such structures
is called SDAKG. In SDAKG network, synaptic gates and
imagined object neurons represent different aspects of tempo-
ral learning and associations. Synaptic gates carry the history
of temporal activations of the observed object neurons, while
imagined object neurons represent network predictions in

replaying the temporal sequence. Synaptic gates respond to
the time difference between their inputs and activate synaptic
connections to other synaptic gates and imagined object neu-
rons. They play a critical role for storage and recall of temporal
sequences and making associations in the semantic memory.
Imagined neurons are important not only to recall the stored
sequence, but their activations are critical for anticipation and
planning by autonomous agents. A synaptic gate is activated
the most if all the inputs to the synaptic gate are synchronized
in time. An output from the synaptic gate is distributed with
a specified delay to several imagined object neurons and their
corresponding synaptic gates using trainable connections with
variable weights. An imagined object neuron may have several
inputs, each from the different synaptic gate and each with a
different weight and time delay. In addition, each observed
object neuron may be connected to several synaptic gates, and
the activation of any of its synaptic gates will activate the
imagined object neuron.

An observed object and learning neurons associated with
an imagined neuron play supporting roles for creating the
structure of an SDAKG, for novelty detection and learning.
An observed object neuron recognizes the input pattern in a
similar way as associative neurons discussed in [14].

An associative prediction signal is obtained from the acti-
vation of a synaptic gate multiplied by the weight of the asso-
ciative link between the synaptic gate and the imagined object
neuron. A simplified organization of the learning process in the
SDAKG memory is presented in Fig. 2(a), where each time the
input signal to the observed object neuron is activated, learning
takes place changing the weight of the interconnection link
between the synaptic gate and the imagined object neuron,
and if such a link does not exist, it establishes a new one.
Besides, the synaptic delay between the synaptic gate and
the imagined object neuron is also modified. The dashed line
in Fig. 2 indicates which synaptic connection weight will be
changed after the observed object neuron is activated.

B. Novelty Detection

Familiarity with the sequence of temporal observations
allows for novelty detection in the observed scene. The novelty
detection is useful since it tells the system that observed the
response from the environment was not represented in the
semantic memory and may require learning. The machine
learns new knowledge if it is useful for its operation. Since
temporal sequence learning depends on the episodic mem-
ory, novelty is recorded first by the episodic memory, and
it is transferred to the semantic memory only when the
episode or its elements need to be learned. If the observed
scene is either expected or unimportant to the agent, no new
knowledge is registered in the semantic memory. Proposed
in Fig. 2 one of the two configurations of the SDAKG network
can be selected depending on how the novelty observations are
treated.

For novelty detection in this memory system, we can use
the organization shown in Fig. 2(b). In Fig. 2(b), if an
imagined object neuron is activated through the associative
prediction, it sends a signal to a learning control neuron.
The learning control neuron C has a higher threshold and
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requires both of its inputs to be activated—one from the
imagined object neuron and one from the observed object
neuron. Thus, if the observed object neuron receives an input
signal sent at the time of the associative prediction, then the
learning control neuron is activated and inhibits the learning
neuron L. As in Fig. 2(a), the dashed line in Fig. 2(b)
indicates which synaptic connection weight will be changed
after the observed object neuron is activated. However, if the
input signal for the observed object neuron is active without
associative prediction, then the learning control neuron is not
activated, and the input signal activates the learning neuron.
The activated learning neuron initiates changes to the weight
of the interconnection link between the synaptic gate and the
object neuron, and if such link does not exist, it establishes
one. When the imagined object neuron is activated without
activation of the input to its observed object neuron, no learn-
ing takes place. This may happen during recall of the temporal
sequence from the SDAKG memory.

The major difference between the two methods is that
in Fig. 2(b), there was no change in weights between the
synaptic gate and the imagined object neuron when the asso-
ciative prediction link predicted the imagined object activation.
Only in this structure, predicted activations cause no learning,
which may be useful for the organization of episodic memory.
No repetition of the input sequence is necessary for such
networks, while in the structure, shown in Fig. 2(a), learning
takes place each time an input sequence is observed so that the
synaptic weights can be changed gradually. In both methods,
recalling the sequences from memory do not change the
existing SDAKG structure nor the interconnection weights.

C. Sequence Learning Through Synaptic Delays

Let us explain the idea of sequence learning through
synaptic delays in SDAKG networks. The SDAKG is a self-
organizing network, establishing synaptic gates and associa-
tions between object neurons as needed. In learning temporal
sequences, we distinguish presynaptic and postsynaptic gates
in a similar fashion as used in determining presynaptic and
postsynaptic neurons. An input signal activates first a presy-
naptic gate and then an associated postsynaptic gate. In our
approach, the SDAKG neural network contains explicit delay
information in addition to the interconnection weights between
associated synaptic gates and neurons. Each time an observed
object neuron is activated by the input signal, the synaptic
connection weight and the delay time between the predecessor
synaptic gate and the successor gate related to this object
neuron change. The delay information in the synaptic gates
represents the level of similarity of the observed time domain
sequence to the sequence represented by the synaptic gate.

During training, the synaptic gate learns the characteristic
delays of the received signals. Since we want the synaptic
gate to tolerate small time deviations of the received signals,
we approximate unknown distribution of these delays. Accord-
ing to the central limit theorem, we may approximate this
unknown distribution by computing its average value t12 and
standard deviation σG . After training synaptic gate will use
these values to compute its attenuation function as described
next.

Fig. 3. (a) Propagation of signals between synaptic gates. The output
signal O2 of the synaptic gate SG2 is attenuated depending on the temporal
difference between the expected and the observed signals. (b) Sketch of the
signal attenuation through the synaptic gate.

A synaptic gate is activated if its inputs are activated at
the same time (or in proximity to each other). The gate uses
the temporal difference to attenuate the strength of its input
signals. The strength of the input signal will be maximum
at the average delay time t12 observed during training and
can gradually decay if the arrival time of the input signal is
either higher or lower than the t12. If the delay of the input
signal received by the postsynaptic gate t2 is different than t12,
the output of the postsynaptic gate is attenuated depending
on (t2 − t12) using

O2 = I2 ∗ f (t2 − t12) (1)

where f (t2−t12) is a synaptic gate attenuation function. In our
simulation, the attenuation function is chosen as a Gaussian
function with t12 means and standard deviation σG :

f (t2 − t12, σG ) = e
− (t2−t12)2

2σ2
G . (2)

Attenuation is large when the delay of the received input
signal t2 is significantly different than t12.

To illustrate this, let us consider that an object neuron O2
that activates the postsynaptic gate SG2 in Fig. 3 was activated
in time t2. Fig. 3 shows the gate organization and the sketch
of its attenuation function.

The input signal to a synaptic gate is either equal to the
activation level of the presynaptic gate output O1 multiplied
by the synaptic weight w12:

I2 = O1 ∗ w12 (3)

or it is computed using

I2 = O1 ∗ w12 + 1. (4)

In the first case, we only observe the attenuation of the input
signal strength, so this case is suitable when we have no input,
for instance in the case of prediction when the sequence is
recalled from the memory or during testing mode when no
input from object neuron is received at a specific gate.
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Fig. 4. Network structure obtained after observing the input sequence (Input 1, Input 2, Input 3, and Input 4).

Fig. 5. Simplified propagation of signals. Imagined and object neurons are
merged and represented by the oval shape. Bidirectional connection stands
for two separate links. One is to the imagined object neuron and the second
one from the observed object neuron to the postsynaptic gate. While the first
link has weight w12 and delays t12, the second one (send with no delay) has
a weight equal to 1 with arrival time t2 according to activation of the object
neuron.

Since each synaptic gate carries the history of temporal
activations of the observed object neurons, its activation is
equivalent to the recognition of the input sequence that it
represents. Thus +1 in (4) indicates that a new input was
received and was combined with the propagated accumulated
signal.

IV. SDAKG NETWORK ORGANIZATION

The SDAKG network is created gradually by observing
various input sequences. In Fig. 4, we show the structure of the
SDAKG network obtained after observing the input sequence
(Input 1, Input 2, Input 3, and Input 4).

In general, a single synaptic gate can be linked to several
postsynaptic gates, each time using the different synaptic
connection with trainable weights and time delay. This is
useful if the sequence represented by a synaptic gate can be
continued in several different ways. Likewise, an imagined
neuron can be stimulated by several different presynaptic
gates as a given object can be included in several different
sequences.

To simplify the graphical representation of connections
between imagined object neurons, observed object neurons,
and synaptic gates, we illustrate the propagation of signals
between synaptic gates as shown in Fig. 5.

Using this simplified notation and the sequences of words,
shown in Table I, we can obtain the structure of the SDAKG
network that represents these sentences as shown in Fig. 6.
In this structure, we can see that individual words can be
connected to several synaptic gates, which indicates their use
in different sentences. We also see some cases when a synaptic
gate connects to several postsynaptic gates.

TABLE I

EXAMPLE OF SENTENCES USED TO BUILD A SIMPLE MEMORY

A. Synaptic Weights

To establish synaptic weights between a pair of presy-
naptic and postsynaptic gates, we use the so-called synaptic
efficacy (5) computed accordingly to the time that elapsed
between presynaptic and postsynaptic activities of synaptic
gates if both gates were activated in close temporal succession.
The synaptic efficacy is a measure of the influence of the
synaptic stimulations on the postsynaptic neuron activity. The
synaptic efficacy is also dependent on a frequency of the
contribution of this synapse stimulation to the postsynaptic
gate activity.

The synaptic efficacy significantly simplifies the association
process in comparison to other models of sequential learning.

Let Ss = [Ss
1, . . . , Ss

k , . . . , Ss
k+r , . . . , Ss

Kn
] be an input

sequence from the observed sequence set S = {S1, . . . , SN }.
The synaptic efficacy is computed for each of two connected
synaptic gates Gm and Gr representing two partial sequences
from the observed set in each sequence Sn that contains
them. Gates Gm and Gr , are activated by activation of the
corresponding object neurons Nm and Nr . The time differ-
ences between the activations of Gm and Gr gates affect the
computation of various components of the sum (3). The final
synaptic efficacy for this synapse considers all input sequences
that contain time ordered succession of gates Gm and Gr . The
synaptic connection between gates Gm and Gr has the weight
wmr and the average time delay t̂mr

δGm ,Gr =
∑

{(Gm ,Gr )∈Sn∈S}

⎛

⎜⎜⎝
1

1 + |tr −t̂mr|
3.(σr+ 2∗t̂mr√ +ε)

⎞

⎟⎟⎠

γ

(5)
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Fig. 6. Structure of the SDAKG network that represents the presented sentences.

where

tr is the period of time that lapsed between the
stimulation of the synapse between gates Gm and
activation of the postsynaptic gate Gr ;

t̂mr is the average period of the time delay between the
activation of synaptic gates Gm and Gr ;

σr is the calculated standard deviation of the observed
delay between the activations of the presynaptic
and postsynaptic gates Gm and Gr , as expressed
by (10);

ε is the small positive number;
n is the number of the prior activations of the postsy-

naptic gate Gr ;
γ is the context influence factor changing the influence

of the previously activated synaptic gate on the
postsynaptic gate (here equal to 4).

The synaptic efficacy is used to compute a synaptic
permeability (also called connection weight). The synaptic
permeability is computed after the activity of the presynaptic
gate Gm by considering its influence on the postsynaptic gate
activity. Synaptic weight w is computed using

w = η

2η − δ
(6)

where η is the number of activations of the presynaptic gate
and δ is the synaptic efficacy computed for this synapse.

The weight function satisfies the requirement that the weight
approaches 1 when synaptic efficacy approaches the number
of activations of the presynaptic gate and approaches 0.5 when
synaptic efficacy is low. Synaptic efficacy increases with the
number of activations. It approaches the number of activa-
tions when each time when the presynaptic gate is activated,
the postsynaptic gate is activated as well.

The average period of time delay t̂mr can be updated
dynamically, each time the postsynaptic gate is activated using

t̂mr = t̆mr ∗ n + tmr

n + 1
(7)

where t̆mr is the previous average value and tmr is the observed
delay between the activations of the presynaptic and postsy-
naptic gates Gm and Gr .

Similarly, the standard deviation can be updated using

σr =
√

n ∗ (
σ̆ 2

r + t̆2
mr

) + t2
mr

n + 1
− t̂2

mr

=
√

n

n + 1
∗

(
σ̆ 2

r + (t̆mr − tmr)2

n + 1

)
(8)

where σ̆r is the previous value of the standard deviation.
Thus to maintain the information about the state of a

synapse, we need to store only three values: n, t̆mr, and σ̆r

related to this synapse. We set the initial values of all t̆mr,
and σ̆r to 0.
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When the input sequences are played at a different time
scale, it is necessary to establish parallel synapses between a
pair of presynaptic and postsynaptic gates with different link
values and different delays. We decided to establish a new
synapse when the following condition is met:

|tmr − t̂mr| > 5 ∗
(

σr + 2 ∗ t̂mr√
n + 1

+ ε

)
= tmax

mr . (9)

Each newly established synapse will be equipped with its own
counter of the number of activations to establish its weight.

B. Organization of SDAKG Algorithm

The implemented SDAKG algorithm contains several criti-
cal steps for associative learning, signal propagation, selection
of a dominant signal, and control flow of the working SDAKG
network as described in this section. The associative learning
process responds to each input sequence and is responsible for
organizing the associative connection structure of the SDAKG
network as well as learning characteristics of synaptic delays.

The associative learning process (ALP) runs as follows.
1) If the input signal was predicted by a synaptic connec-

tion between presynaptic and postsynaptic gates then the
ALP updates t̂mr and the related values of σr , σG , n,
as well as the synaptic efficacy δ, and the weight w for
this synaptic connection. The number of activations of
a postsynaptic gate η is increased by 1.

2) If the input signal was not predicted, because there was
no synapse from the presynaptic gate, a new postsynap-
tic gate is created, and its η is set to 1.

3) If the input signal was not predicted or the waiting time
tmr for this signal was such that |tmr − t̂mr| > tmax

mr a
new synaptic connection is established with t̂mr = tmr,
σr = 0, σG = 2 ∗ t̂mr + ε, n =1, δ = 1, and w = 1.
In Steps 2 and 3 described here, the graph structure as
in Fig. 6 is formed automatically by automatic creation
of synaptic gates and synapses between gates according
to new data sequences.

4) If the input signal was the first element of the sequence,
then no prediction can be made. In this case, η—the
number of activations of the synaptic gate that represents
this input signal—is increased by 1. If no such gate
exists a new gate is created and its η is set to 1.

Once activated by the input signals, the SDAKG network
propagates signals through its gates. The SDAKG signal
propagation algorithm is organized as follows.

1) Once a gate receives an input signal, it starts to calculate
its delay related attenuation according to the Gaussian
function with zero mean and standard deviation equal to

σG = σr + 2 ∗ t̂mr√
n + 1

+ ε. (10)

2) At the moment the input signal comes to a postsynaptic
gate, the attenuation function (2) is computed, and the
output of the postsynaptic gate is computed using (1).

3) If the delay between received signals is greater than tmax
mr

[determined by equation (9)], then a new synapse
between the presynaptic and postsynaptic gates is cre-
ated and its synaptic delay is set to the input delay.

4) Once an input signal is received, it initiates the associa-
tive learning process (ALP) and stops propagation of all
signals sent from the gates that were in the prediction
mode. Notice that this may happen much later than tmax

mr ,
so it cannot stop the signals already propagated.

5) If the input signal does not come (time greater
than tmax

mr , or end of the sequence is announced), all the
gate signals are propagated through the existing network
structure using the winner-takes-all control mechanism
(WTACM). These are the prediction signals that activate
the imagined object neurons.

Prediction signals are useful for associative recall from
SDAKG memory. They depend on the presented input context
and the knowledge stored in the graph.

The WTACM that governs the prediction process is as
follows.

1) The postsynaptic gate which presynaptic gate was last
activated by the input signal initiates the WTACM after
the minimum waiting time tmin determined from

tmin = (
t̂mr + tmax

mr

)
(11)

and starts the transition to the prediction mode.
2) The WTACM tree nodes are created by connecting the

root node to its postsynaptic gates. This will generate
new leaf nodes. This step is applied to all new leaf nodes.

3) Starting from the root node, the WTACM chooses one
available node connected to the postsynaptic gate with
the highest weight of the synapse from its presynaptic
gate and sends a prediction signal to the postsynaptic
gate and its object neuron. This node becomes the
current node of the WTACM, and the pointer is set to
this node.

4) Prediction signals are not attenuated but are multiplied
by the corresponding synaptic weights.

5) If the pointer reaches one of the leaves of the tree or the
propagated prediction signal strengths falls below the set
threshold, then the available flag of this node is set to
false.

6) After reaching the leaf node, the WTACM returns to the
root node and can select another path of the tree. If this
is impossible, then the WTACM stops working.

7) When a new input signal is obtained during the predic-
tion process, then the prediction process stops, the event
queue of the prediction mode is erased, the WTACM tree
is saved, and the program switches to the learning mode.

Random inputs distort sequence recognition. If the input
probability of individual symbols is known, we can make a
minor adjustment for random activation of synaptic gates by
subtracting estimated a randomly generated value Ori from
the output value of each synaptic gate

Ori =
i∑

k=0

(
n
k

)
pk(1 − p)n−k (12)

where p is the probability of activation of an object neuron, n
is the length of the input sequence, and i indicates the level of
the synaptic gate (the length of the sequence represented by
the synaptic gate). The summation in (16) is over all object
neurons k of the sequence represented by the synaptic gate.
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C. Control Flow of SDAKG Network

To handle input from object neurons and switch between
the learning mode and the prediction mode in the SDAKG
network, an event-driven simulation control flow is applied.
There are three event queues: one for data handling, one for
the learning process and one for the prediction. While the
network is in the learning mode, then the events from the
current location of the learning event queue are received and
handled. Respectively, while the network is in the prediction
mode, then events from the current location of the prediction
event queue are received and handled. When the time of the
current element in data event queue is smaller than the time
of the current element of the learning event queue and the
current element of the prediction event queue, then this data
element is handled, and the network switches to the learning
mode.

The SDAKG network has the following four submodes in
order to automatic switch between learning and prediction
modes properly and one testing mode.

1) Learning Mode: The network switches to this mode
whenever a new data comes from its object neurons.
From this mode, the network cannot switch to the
prediction mode. When any gate in the network is firing,
then the network switches to mode 2.

2) Conditional Learning Mode: Only from this mode net-
work can switch to the prediction mode. It occurs
when any gate after waiting time tmax

mr did not
receive a signal from the object neuron (it received
the only signal from another gate through its input
synapse).

3) Prediction Mode: In this mode, the WTACM mechanism
provides a working prediction associated with one path
in the WTACM tree. If the WTACM mechanism reaches
the tree leaf (one full path was played), then the network
switches to mode 4.

4) Conditional Prediction Mode: This mode is used to
generate a new path of the WTACM tree and return to
mode 3. If there are no new paths (that were not played),
then the WTACM mechanism stops its work.

5) Testing Mode: This mode is used to test recognition
time sequences. Switching to this mode (and switching
from this mode to another mode) is forced by an
SDAKG user.

Submodes of the learning mode are necessary to prevent
switching into the prediction mode when the network receives
a new signal from its object neurons before the maximum
waiting time tmax

mr or to exit from the prediction mode when
new data come.

D. Testing Mode

The testing mode is used for time sequences recognition
tasks. The user of SDAKG neural graphs can switch the
network to this mode after learning is completed. In this mode,
all learning functionalities (i.e., construction of the graph,
changing of synaptic weights) are blocked, so the memory
structure does not change anymore, and the tests check if the
input sequences are correctly recognized.

In the testing mode, the gate propagates a signal whenever
a signal from its presynaptic gate is received and is greater
than the threshold and simultaneously greater than the last
output signal of this gate. If these conditions are not met,
then the new signal is not propagated. The input and output
signals in all gates are cleared before each recognition process
call.

After propagation of a signal, the input signals are saved
(until new ones replace them), so they can be reused if needed.
For example, if a gate received a signal from its presynaptic
gate and propagated its output signal to its postsynaptic gates,
and next it received a signal from the object neuron, then
both signals are used to compute and propagate a new output
signal. If a gate received signals from its object neuron and the
presynaptic gate, then (1) is used for output signal calculation.
In other cases, the output is determined by the value of the
received signal.

V. RESULTS OF EXPERIMENTS

A. Testing of SDAKG Memories

Several experiments were performed using SDAKG memo-
ries to illustrate recall accuracy, context-based prediction, and
computational effort. These experiments were performed in the
prediction mode. Input sequences were the truncated versions
of the stored sequences, to see if the memory provides correct
predictions. Experiments for time complexity evaluation and
accuracy of SDAKG and ANAKG networks were conducted
on the laptop Dell Inspiron 15R with Intel Core i3 and
4GB RAM.

The first type of experiment was to check the accuracy of
SDAKG memory responses after learning in comparison to
the response from the associative learning graphs ANAKG
presented in [13]. Like SDAKG, the ANAKG uses associative
learning based on the input sequences; however, it does not
learn synaptic delays.

In these experiments, sentences from Table I were used.
In the learning stage, time intervals between consecutive words
in sequences were set randomly with a normal distribution
with 500 ms mean and standard deviation equal to 20 ms.

Table II shows the results of tests with stimulation inputs
and responses of SDAKG and ANAKG neural graphs. The
results of the performed experiments show that the SDAKG
neural graphs give the correct answers in the prediction mode.

The second type of experiment was conducted using auto-
matic tests on a bigger set of data. The first 1000 sentences
with a number of symbols N ≥ 10 from “The Brothers
Grimm Fairy Tales” were chosen to construct SDAKG graphs.
To test the created SDAKG structures, a test set of the first
500 sequences was chosen. Each test sequence was gradually
applied to the SDAKG network, and the strongest prediction
response was compared to the test sequence, and the number
of correct responses was noted.

The results, shown in Table III, demonstrate that the increas-
ing number of context input elements quickly increases the
percentage of the correct responses. We can conclude that
stimulation length equal to 4 is sufficient to obtain results with
very high accuracy (98%).
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TABLE II

RESULTS OF EXPERIMENTS VERIFYING THE ACCURACY
OF SDAKG NEURAL GRAPHS RESPONSES

TABLE III

ACCURACY OF SDAKG NETWORK RESPONSES
AS A FUNCTION OF THE NUMBER OF INPUTS

The third type of experiment was conducted to check the
computational cost of SDAKG neural graphs in comparison to
ANAKG neural graphs. We tested how the number of stored
sequences influences the number of neurons, gates, synapses,
and learning time.

The numbers of neurons are the same as the number of new
symbols (words) in the set of sequences. In all experiments,
input sequences were taken from The Brothers Grimm Fairy
Tales. In the following test, time intervals between words were
set randomly with a normal distribution with the mean value
of 500 ms and a standard deviation of 20 ms. Table IV shows
the results of the conducted experiments.

B. Sequence Recognition Under Distortions

The next group of experiments checks recognition of dis-
torted input sequences. During these experiments, the memory
operated in the testing mode. One-thousand sentences from
The Brothers Grimm Fairy Tales, which had at least ten words,
were chosen for learning. To lower the impact of randomness
on the results, the following experiments were repeated ten
times, and the averaged results are displayed in Tables V–X.

The recognition process is realized by checking the activa-
tion level of the leaf-gates. Checking of recognition correct-
ness is realized by the comparison of the checked sequence
identifier, and the identifier saved in the winner leaf-gate.

First, the recognition of the original sequences (without
damages) was tested. In this test, delays between symbols were
random with the same parameters as in the learning process.
Per 1000 sequences all answers of the networks were correct.

TABLE IV

COMPUTATIONAL COST OF SDAKG AND ANAKG NEURAL GRAPHS

TABLE V

ACCURACY OF SDAKG NETWORK RESPONSES AS A FUNCTION
OF THE NUMBER OF REMOVED ELEMENTS

TABLE VI

ACCURACY OF SDAKG NETWORK RESPONSES AS A FUNCTION

OF THE NUMBER OF REMOVED ELEMENTS WITH
DIFFERENT STANDARD DEVIATIONS σG

TABLE VII

ACCURACY OF SDAKG NETWORK RESPONSES AS A

FUNCTION OF THE NUMBER OF INSERTED ELEMENTS

TABLE VIII

ACCURACY OF SDAKG NETWORK RESPONSES AS A FUNCTION
OF THE NUMBER OF INSERTED ELEMENTS WITH

DIFFERENT STANDARD DEVIATIONS σG

TABLE IX

ACCURACY OF SDAKG NETWORK RESPONSES AS A FUNCTION

OF THE NUMBER OF REPLACED ELEMENTS

In the first test, some elements of the original sequences
were removed at random locations within each tested
sequence. Standard deviation σG used in the synaptic gate



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE X

ACCURACY OF SDAKG NETWORK RESPONSES AS A FUNCTION
OF THE NUMBER OF REPLACED ELEMENTS WITH

DIFFERENT STANDARD DEVIATIONS σG

attenuation function (2) were computed during the mem-
ory organization and learning process from σG = σr +
(2 ∗ t̂mr/(n + 1)1/2) + ε. Table V shows the recognition cor-
rectness statistic as a function of the number N of removed
elements.

Next, tests were to determine the optimum value of the
standard deviation σG used in the synaptic gate attenuation
function (2). Table VI shows the recognition correctness
statistic as a function of the number of removed elements
N (columns) with different standard deviations σG (rows).
In Tables VI, VIII, and X, the best accuracy values (in percent)
are marked in bold.

In the next test, a recognition level of damaged sequences
with several extra elements inserted into random locations
within each tested sequence was computed. Only the symbols
that do not belong to the examined sequence were taken into
account. Table VII shows the recognition correctness statistic
as a function of the number of inserted elements N .

As before, we performed multiple tests to determine the
optimum value of the standard deviation σG used in the synap-
tic gate attenuation function. Table VIII shows the recognition
correctness as a function of the number of inserted elements
N (columns) with different standard deviations σG (rows).

In the next tests, a recognition level of damaged sequences
with several elements within each tested sequence replaced
at random locations was computed. Table IX shows the
recognition correctness statistic as a function of the number
of replaced elements N .

In addition, Table X shows the dependence of the correct-
ness statistics on the standard deviation σG (rows).

Since in practical situations all tested types of distor-
tions may occur, we combine the optimum σG values to
obtain settings for the robust recognition of tested sequences.
The optimal values σG1, σG2, σG3 for a different number of
distorted elements are from the corresponding columns in
Tables VI, VIII, and X and are combined using

μ(σG1, σG2, σG3) = 1
1

σG1
+ 1

σG2
+ 1

σG3
3

= 3
1

σG1
+ 1

σG2
+ 1

σG3

.

(13)

Table XI presents these optimum values of σG .
Since we cannot anticipate the type of damage, we rec-

ommend choosing the value of the standard deviation based
on all possible type of damages for a given problem. Thus
for the optimum performance with a small number of errors
in the input sequence, we recommend using σG that is

TABLE XI

AVERAGED ACCURACY OF SDAKG NETWORK FOR COMBINED
σG VALUES AS A FUNCTION OF THE NUMBER OF FAULTS

TABLE XII

AVERAGED ACCURACY OF SDAKG NETWORK FOR σG = 5000
AS A FUNCTION OF THE NUMBER OF FAULTS

ten times the average delay between sequence elements.
Applying such single σG = 5000 ms, we get the aver-
age recognition results for all tests performed as shown in
Table XII.

C. Comparison With Other Sequential Memories

In the next tests, a comparison between recognition level of
the SDAKG, LSTM networks [16] and HTM networks [17]
was performed on the set of 100 ten-element sequences from
“The Grimms Brothers Fairy Tales.”

1) Long Short-Term Memory: The test results depend on
a type of configurations of the LSTM network used as a
sequence classifier. In all experiments with LSTM, we used
a special vector with length equal to 32, which represents all
separate symbols, N separate outputs for each sequence, and a
different number of cells. All the structures had an embedded
layer (as the first layer), and a dense layer (as the last layer).
In addition to these two layers, we checked several network
structures that had the following specifications:

1) an LSTM layer;
2) a) a dropout layer with the noise level equal to 0.2;

b) an LSTM layer;
c) a dropout layer with the noise level equal to 0.225.

an LSTM layer with the input and recurrent dropout with the
noise equal to 0.2

In these experiments, the noise was introduced to prevent
the overfitting of networks during their training. In each
example of network structure training which uses the binary
cross-entropy loss function, an Adam optimizer was processed
in 1000 learning epochs.

Each experiment was repeated 100 times and averages
were calculated. In all tests, we used 1000 learning epochs.
Damaging of original sequences was introduced to obtain a
suitable test set which contains sequences (each represents a
separate class) which are similar to corresponding sequences
in the training set. The best results were obtained for the
configuration Band shown in Table XIII.

Now we can compare the best results obtained by the LSTM
experiments of classifications of sequences after the tuning
parameters with the results from SDAKG (see Table XIV).

Finally, we can conclude that the results of the optimized
LSTM networks are significantly worse than those obtained
by the SDAKG networks.

2) Hierarchical Temporal Memory: Next, we compared
performance SDAKG and HTM networks on a sequence
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TABLE XIII

ACCURACY OF LSTM NETWORK RESPONSES AS A FUNCTION OF THE
NUMBER OF DAMAGES (REPLACED ELEMENTS) FOR DIFFERENT

NUMBER OF LSTM CELLS (SECOND SERIES OF EXPERIMENTS)

classification problem. Each element of each sequence was
encoded using random distributed scalar encoder (RDSE)
vectors with a length of 2048 bits. The temporal memory
network structure had 2048 minicolumns with 32 cells per
each column.

During training, associative connections are created in
each time step between cells of minicolumns. Only one
epoch was used in the training process, as it gave the best
results.

After training, both training and test data (damaged
sequences with N damages) were used to obtain test statistics.
In these tests, three classification methods were used.

1) The first method (called Cell Dist [29]) builds sets
of correctly predicted cells, i.e., cells which are both
active and were in the predictive mode in the previous
time step. These sets are used for similarity matrix
calculation between all sequences from the test and
training sets. In this matrix, rows represent sequences
in the test set, and columns represent sequences in the
training set. Let us assume that s1 represents a set of
the correctly predicted cells in the kth element of the
i th test sequence, and s2 represents a set of the correctly
predicted cells in the kth element of the j th training
sequence. Values of the cells of the similarity matrix
are calculated from the following formula:

D[i, j ] =
N∑

k=1

|s1 ∩ s2|
|s1∪s2| (14)

where N is the number of elements of the analyzed
sequences.
Finally, accuracy is calculated in the following way.
For each sequence i , in the test set, the row from the
similarity matrix that represents this sequence is chosen
(Di [ j ]). If the label of the j th sequence for which Di [ j ]
is maximum is the same as label the of the i th sequence,
then the recognition is correct.

2) In the second method (called Active FreqDist [29]),
the RDSE vectors from the training and test sets are
tested using the temporal memory obtained earlier. For
each sequence, the histogram of active cells in all
minicolumns is built and is divided by the sum of the
histogram elements. The histograms obtained from the
training and test sets are used for the similarity matrix

Fig. 7. Square root of time needed to store the specified number of sequences.

calculation using the following formula:

M[i, j ] =
H∑

k=1

√
hi [k] ∗ h j [k] (15)

where:
hi is the histogram of the i th sequence from the test

set;
hj is the histogram of the j th sequence from the

training set;
k is the index the of element from the histogram;
H is the length of the histogram.

Finally, the accuracy is calculated identically as in the
previous method.

3) The third method (called Pred-Active FreqDist [29])
uses histograms of cells that are both active in the current
time step and were in the predictive mode in the previous
time step while sequence testing use histograms of active
cells as in the second method.

Results of the above methods for a different number of
damages in the original sequences were shown in Table XV
and compared to results obtained using SDAKG. Each exper-
iment was repeated 100 times, and the averages were saved
in Table XV.

Among the methods using temporal memory, the best results
were obtained using the third method. However, all methods
gave results worse than those using SDAKG.

D. Timing Analysis

Fig. 7 compares the learning times needed to construct
ANAKG and SDAKG memories. The vertical axis shows the
square root of the computation time. We can conclude that the
time complexity of learning of both methods is O(N2), where
N is the number of sequences. However, the construction and
analysis of the SDAKG graphs are more efficient.

The time performance comparison was also tested for
SDAKG, LSTM [16], and HTM [17] networks. Table XVI
shows the total training times of these networks for the
increasing number of sequences.

For LSTM memories, the 1000 learning epoch and
1100 memory cells were used. We noticed that increasing
the number of memory cells in LSTM resulted in a fast
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TABLE XIV

ACCURACY OF SDAKG AND LSTM NETWORKS RESPONSES AS
A FUNCTION OF THE NUMBER OF REPLACED ELEMENTS

TABLE XV

ACCURACY OF HTM NETWORKS RESPONSES AS A FUNCTION

OF THE NUMBER OF REPLACED ELEMENTS

TABLE XVI

LEARNING TIMES FOR TEMPORAL MEMORY

IN LSTM, HTM, AND SDAKG

increase in testing time and memory requirement. However,
keeping a constant number of LSTM cells resulted in a drop
in test accuracy. For HTM memories, the networks with a
constant number of minicolumns (2048) and cells for each
mini-column (32) were used. The training of HTM networks
using datasets consists of building sparse representation and
temporal memory training stage when associative connec-
tions are forming using a different number of sequences.
In Table XVI, HTM training times contain both of described
stages. Notice that SDAKG training times are smaller than
in Table IV because of the sequences limited to ten elements
are used here.

Table XVII shows testing times per sequence comparing
SDAKG, LSTM, and HTM memories. For HTM these times
contain a calculation of responses for training and test sets,
calculation of appropriate similarity matrices and final recog-
nition, calculated for all methods described earlier (M1—Cell
Dist, M2—Active FreqDist, M3—Pred-Active FreqDist). The
averaged testing times are presented for all networks in msec.

1) Testing Larger Data Set: Next, we checked if SDAKG
analysis scales well for larger networks. The averaged learn-
ing and testing times for original sequences are presented
in Table XVIII for increasing the number of sequences
from 1000 up to 10 000.

During these experiments, the tests were performed for all
sequences with damages from 0 to 9 replaced elements without
using special σG settings. The results of the recognition
of sequences for 10 000 sequences for a different number
of replaced elements were similar to those obtained testing

TABLE XVII

TESTING TIMES FOR LSTM, SDAKG, AND HTM NETWORKS

TABLE XVIII

LEARNING AND TESTING TIMES FOR SDAKG
NETWORKS FOR A LARGER DATASET

damages in 1000 sequences, which indicates the robustness of
this approach.

Finally, we tested 57 090 sequences on the set of sequences
obtained from the entire story Les Miserables by using
ten consecutive words for each sequence. Learning time
was 1511 s.

VI. CONCLUSION

We presented a new concept of associative memories in
which synaptic connections of the self-organizing neural net-
work elements learn time delays between the input sequence
elements. Thus, synaptic connections represent both the synap-
tic weight and the expected delays. This facilitates recognition
of time sequences and, at the same time, provides the context-
based association between the observed sequence elements.
Characteristics of time delays are learned each time an input
sequence is presented. The corresponding SDAKG is con-
structed, and then it operates from the moment a first input
sequence is presented. There are no separate learning and
testing modes, as the network starts to predict the next input
element as soon as there is no expected input signal. In such
a case, the network enters the prediction mode and continues
to predict remaining elements of the stored sequence. These
prediction signals depend on the presented input context and
the knowledge stored in the graph. This mode of operation
is preferred for the organization of episodic memories in
which memories are used to store the episodes as well as to
recall them if a sufficient context is provided. Such associative
sequential recall is useful for the operation of working memory
in a cognitive agent.

The network can accommodate more than one distribu-
tion of sequential delays by building parallel synapses with
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different statistics. Postsynaptic gates are activated according
to the signal strength that results from time deviation from the
expected delays and synaptic efficacy which represents how
often a specific postsynaptic gate was activated in comparison
to activation of the presynaptic gate. Synaptic efficacy may
indicate a learned preference of an expected input over another
input. Such preference can be enhanced by including the
significance of the incoming signal. However, due to space
limits, we did not present the results of the significance-based
preference. Moreover, a hierarchical organization of SDAKG
networks will yield memories in which multiple sequences can
be played back after partial sequence recognition was taken
place on the lower level of the hierarchy. This will be a subject
of further studies.

Test results demonstrate that the network correctly recog-
nizes the input sequences if the delays between the input
elements are within learned statistical distributions of such
delays. The comparison to ANAKG networks shows that the
developed approach is more efficient, requires less simulation
time to construct and analyze the network, and provides
more accurate results. Performed sequence recognition under
distortions of the sequence elements demonstrated the great
robustness of SDAKG memories, particularly as compared to
LSTM and HTM memory networks. This feature is extremely
important in practical applications where recognition of the
input symbols, missing symbols, or other types of distortions
are frequently observed.

This paper deals only with symbolic inputs, where each
input neuron represents a single observed object, and only a
single Observed object neuron is activated each time. Thus,
the resulting memory describes the storage of sequences
and associations typically performed on higher levels of the
memory hierarchy. We currently work on vector/matrix form
of the SDAKG input that could be used on the lower levels
of the memory hierarchy and applied to problems like speech
recognition, when an input is a sequence of vectors that contain
numerical values of the cepstral coefficients.
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