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Abstract. This paper proposes novel hierarchical self-organizing associative 
memory architecture for machine learning.  This memory architecture is char-
acterized with sparse and local interconnections, self-organizing processing ele-
ments (PE), and probabilistic synaptic transmission. Each PE in the network 
dynamically estimates its output value from the observed input data distribution 
and remembers the statistical correlations between its inputs.  Both feed for-
ward and feedback signal propagation is used to transfer signals and make as-
sociations.  Feed forward processing is used to discover relationships in the in-
put patterns, while feedback processing is used to make associations and pre-
dict missing signal values. Classification and image recovery applications are 
used to demonstrate the effectiveness of the proposed memory for both hetero-
associative and auto-associative learning.      

Keywords:  associative memory, hierarchical structure, self-organization, clas-
sification, image recovery. 

1 Introduction 

Associative memory is of critical importance for machine learning, information 
representation, signal processing and a wide range of applications.  Therefore, it has 
attracted extensive research in engineering and science.  There are two types of asso-
ciative memories: hetero-associative (HA) memory makes associations between 
paired patterns, such as words and pictures, while auto-associative (AA) memory 
associates a pattern with itself, recalling stored patterns from fractional parts of the 
pattern as in image recovery.    

Both types of memories have attracted a significant attention in recent literature.   
For instance, among HA studies, J. Y. Chang and C. W. Cho proposed adaptive local 
training rules for second-order asymmetric bidirectional associative memory (BAM) 
in [1]. Simulation results of this BAM on color graphics adapter (CGA) fonts illus-
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trate the effectiveness of this memory. Salih et al. proposed a new approach for bidi-
rectional associative memories (BAM) using feedback neural networks [2].  The 
perceptron training algorithm was used to solve a set of linear inequalities for the 
BAM neural network design.  In [3], Wang presented a multi-associative neural net-
work (MANN) and showed its application to learning and retrieving complex spatio-
temporal sequences.  Simulation results show that this system is characterized by fast 
and accurate learning, and has the ability to store and retrieve a large number of com-
plex sequences of nonorthogonal spatial patterns.  Hopfield’s paper [4] is a classic 
reference for auto-associative studies.  Since that paper, many research results have 
been reported.  For instance, Vogel presented an algorithm for auto-associative mem-
ory in sparsely connected networks [5].  The resulting networks have large informa-
tion storage capacities relative to the number of synapses per neuron.  Vogel et al. 
derived a lower bound on the storage capacities of two-layer projective networks (P-
nets) with binary Hebbian synapses [6]. Recently, Wang et al. proposed an enhanced 
fuzzy morphological auto-associative memory based on the empirical kernel map [7].   

In this paper, we developed a probability based associative memory algorithm and 
memory architecture that is capable of both hetero-associative (HA) and auto-
associative (AA) memory. This paper is organized as follows.  In section 2, a new 
probability based associative learning algorithm is proposed.  In section 3, we discuss 
the network architecture and its associative mechanism.  In section 4, classification 
and image recovery applications are used to illustrate the HA and AA applications of 
the proposed memory structure.  Finally, conclusions are given in section 5. 

2 Associative Learning Algorithm  

The proposed memory architecture consists of a multilayer array of the processing 
elements (PE).   Its organization follows a general self-organizing learning array 
concept presented in [8].  Fig. 1 gives the interface model of an individual PE, which 
consists of two inputs (  and ) and one output ( ).  Each PE stores observed 

probabilities , ,  and , corresponding to four different combinations of 

inputs  and  ( ), respectively.      
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Fig. 1 Individual PE interface model 

Fig.2 gives an example of possible distribution of the observed input data points 
(scaled to the range [0 1]). Probabilities are estimated from totnnp /0000 = , 

totnnp /0101 = , totnnp /1010 =  and totnnp /1111 = , where  , ,  and  is 

the number of data points located in
00n 01n 10n 11n

5.0&5.0 21 << II , 5.0&5.0 21 >< II , 



5.0&5.0 21 <> II  and , respectively.   is the total number of 

data points defined as 

5.0&5.0 21 >> II totn

11100100 nnnnntot +++= .   

Based on the observed probability distribution and  of an in-

dividual PE, each PE decides its output function value F by specifying in its truth 
table as shown in Table 1.  

100100 ,, ppp 11p

The output function values  and are decided as follows: 10,0100 , fff 11f
(1) The input, , that is associated with the largest probability, 

, is assigned a corresponding output function 

),( 21 II
)1,0,(, =jipij F  value of 0.  

(2) If the largest probability is less than 0.5, then the input , that is associ-

ated with smallest probability is also assigned a corresponding 

),( 21 II
F  value of 0;  

(3) If the sum of the largest and smallest probabilities is less than 0.5, then the 
input, , that is associated with the second-smallest probability  

is also assigned a corresponding 

),( 21 II )1,0,(, =jipij

F  value of 0;  
(4) All input combinations not assigned corresponding F  value of 0 by the 

above rules are assigned a corresponding F  value of 1.  
Table1: Self-determination of function value F 

Probability 00p  01p  10p  11p  

1I  0 0 1 1 

2I  0 1 0 1 

Function value 00f  01f  10f  11f  

The probability that the neuron is active is smaller than 0.5.  This type of as-
signment is motivated by the sparse activity of biological neurons [9].  In addition to 
biological motivation, lower activities are preferable for efficient power consumption.  
Probabilities  can be efficiently estimated in real time hardware using dynamic 

probability estimator [10].  Table 2 shows two examples of this self-determination of 
the function value F.       

ijp

Table 2: Two examples of setting F value  

00p  01p  10p  11p   F  
0.4 0.2 0.3 0.1  0 1 1 0 
0.4 0.05 0.3 0.25  0 0 1 0 

During training, each PE counts its input data points in  and  and 

estimates their corresponding probabilities  and .  The objective of 

the training stage for each PE is to discover the potential relationship between its 
inputs. This relationship is remembered as the corresponding probabilities and is used 
to make associations during the testing stage.   

100100 ,, nnn 11n

100100 ,, ppp 11p

Considering the example in Fig. 2, this particular PE finds that most of its input 
data points are distributed in the lower-left corner ( 5.0&5.0 21 << II ).  Therefore, if 

this PE only knows one of the input signal is 5.01 <I , it will associatively predict 

that the other signal most likely should also be 5.02 <I .  The developed algorithm 



allows all the PEs in the network to make such associations between different input 
signals.  

 
Fig. 2 An example of input space distribution of PE 

Fig. 3 illustrates the three types of associations used in the proposed memory 
model.  The undefined signal means its value is equal to 0.5, in such way, 0 and 1 
represents the strongest signal.  There are three types of associations used in the test-
ing stage to infer the undefined signal value.    

 
Fig 3 Three types of associations of processing element 

(1) Input only association (IOA).  If, in the testing stage, one input is defined 
while the other input and the received output feedback signal  from other PEs are 

undefined (for instance, if  = 0, = 0.5 and 

fO

1I 2I 5.0=fO  as in Fig. 3(a)), this PE will 

determine  through association with , driving  towards logic 0.     2I 1I 2I
(2) Output only association (OOA).  If both inputs,  and , are undefined, a 

defined feedback signal, , will determine both inputs (Fig 3(b)).  For instance, if 

= 0, based on PE function F= {0, 1, 1, 1}, then this PE will set both inputs,  

and  to 0. (Here we use 

1I 2I

fO

fO fI1

fI2 fI1 fI1 and  to denote the feedback signals of inputs 1 

and 2 to distinguish them from the corresponding feed forward signals).  On the other 
hand, if F sets the received output feedback signal to =1, the input feedback val-

ues,  and , are intermediate and their values will be estimated according to 

data distribution probabilities.  

fI2

fO

fI1 fI2

(3) Input–output association (INOUA).  If one input and the output feedback sig-
nal, , are defined and the other input is undefined, the PE will set the other input 

signal according to its observed probabilities, as shown in Fig. 3(c).  
fO



This probability based associative learning algorithm can be described as follows:  

Case 1: Given the semi-logic values of both inputs and , decide the 

output value V  

)( 1IV )( 2IV
)(O

Assume one PE received input values mIV =)( 1 and nIV =)( 2 , then 

00
21

21
10

21

21

01
21

21
11

21

21

)0,0(
)1,0,0(

)0,1(
)1,0,1(

)1,0(
)1,1,0(

)1,1(
)1,1,1()(

V
IIp

FIIpV
IIp

FIIp

V
IIp

FIIpV
IIp

FIIpOV

•
==

===
+•

==
===

+

•
==

===
+•

==
===

=

                 (1) 

where and  are defined as 100111 ,, VVV 00V

;)1)(1();1(
;)1(;

0010

0111

nmVnmV
nmVmnV

−−=−=

−==
                              (2) 

and ,)1,1,1( 21 === FIIp )1,1( 21 == IIp  etc. are joint probabilities.  Case 1 is used 

when a signal is propagated forward.  
Case 2: Given the values of one input, , and an undefined output 

, decide the value of the other input. 

))()(( 21 IVorIV
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Case 2 corresponds to input-only-association (IOA) when a signal is propagated 

backwards, as shown in Fig. 3(a).  We can use a given  to decide an unknown 

 as follows:   
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where 11101 )1( ppIp +== , 01001 )0( ppIp +== . In the case in which  is 

given and determines ,  and  are switched in equation (3).  
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Case 3: Given the value of the output , decide the value of both inputs  

and . 
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Case 3 corresponds to output-only-association (OOA) when a signal is propa-
gated backwards as shown in Fig. 3(b).  )1( =Fp  and )0( =Fp are determined by the 
output of each PE.  

Case 4: Given the values of one input, ( or ,  and the output, , de-

cide the other input value,  or ;  

)( 1IV )( 2IV )(OV
)( 2IV )( 1IV

Case 4 corresponds to the input-output-association (INOUA) when a signal is 
propagated backwards (Fig. 3(c)). For example, we can use a given  and 

to decide as follows:  

)( 1IV
)(OV )( 2IV
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where and  are determined in the following way:  100111
ˆ,ˆ,ˆ VVV 00V̂
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(6)                                                  
 
 
 
 
 

The conditions in equation (6) refer to the function value of F for each particular 
PE, where “ X ” is a do not care, which means its value can be either ‘0’ or ‘1’.  For 
example, if one PE received ( ) mIV =1  and ( ) tOV = , and the function value of this 

PE is F= {0 1 1 1}, we will get the following results: 

)1(*)1(ˆ;*)1(ˆ;0ˆ;ˆ
00011011 tmVtmVVmV −−=−===  

When  and are given one only needs to switch  and in equations 

(5) and (6) to decide .  

)( 2IV )(OV 1I 2I
( )1IV

3. Memory Network Architecture 

The overall memory network is a hierarchical structure of sparsely connected self-
organizing PE’s.  Each layer of this hierarchical structure contains a number of PEs 
connected to the primary inputs or to the outputs of other processing elements from 
lower layers of hierarchy.  For n-dimensional input, the network should have at least 
n/2 PEs in each layer.  The required number of layers depends on the problem com-
plexity and may be determined through simulation.  In practice, the number of layers 
grows logarithmically with the size of the input vector.   

Each PE in the array can self-organize by dynamically adapting its function in re-
sponse to the input data.  The hierarchical connections are suitable for hardware im-
plementation, time control, and correlate well to complexity of object representation.  
The further away a PE is from the sensory input, the more abstract and invariant is 
the representation of objects or their features captured by the PE. Each PE is more 
likely to connect to other PEs within a short Euclidean distance.  This organization is 
observed in biological memory where neurons tend to have mostly local connections.  

(1) Feed forward operation 
Fig 5 shows a feed forward network structure for the proposed memory architec-

ture.  For simplification, we only illustrate 4 layers with 6 PEs per layer and 6 input 



signals.  The bold lines from PE 1 to PE 11 and from PE18 to PE21 are two examples 
of the distant connections.  

 
Fig 4:  An example of feed forward operation network 

 
During training, all external input data are presented to the network.  Each PE 

counts activities on its inputs to estimate the corresponding probabili-
ties, , and decide its output function as in case 1 of Section 2.  This prob-

ability information will be used to make associations in the feedback operation. 

)1,0,(, =jipij

(2) Feedback operation 
Feedback operation is essential for the network to make correct associations and to 

recover the missing parts (undefined signals) of the input data.  Fig. 5 shows a feed-
back structure.  Assume that signals 1, 2 and 3 are undefined as would be the case in 
a classification application where all the class ID code inputs are undefined and only 
the feature input values are available, and in the image recovery application, part of 
the image could be blocked or undefined. In both cases, the network will use the 
associations mechanism as discussed in Section 2 to determine these undefined signal 
values.   

In Fig. 5, the shaded PEs are associative and will use associations to recover the 
undefined values.  For instance, PE4 received one defined signal and one undefined 
signal. In this situation, PE4 will use the IOA to associatively recover this undefined 
signal based on the information it learned in the training stage.  Some associations 
will also happen in a deeper layer. Considering PE22, it will use IOA to associatively 
recover the other input signal . This feedback signal will back propagate to PE15 

(it will become the  for PE15).  Therefore, based on the OOA, PE15 will associa-

tively recover both input signals of PE15. In this way, these feedback signals will 
further back propagate to other hierarchical layers in the network. Therefore, the 
missing information in the sensor input will be recovered.   

fI2

fO

 



 

Fig. 5 Example of feedback structure in testing stage 

4 Simulation results 

The proposed probability based self-organizing associative memory is capable of 
both hetero and auto-associations.  In this section, the Iris database and an image 
recovery problem are used to illustrate the HA and AA applications.  

 (1)  Hetero-associative memory: Iris database classification 
The Iris database  [11] developed by R. A. Fisher was used to test the classification 

performance of the proposed associative memory.  We used an N-bits sliding bar 
coding mechanism to code the input data. Assume that the maximum and minimum 
values to be coded are and respectively.  We set maxV minV minmax VVLN −=− , 

where L is the length of the sliding bar.  Assume that the value of the scaled feature 
to be coded is V.  In the coded input we set bits numbered from 1)( min +−VV  to 

 to 1s, while the remaining bits were set to 0.  The class ID is coded in 

a similar way using M bit code redundancy.  Since there are 3 classes in this database, 
we use M*3 bits to code the class ID, maximizing their Hamming distance.  This was 
achieved by filling the M bits from position 

LVV +− )( min

MCi *)1( −  to  with 1’s, while 

filling the remaining 

MCi *
2*M  bits with 0’s. Here 2,1=iC  and 3  for this 3 classes Iris 

database.   
Since there are only 150 instances in the Iris database, the ten-fold cross validation 

method was used to handle this small sample dataset.  Our memory network achieved 
an overall of 96% correct classification accuracy.  Fig. 6(a) shows the associative PEs 
and their connection structure, and Fig. 6 (b) shows associative PE firing activity for 
part of the network. The Y-axis represents the input bits, and the X-axis represents 
the distance from the input (association depth). The associative PEs are represented 
by circles and their backward propagation paths are marked.  The large dots at the 
input layer represent correctly recognized class ID code bits. It may be seen that only 
6 layers are needed for the network to learn the associations in the Iris database. 

(2) Auto-associative memory: image recovery 
An image recovery problem was used to test the effectiveness of the proposed 

memory for auto-associative applications.  We used the proposed memory to associ-



ate parts of images, and then recall the images from fractional parts of the images.  
This is necessary for applications where only partial images are available without 
specifying class identities.  Our model can learn features of the training data using 
unsupervised learning, self-determine the feedback depth, and make correct associa-
tions to recover the original images.    

We used a 64 x 64 binary panda image [12] to illustrate the auto-associative appli-
cation of the proposed memory architecture. The panda image is represented by a 
vector ( ) 4096,...21 == nxxxp ni , with  =1 for a black pixel and  =0 for a 

white pixel.  In testing,  percentage (
ix ix

%r 20,10=r  and 30) of the panda image was 
randomly blocked. The original panda image and samples of its blocked image are 
shown in Figs. 7(a) and (b), respectively.  Fig. 7(c) shows images recovered through 
our associative memory. We evaluate image recovery performance by computing the 
ratios of the number of incorrectly recovered pixels (both erroneous pixels and pixels 
remaining undefined after recovery) over the total number of pixels.  As we can see 
from Fig. 7, the recovery error bits of our associative memory is range from 0.2% ~ 
0.4%.  

 
Fig. 6 Associative PEs and their inter connection structure  

5. Conclusion 

In this paper, we proposed a hierarchical associative memory architecture for ma-
chine learning that uses probability based associations.    Through the associative 
learning algorithm, each processing element in the network learns the statistical data 
distribution, and uses such information for input data association and prediction. 
Simulation results on both classification and image recovery applications show the 
effectiveness of the proposed method.     



 
Fig. 7. (a) The original image; (b) Blocked image with r% of undefined values (r= 10, 20 

and 30 respectively); (c) Recovered image and the recovery error 
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