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Abstract. In this paper we introduce feedback based associative learning in 
self-organized learning arrays (SOLAR). SOLAR structures are hierarchically 
organized and have the ability to classify patterns in a network of sparsely con-
nected neurons. These neurons may define their own functions and select their 
interconnections locally, thus satisfying some of the requirements for biologi-
cally plausible intelligent structures. Feed-forward processing is used to make 
necessary correlations and learn the input patterns. Associations between neu-
ron inputs are used to generate feedback signals. These feedback signals, when 
propagated to the associated inputs, can establish the expected input values. 
This can be used for hetero and auto associative learning and pattern recogni-
tion.  

1. Introduction 

Associative learning has been long recognized as one of the necessary elements of in-
telligence, thus it is desirable that an artificial system that mimics biological intelli-
gence be able to perform both spatial and temporal associations. Associative networks 
were developed as a special class of artificial neural networks to handle associative 
learning and retrieval of information. There are two types of associative networks, 
hetero-associative (HA) and auto-associative (AA). Hetero-associative networks are 
capable of making associations between two or more different types of input signals. 
Auto-associative networks learn associations between elements of the same input vec-
tor. Such networks can learn various patterns, and then recall the pattern based on a 
fractional part of a pattern. Examples of HA networks include multilayer perceptron 
[1], the counter-propagation network [2], the bidirectional associative memory [3] and 
multi-associative spatio-temporal network [4], while the Hopfield network [5] and the 
Vogel associative memories [6,7] are AA. In this paper we present a model of the 
self-organizing learning array that implements both the hetero and the auto-
associative learning.  

Spatio-temporal associations are particularly important in both biological and elec-
tro-mechanical systems. For instance, a spatio-temporal association may trigger a re-
active response in an animal or guide the robot to its target. Time delays have been 
used in Hopfield networks [5] to generate spatio-temporal sequences which are time 
dependent sequences of spatial patterns. Storage and retrieval of spatio-temporal se-



quences was studied in many papers ([8 - 10]). While the proposed approaches 
achieved reasonable storage and retrieval of input sequences, they have some serious 
drawbacks if one wants to implement them in biologically plausible structures. In this 
paper we take on a different approach to pattern storage and associations. A hierarchi-
cal, multilayer structure based on our self-organizing learning architecture [11] is 
used, and we demonstrate that such structure can make the necessary associations be-
tween patterns using sparsely connected neurons. 

SOLAR (Self-Organized Learning Array) is a regular, two or three-dimensional ar-
ray of identical processing cells, connected to programmable routing channels. Each 
cell in the array has ability to self-organize by adapting its functionality in response to 
information contained in its input signals. Cells choose their input signals from the 
adjacent routing channels and send their output signals to the routing channels. Like 
artificial neural networks (ANNs), SOLAR is inspired by the structure of biological 
neural networks and shares their robust, distributed and parallel signal processing, yet 
it differs from existing realizations of ANNs. It has a deep multi-layer hierarchical 
structure, which helps to handle complexity of target problems, it uses online learning 
with dynamically set neuron functions and dynamically learned sparse connections, 
efficient in hardware realization. Prior study of SOLAR structures reported in [11] 
concentrated on demonstrating its pattern recognition and classification abilities.  In 
this paper we introduce a feedback mechanism with inhibitory connections and asso-
ciative learning to SOLAR. 

This paper has been organized in 4 sections. The second section discusses the 
structure and behavior of the proposed network. Section 3 presents testing results on 
several bench-mark machine learning problems. Section 4 contains conclusions. 

2. Network Structure and Operations 

In this work, the network has been formed as a two-dimensional structure, which is 
pseudorandomly constructed with interconnection structure of small world networks 
[12]. For a recognition task, it is trained with the input features that represent the pat-
terns, and the corresponding codes that represent the classification. The input span, 
defined by the number of rows, is set equal to or greater than the dimensionality of 
inputs. The depth of the network (the number of hierarchical levels) is set according 
to the input span. In a hierarchical structure, each neuron connects only to the neurons 
of the previous layer. Once the learning is completed, a network is capable to make 
necessary associations, such that when presented with the pattern only, it drives feed-
back to the associated inputs to assert the unknown code values. Similar to pattern 
recognition, missing data can be found from feedback traced to the unknown portion 
of the input. 

The outside input should be presented to the network in a binary form ranging from 
0 to 1. The signal strength is measured as the distance between the signal level and 
0.5. A signal is determinate if it is 0 or 1. It is a low (or high) if it is below (or above) 
0.5, and is unknown or inactive if it is 0.5. The probabilities of I1 and I2 being low or 
high and their joint probabilities can be recorded in each neuron. The conditional 
probabilities P(I2 | I1) and P(I1 | I2) can then be computed.  



A simplified confidence interval measure is used for each of the probabilities:   
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I1) - CI is then compared against a threshold τ . If larger, we can say that I1 can be 
implied from I2. Likewise, P(I1 | I2) decides whether  I1 can be implied from I2. 

Definition: Inputs I1 and I2 of a neuron are associated if and only if I2 can be im-
plied from I1 and I1 can be implied from I2 simultaneously. Such a neuron is then an 
associative neuron. Otherwise it is a transmitting neuron. 

Fig. 1 illustrates six different situations of I1 and I2 inputs that an associative neu-
ron may receive in training.  
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Fig. 1. Input Distribution to an Associative Neuron 

2.1 Feed Forward Scheme 

For the simplicity of discussion, we assume a fixed interconnection structure where 
each neuron has two inputs I1 and I2 and a single output O. The task of a neuron dur-
ing training is to discover the potential relationship between the two inputs and to re-
member it. The neuron needs to select a proper transfer function f from a predefined 
set F that can best describe the relationship between I1 and I2. It can then generate 
output O using f. Six functions, f1 to f6, are designed to include all the logic relation-
ships between I1 and I2 in an associative neuron, as shown in Fig. 1. In an associative 
neuron, the majority of the training data is either distributed in one dominant quad-
rant, or two diagonal quadrants. f1 to f4 are designed for the four possible locations of 
the dominant quadrant. Their output is always 1 for the dominant quadrant, and 0 for 
all the others. When data points are mostly distributed in two diagonal quadrants, f5 
and f6 are used as shown in Fig. 1. To accommodate noise f5 and f6 are defined only 
based on I1 to include all the data points. For example, 
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The neuron output is set “inactive” or 0.5, whenever either one of the inputs is 0.5.  
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If a neuron observes any distribution other than what is included in Fig. 1, it is a 
transmitting neuron. It simply transmits the input with higher entropy, called the 
dominant input, to O, with the other ignored. An input I1 is the dominant input if 

high)) is P(I-low) is abs(P(Ihigh)) is P(I-low) is abs(P(I 2211 <  (3) 

2.2 Feedback Scheme  

During testing, missing parts of the data need to be recovered from existing data 
through association. For example, in a pattern recognition problem, the neurons that 
are physically connected to the unknown code inputs are responsible for providing 
feedback from the associative neurons and define the values of the code. This, in turn, 
can be used either to classify the input pattern or to recover the uncertain inputs. 

The feedback scheme is an important part of associative learning. Fig. 3(a) shows a 
conceptual view of the network with separated known and unknown inputs. The white 
circles are the neurons that do not participate in signal processing. The black circles 
are actively associating neurons defined below. The gray circles are the remaining 
neurons involved in signal processing. The neurons on the known side generalize the 
information that activates associative neurons, which generate feedback to the un-
known side. In order to explain the working mechanism in single neurons, Fig. 2(b) 
shows a snapshot of the communication among four interconnected neurons.  

a

depth

Inputs

unknown

known
N4

N3N1
N2

b  
Fig. 2. Neuron Feedback Scheme 

When a neuron receives at least one active output feedback, the strongest feedback 
Of triggers the feedback to the neuron’s inputs. The input/output relationship in the 
feedback scheme for each neuron can be described by one of the following types. 

1. Transmitting neurons. A transmitting neuron (e.g. N1 in Fig. 2,) simply passes Of 
back into its dominant input. When the feedback I1f is stronger than the dominant in-
put I1, I1 will be overwritten by I1f.  

2. Associative neurons with determined inputs. If I1 and I2 of an associative neuron 
(e.g. N2 in Fig. 2,) are either 0 or 1, O will consequently be at full strength. Of won’t 
be able to change O. Feedback takes no effect and information passes forward.  



3. Associative neurons with active feedbacks and inactive input(s). For an associa-
tive neuron that doesn’t have determinate signals on both inputs (e.g. N3 in Fig. 2,) Of 
creates feedbacks I1f and I2f through the function f. If the feedback signals are stronger 
than the original inputs, these inputs will be overwritten. Consequently, overwritten 
inputs become feedback signals to the neurons N1 and N2, to which N3 inputs are 
linked. These neurons pass information backwards and they are not allowed to propa-
gate forward to higher hierarchical layers.  

4. Associative neurons with inactive feedbacks. Some neurons located deeply in 
the network may not receive active feedback at all, (e.g. N4 in Fig. 2). If one of their 
inputs is inactive, it will be overwritten based on its association with the other input 
and the neuron function f. These type of neurons are called actively associating and 
are the backbone of the associative processing in SOLAR. For instance, since I1 is 0.5 
for N4, the feedback to I1 is determined based on the known input I2 and the function 
f5. For neurons that fit scenarios 3 and 4, the input feedback is calculated differently 
for each function, based on the strength of Of and the quality of each neuron’s learn-
ing, which is not described in full details in this paper. 

3. Simulation Results 

Several benchmark classification and missing data recovery tasks have been used to 
test the performance of the proposed network.  

Teaching Assistant Evaluation database [13] consists of 151 instances, 5 features 
and 3 equally sized classes.  After a 15-cross validation, the overall correct classifica-
tion rate of SOLAR is 68.33% compared to 67% in [13].  

SOLAR was also tested with the Iris database [14], which has 3 classes, 4 numeric 
attributes and 150 instances. The hierarchical SOLAR network gets an average classi-
fication rate of 75.33% from a 15-cross validation.  An optimal input arrangement 
(using straight sliding bars and merging features and class id code) could further im-
prove the performance to 86%. For comparison, results reported in literature [15] give 
correct classification rate for the Iris database between 91.33% and 97.33%.  

The Glass Identification Database [16] was used to study the impact of the target 
problem’s complexity on the depth of the network. The network was first trained and 
tested with the whole database, which contains 6 classes and 9 features, and then with 
half of the database that only has 3 classes.  It was found that the more classes were 
used, the more layers SOLAR needs in its hierarchical structure. 

In addition, the network has successfully accomplished binary image recovery tasks. 
Although the current setup uses a two dimensional architecture, it is believed that a 
three dimensional network would handle image related problems better. 

4. Conclusions 

This paper presents an associative learning network based on a hierarchical SOLAR 
structure. SOLAR is a biologically inspired machine-learning concept. It is a sparsely 
connected network organized as a fixed lattice of distributed, parallel processing units 



(neurons). The associative learning SOLAR network described in this paper is con-
structed as a fixed connection network with feedback and inhibitory links. Similar to 
Vogel’s distributed auto-associative memories [7], SOLAR discovers the correlation 
between inputs and establishes associations inside the neurons, without a need to dif-
ferentiate between the associated classification code and data patterns. It is capable of 
handling a wide variety of machine learning tasks including classification and data re-
covery, and is suitable for online learning. The SOLAR organization will be further 
modified towards an advanced machine intelligence system capable of associative 
learning, adaptations, and value driven interaction with environment. 
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