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Associative Learning in Hierarchical
Self-Organizing Learning Arrays
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Abstract—In this paper, we introduce feedback-based associa-
tive learning in self-organized learning arrays (SOLAR). SOLAR
structures are hierarchically organized networks of sparsely
connected neurons that define their own functions and select
their interconnections locally. This paper provides a description
of neuron self-organization and signal processing. Feedforward
processing is used to make necessary correlations and learn the
input patterns. Discovered associations between neuron inputs
are used to generate feedback signals. These feedback signals,
when propagated to the primary inputs, can establish the expected
input values. This can be used for heteroassociative (HA) and
autoassociative (AA) learning and pattern recognition. Example
applications in HA learning are given.

Index Terms—Associative learning, feedback structure, pattern
recognition, self-organizing learning array (SOLAR).

I. INTRODUCTION

ASSOCIATIVE learning is one of the necessary elements
of intelligence, thus it is desirable that an artificial system

that mimics biological intelligence be able to perform both spa-
tial and temporal associations. Associative networks were de-
veloped as a special class of artificial neural networks (ANNs) to
handle associative learning and retrieval of information. There
are two types of associative networks: heteroassociative (HA)
and autoassociative (AA). HA networks are capable of making
associations between two or more different types of input sig-
nals. For instance, a HA network may associate a verbal com-
mand with an image or text. AA networks learn associations
between elements of the same input vector. Such a network can
learn various patterns, and then recall the pattern based on a frac-
tional part. For instance, it could recall an original pattern based
on a corrupt or partially missing pattern. Examples of HA net-
works include the multilayer perceptron [1], the counterprop-
agation network [2], the bidirectional associative memory [3],
and multiassociative spatiotemporal network [4], whereas the
Hopfield network [5] and the Vogel associative memories [6],
[7] are AA. Among these algorithms, the bidirectional associa-
tive memory has received more attention in the recent years on
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its noise performance [8], [9] and stability [10]. Its variation de-
signed for HA learning [11], [12] can accomplish one-to-many
association. In this paper, we present a model of the self-orga-
nizing learning array (SOLAR) that implements both HA and
AA learning.

Spatiotemporal associations are particularly important in
both biological and electromechanical systems. For example,
a spatiotemporal association may trigger a reactive response
in an animal or guide the robot to its target. Time delays have
been used in Hopfield networks [5] to generate spatiotemporal
sequences which are time-dependent sequences of spatial pat-
terns. Storage and retrieval of spatiotemporal sequences have
been studied in many papers (see, e.g., [13]). Buhmann [14]
used stochastic noise to link spatial patterns in Hopfield net-
works and obtain spatiotemporal sequences, which use Hebbian
learning rules [15] and, therefore, have relatively low memory
capacity. Guyon [16] presented a spatiotemporal system with
analytical expressions to represent stored sequences. Many
other mechanisms for spatiotemporal sequence generation have
been developed. For instance, Wang [17] proposed a network to
generate complex spatiotemporal sequences based on symbolic
inputs to represent associated patterns, whereas Wang [18]
proposed multiassociative neural networks for learning and
retrieving spatiotemporal patterns using the counterpropagation
mechanism with delay lines.

While the proposed approaches achieved reasonable storage
and retrieval of input sequences, they have some serious draw-
backs if one wants to implement them in biologically plausible
structures. The problem with counterpropagation networks or
networks with Hebbian learning is that they require global
wiring to all the pattern inputs from each competing neuron.
Thus, the number of interconnection wires grows quadratically
with the number of patterns stored, and such networks do not
scale well. In this paper, we take a different approach to pattern
storage and associations. A hierarchical, multilayer structure
based on our self-organizing learning architecture [19] is used,
and we will demonstrate that such a structure can make the nec-
essary associations between patterns using sparsely connected
neurons.

Prior study of SOLAR structures reported in [19] concen-
trated on demonstrating its pattern recognition and classification
abilities. In this paper, a feedback mechanism with inhibitory
connections and associative learning to SOLAR is introduced
and its performance on selected machine learning problems is
demonstrated. By comparing the activation levels of the input
neurons triggered by the associative feedback activities, we can
determine whether SOLAR made correct associations, and for
example, correctly recognized an observed pattern.
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This paper has been organized into five sections. Section II
discusses the structure of the proposed network, followed by
a description of network behavior in Section III. Section IV
presents testing results on several bench-mark machine learning
problems. Section V presents conclusion with ideas for future
work.

II. SOLAR

A. Properties of SOLAR

SOLAR is a regular, two-dimensional (2-D) or three-dimen-
sional (3-D) array of identical processing cells connected to pro-
grammable routing channels, as introduced in [19]. Each cell in
the array has the ability to self-organize by adapting its func-
tionality and interconnection structure in response to informa-
tion contained in its input signals.

Like ANNs, SOLAR is inspired by the structure of biological
neural networks and shares their robust, distributed, and par-
allel signal processing, yet it differs from existing realizations
of ANNs. It has a deep multilayer hierarchical structure, which
helps to handle the complexity of target problems. It uses online
learning with dynamically set neuron functions and dynamically
learned sparse connections that are efficient in hardware real-
ization. The structure is compatible with the self-organization
of cortical neurons [20], where half of initially grown intercon-
nections between neurons are pruned between early childhood
and adolescence.

A SOLAR structure in many ways resembles the organiza-
tion of cellular neural networks (CNNs). As in a CNN, the ar-
chitecture is defined by an array of identical cells, which adapt
their behavior to input data. The neurons are cellular automata,
which can be programmed to perform different computational
tasks based on data received from neighbors. Neurons can be ei-
ther static or dynamic, depending on their implementation and
types of signals processed. However, unlike a CNN, the con-
nectivity structure is not fixed. The interconnection structure of
a CNN is defined by templates, which limits its learning ability,
whereas the interconnection structure of a SOLAR can be dy-
namically changed during the network’s operation, and con-
tributes to learning. Thus, a CNN can be considered a special
case of the SOLAR structure.

An ANN forces specific output neurons to the trained values,
minimizing the error between the desired and the actual re-
sponses. This is not a natural response mechanism that may be
observed in the real brain. When the visual cortex recognizes
a specific object, a single neuron or a group of neurons may
fire somewhere in the middle of the brain structure, rather than
at a specified output location. How does the brain manifest its
recognition of the object? The process that follows this recog-
nition is complex and the brain does not immediately notify
an observer that recognition took place. The brain thinks about
the consequences of this recognition and occasionally the result
of such thinking manifests itself through action (activation of
motor neurons). This is when we can observe that the desired
information was recognized and acted upon.

In SOLAR, an object is also recognized internally and a
neuron(s) responsible for recognition is not wired to an output

to be observed. In fact, it is impossible to predict where the
recognition will take place, so we must develop a scheme
to verify the correctness of this recognition no matter which
neuron is responsible for it. One way of checking correctness of
pattern recognition is to use association. A simple pattern code
is used and associated with each class of the target patterns
(a class ID in classification applications.) This pattern code
is presented to the SOLAR structure together with the target
pattern to be memorized.

All that the neurons need to do is learn associations between
these two patterns, representing the local features and the clas-
sification ID, respectively. Once the learning is completed, a
network is capable of making the necessary associations, such
that when presented with the target pattern only, it drives the as-
sociated input signals to the values that represent the class ID
pattern. The network uses feedback signals to pass information
backwards to the associated inputs. No backpropagation of error
takes place, and only feedforward learning is used. Feedback
lines activate input code neurons when activity on associated
neurons is detected. By using this associative learning scheme,
a network is able to discover the inner correlation between the
inputs and recover absent or uncertain portions of these inputs.
The network behaves in the same way when it is presented with
only a portion of the target pattern and is used to recover the
missing portion of the pattern. Similar to the recognition appli-
cation, missing data can be found from feedback traced to the
unknown inputs.

B. Network Structure

According to its definition [19], a SOLAR network can be
formed as a regular 2-D or 3-D lattice of identical neurons. In a
2-D structure, the number of rows defines the input span. For a
recognition task, it is set equal to or greater than the dimension-
ality of the pattern inputs plus the associated class ID pattern
inputs. The number of columns indicates the depth of the net-
work (number of hierarchical levels), which is set according to
the input span. In a 3-D structure, the input span is 2-D with the
third dimension representing the hierarchical processing depth.
The network is pseudorandomly constructed with an intercon-
nection structure of small world networks [21]. A 3-D network
is expected to handle image related tasks better. It is believed
that biological neurons tend to have mostly local connections
[22], and therefore, the neurons in this associative learning net-
work also have a larger chance to be connected to neurons within
a short Euclidean distance. Both the regular array structure and
sparse local wiring are favored by hardware implementation,
both in field-programmable gate arrays (FPGAs) and analog
very large scale integration (VLSI) implementation platforms.
This structure fits silicon chip interconnection strategy better
and the sparse wiring saves design area when compared to the
intensive interconnections required by ANNs.

In general, SOLAR neurons can be connected to many other
neurons and their connectivity can be dynamically learned [23].
Since the major concentration of this work is on associative
learning, we have assumed a fixed interconnection structure for
simplicity of discussion. Furthermore, in the current implemen-
tation, each neuron has only two inputs and , received from
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the outputs of other neurons or from the sensory inputs, and a
single output . This makes it more convenient to design the
neural transfer functions and the associative learning scheme.
Since binary trees of such neurons can implement networks ca-
pable of arbitrarily complex associations, two-input neurons do
not limit complexity of the network operation. Network oper-
ations have been designed based upon such an interconnection
structure, which is not a restriction to our model.

III. NETWORK OPERATIONS

A. Signal Definition and Data Preparation

In the associative learning model implemented in this paper,
outside input is presented to the network in a binary form. De-
tails of signal digitization will be discussed in Section IV. The
internal signals of the network have semilogic values ranging
from 0 to 1, where 0 and 1 correspond to logic false or true, re-
spectively. A signal is determinate low or determinate high if its
value is 0 or 1. It is low if it is below 0.5 but above 0, and high if it
is above 0.5 and below 1. The signal strength is measured as the
distance between the signal level and 0.5. The “inactive” input
of unknown logic is 0.5. These semilogic signals can also be
understood as the likelihood of being determinate logic values.
These signals will be further explained and applied in the feed-
back calculation in Section III-D.

B. Associative Learning

The task of a neuron during training is to discover the poten-
tial relationship between its two inputs and to remember it. If
a neuron is able to observe any correlations in the statistics of
the input connections, it will function as an associative neuron.
Otherwise, it will be a transmitting neuron.

Since the signals have been defined in a semilogic format, the
probabilities of and being “low” or “high” and their joint
probabilities can be recorded using counters located in each
neuron. The conditional probabilities and
can then be computed, for example, is low is low

is low and is low is low . Similarly,
is high is low , is low is high , and

is high is high can be easily obtained.
A simplified confidence interval measure is used for each of

the probabilities: where stands
for the number of training inputs encountered. A confidence in-
terval helps to ensure that the estimated probabilities stay above
a specified threshold. The value of is then com-
pared against a threshold , where 0.9 was used in this
paper. With is low is low , we say that can
be implied from . Likewise, decides whether can
be implied from .

Definition: Neuron inputs and are associated if and
only if can be implied from and can be simultaneously
implied from . Such a neuron is then an associative neuron.

Fig. 1 shows an example of the and inputs an associa-
tive neuron has received in training. Clearly, and are most
likely to be simultaneously low or high although there is some
noise. This can be verified using and .

Fig. 1. Input distribution in an associative neuron.

C. Feedforward Scheme

Based on the data distribution, the neuron needs to select
a proper transfer function from a predefined set that can
best describe the relationship between and . The neuron’s
output can then be generated using . For the neuron shown in
Fig. 1, and usually become simultaneously low or high, so

can be defined in the following way:

if is low
if is high.

(1)

The neuron output is set “inactive” or 0.5, whenever either one
of the inputs is 0.5

if or
otherwise.

(2)

is composed of six functions that are designed to include
all the logic relationships between and in an associative
neuron. Using the semilogic signals with continuous values, the
relationships can be observed from the training data distribution
in the space. In an associative neuron, the majority of the
training data is distributed in one of the quadrants or two
diagonal quadrants. If a quadrant (e.g., 0.5 and 0.5)
holds most of the data points, it is called a dominant quad-
rant. The relationship between and in Table I is described
through each function’s applicable conditions. For example,
“low is associated with low ,” is the applicable condition
for . Functions through all have their applicable condi-
tions described in a similar way.

The outputs of to are always 1 for any data point located
in the dominant quadrant, and 0 for all the others. When data
points are mostly distributed in two diagonal quadrants, and

can either be synchronously low or high, as shown in Fig. 1
(function ), or complement each other, as in . To accom-
modate noise, the outputs of and are defined arbitrarily
based only on . All the functions are listed in Table I together
with their applicable conditions. Input distribution layout fig-
ures similar to Fig. 1 are used to illustrate each of the conditions.
These functions benefit the feedback scheme, which results in
identification or recovery of associated inputs.

If the training data that the neuron receives shows any dis-
tribution other than what is included in Table I, association be-
tween and cannot be established and the neuron simply
chooses the input with higher entropy (dominant input) and
transmits this input value to its output. Such a neuron is called
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TABLE I
FUNCTIONS AND THEIR APPLICABLE CONDITIONS

a transmitting neuron. An input of a transmitting neuron is
called the dominant input if

is low is high is low is high
(3)

In a transmitting neuron, the dominant input is directly linked
to the output, while the other input is ignored. The neuron acts
as a dominant input transmitter.

D. Feedback Scheme

During testing, missing parts of the data need to be recovered
from existing data through association. For example, in a pat-
tern recognition problem, the associated class ID pattern inputs
are unknown and, therefore, are set to 0.5. The neurons that are
physically connected to these inputs use feedback from the as-
sociative neurons to define these unknown input values. This, in
turn, can be used either to classify the input pattern or to recover
the uncertain part of the input.

The feedback scheme is an important element of the associa-
tive learning in a SOLAR network. A neuron’s output is linked
to the inputs of multiple neurons, as can be seen in Fig. 2. A
neuron generates its output from its feedforward operation
(Table I), and also receives different feedback from the con-
nected neurons.

The following describes how the feedback is generated and
transmitted through the network. A signal’s strength in this net-
work is measured relative to 0.5. When the generated output
is weaker than the strongest feedback output (called a dom-
inant feedback) it may trigger the feedback to the neuron’s in-
puts. The input/output relationship in the feedback scheme for
each neuron can be described by one of the four following sce-
narios. In the following discussion, we assume that a neuron re-
ceived a feedback signal from one or more of its output neurons.
To illustrate how this is done, consider the following example.
The general rules are as follows.

Example 1: Assume that the original inputs of neuron
are 0.5 and 1, respectively. Then, according to (2), the generated
output is 0.5, independent of the type of function used. The
strongest output feedback that receives is 0.9.
It triggers the feedback scheme inside the neuron. As a result
of training, neuron uses function . In this case,
0.5 indicates that the input to this neuron should most likely
be in the quadrant 0.5 and 0.5. The feedback input
can thus be calculated as 0.1 and

0.1. Details of the feedback evaluation for different
transfer functions are discussed in Section III-E. is stronger
than 0.5 and is weaker than 1. Therefore, is
set to and passed back onto , while has no effect.

Notice that, in general, the two inputs of a neuron can be
changed and they may generate a different output for the con-
necting neurons. However, this updated output value should not
be allowed to propagate forward to higher hierarchical layers
and, thus iterative processes can be avoided. In particular, out-
puts and of shown in Fig. 2 cannot be updated
with , since this may cause instability and start incorrect
firing through the entire network. Therefore, the dominant feed-
back signal plays an additional role similar to that of an in-
hibitory synapse in biological neural networks. Notice that weak
and yet active signals, which have values other than 0, 1 and 0.5,
can be generated only in the output feedback. The inhibitory
connections prevent such weak signals from becoming inputs
to other neurons.

1) Transmitting neurons: A transmitting neuron simply
passes back to its dominant input. When the feedback

is stronger than the dominant input (e.g., neuron
in Fig. 2) will be overwritten by . Note that

0.5 may come from unknown sensory inputs.
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Fig. 2. Neuron feedback scheme.

2) Associative neurons with strong inputs: If or of an
associative neuron (e.g., neuron in Fig. 2) are both at
full strength, (either 0 or 1) the generated output will
be at full strength. The output of can be computed
using transfer function defined in Table I. Feedback has
no effect and this neuron only passes information forward.
These neurons are very likely connected to known data
inputs.

3) Associative neurons with active feedback and inactive
input(s): For an associative neuron that does not have de-
terminate signals on both inputs (e.g., neuron in Fig. 2)

creates feedback and through the function . If
the feedback signals are stronger than the original inputs

and , these inputs will be overwritten. Consequently,
overwritten inputs become feedback signals to the output
of neurons and , to which inputs are linked.
This scenario was illustrated in Example 1.

4) Associative neurons with inactive feedback and one inac-
tive input: Some associative neurons located deeply in the
network may not receive active feedback (e.g., shown
in Fig. 2). If one of their input connections is inactive, they
will pass the information from the known input to the un-
known input through association. The inactive input con-
nection will be overwritten based on the other input and the
neuron function . Since is 0.5 for , the feedback to

is determined from the known input and the transfer
function . Neurons of this type are called actively asso-
ciating and are the backbone of the associative processing
in SOLAR.

E. Feedback Evaluation

For neurons that fit scenarios 3) and 4), feedback is defined for
each function as illustrated in Table II. For functions through

with 0.5, both input feedback signals can be directly

TABLE II
FEEDBACK CALCULATION

determined. For 0.5, the stronger of or will be used
to determine the feedback of the other. Neurons that fit scenario
4) always have 0.5 and have to determine feedback to the
weak input from the strong one. Detailed feedback calculations
are listed in Table II and are based on the function type and the
signal strength.
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In Table II, function determines the signal strength of
when a neuron is using through with 0.5.

can be defined for as follows:

if
if
if
if
if
if

(4)

where is the likelihood of an input being high under the
feedback condition

is high and is high
is high and is high is low and is high

(5)

Function defined as
attenuates signal using the strength of mea-

sured as . With 0.5, a neuron using through
knows that the data point is not in the dominant quadrant.

Based on this fact, can be estimated from and the like-
lihood value , combined with .

1) For the first condition of (4), gives the likelihood that
is greater than 0.5. If is greater than 0.5, is

most likely high; otherwise, it is most likely a low signal.
2) For the second condition of (4), 0.5 if 0.5.
3) For the third condition, when is less than 0.5 and the

data point is not in the dominant quadrant of where both
inputs are low, the only possibility is that is high. Its
strength is then determined based on , but is attenuated
according to .

4) For the fourth condition, is estimated from in a
manner similar to that of the first condition. Notice that
with 0.5, the neuron is actively associating and
needs no attenuation.

5) For the fifth condition, 0.5 if 0.5.
6) For the sixth condition, the neuron determines from

and since is low, is also low.
For function , can be defined symmetrically to

. Things are slightly different for through , as the
dominant quadrant is different for each of the functions. All
the versions of and can be defined following the
principle described previously (details not given because of
space constraints). Functions and are defined based on
two diagonal quadrants, as can be seen from Table I. Using the
definitions of and , their feedback signals and can
be directly determined from . However, the signal strength
of and needs to be computed from the likelihood
measurements and defined in (6) and (7) for and ,
respectively

high high low low (6)

low high high low (7)

The values and are the probabilities that a data point
can be located within the expected quadrants. They estimate the
likelihood that each feedback can be correctly generated from a

Fig. 3. Network structure.

Fig. 4. M input bits sliding bar code.

neuron’s associative learning experience. In a manner similar to
the use of , likelihood measures such as and are used
to evaluate the signal strength of and for and .

With and found for each neuron, the working mecha-
nism of the whole associative learning network can be illustrated
using the diagram in Fig. 3.

The gray rectangles in Fig. 3 stand for the sensory inputs in-
cluding known and unknown input values. The white circles are
the neurons that do not participate in the input signal feedfor-
ward or feedback processing (with unknown inputs and out-
puts) and their connections are not displayed in this figure for
simplicity. The black circles are actively associating neurons.
The gray circles are the remaining neurons that participate in
signal processing. The neurons on the known side process and
generalize the information, activating associative neurons that
generate feedback signals to the unknown side. The neurons
on the unknown side then pass the feedback signal back to the
unknown parts of the input. The missing associated inputs can
thus be recovered. This figure shows only a conceptual view
of separated known and unknown sides. In the case of missing
value recovery (AA), there is no such separation, whereas in HA
learning and classification associative neurons may be far apart.

IV. ASSOCIATIVE LEARNING NETWORKS CONFIGURATION

AND SIMULATION RESULTS

This section discusses the effect of network topology on the
associative learning quality. A classification application was
used to illustrate the associative learning results in SOLAR
structures. Data presented to SOLAR were binary coded to
simulate a biologically plausible operation.

A. Iris Database Coding and Its Simulation

This associative learning network has been tested on the Iris
plants database [24]. The Iris database has three classes, four
numeric features, and 150 instances. These classes are defined
by three types of Iris plant (Iris Setosa, Iris Versicolour, and Iris
Virginica) each containing 50 instances. The numeric features
include sepal length, sepal width, petal length, and petal width
(all in centimeter). Table III shows the statistics of the database.
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Fig. 5. Merging coded feature values.

TABLE III
IRIS DATABASE STATISTICS

Since the outside input is expected to be presented in a binary
form, each feature was scaled linearly and coded using a sliding
bar code with bits, as shown in Fig. 4. Let and
represent the maximum and minimum values of the feature, re-
spectively. To code a scaled feature , we set consecutive bits
from bit to to 1, which is shown
as the shadowed area in Fig. 4. The remaining bits were set to 0,
and are shown as the blank area. has been used to introduce
input redundancy, such that a sufficient number of randomly
connected neurons could be stimulated by the input signal. All
the features were scaled between zero and 30, the value of for
each feature was set to 12 bits, and the total number of input bits
per single feature was 42.

The features were combined with the class ID to form the
input to the associative network. In order to balance the prob-
ability of each feature being associated with the sample class
ID, we merged the four features into an input pattern vector, as
shown in Fig. 5. The total bit length of the input pattern vector
is 168.

Orthogonal binary sequences were used to code class IDs.
During testing, feedback from the network was used to generate
an output code for each sample. The output code was then com-
pared against each of the class ID codes. The class ID that had
the minimal Hamming distance to the output code was taken as
the classification result. Ten-fold cross-validation was used for
the Iris database.

Fig. 6 shows the association made in the testing of one pat-
tern. The -axis shows the input numbers. The target pattern is
presented on inputs 1-168, while the associated class ID pat-
tern is presented on inputs 174–341. The -axis represents the
distance from the input (number of layers). All the actively as-
sociating neurons are represented by filled circles. One of these
actively associating neurons is shown with its feedback path as
an example of the association between the target pattern and the
class ID pattern. The small squares represent the other neurons
on this feedback path, and the stars along the -axis stand for

Fig. 6. Actively associating neurons and a selected feedback path in the
SOLAR network.

the class ID code bits that were correctly recognized. The re-
maining associative inputs were either not activated (unknown
input values) or recognized incorrectly.

A zoomed-in view is provided in Fig. 7, which shows a
subset of neurons near the associated class ID pattern inputs.
All the neurons that participated in making associations were
illustrated, including neurons in the feedback paths of actively
associating neurons. As can be seen in Fig. 6, the actively as-
sociating neurons needed to solve this problem are distributed
from the first layer to the twenty-fifth layer, which indicates the
depth of association.

After ten-fold cross-validation, the overall correct classifi-
cation rate for Iris database was 86%. The performance com-
parison with other methods is presented in Section IV-D. This
classification rate can be further improved by applying subtle
differences in the network structure as discussed in the rest of
this section.

B. Simulation of a Hierarchical Structure

This part investigates how the network topology affects
learning ability and the required hardware resources. We are
also interested in the relationship between the number of
hierarchy levels and problem complexity, the effect of local
interconnections and redundancy of information on learning
ability, and the statistical robustness of results.
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Fig. 7. Class ID inputs correctly recognized by associations, zoomed into
Fig. 6.

Fig. 8. Actively associating neurons and a selected feedback path in the hier-
archical SOLAR network.

In the simulation of the Iris databases in Section IV-A, the
neurons were randomly connected to their neighbors with a
Gaussian distribution of the distances between neurons, in the
vertical direction (rows) and in the horizontal direction (layers).
The standard deviations of these distances in both directions
were set to 30 and 5, respectively. To observe the influence of
the input distribution, we first rebuilt the network using a hi-
erarchical structure, by restricting each neuron to connect only
to the neurons of the previous layer. In addition, in the vertical
direction, the vertical connection probability distribution was a
superposition of a Gaussian distribution and a uniform distribu-
tion. Half of vertical connections went to local neurons (using
a Gaussian distribution with zero mean and standard deviation
equal to two), while the other half of the vertical connections fol-
lowed the uniform distribution, allowing connections to distant
neurons. Such an interconnection scheme delivers the topology
of a small world network as defined in [21]. We still use the Iris
database for association learning. Using the same symbols as in
Fig. 6, Fig. 8 shows the actively associating neurons with an ex-
ample of feedback path made by the hierarchical network. Fig. 9
is a zoomed-in view near the associated class ID inputs.

Fig. 9. Class ID inputs correctly recognized by associations, zoomed into
Fig. 8.

TABLE IV
CLASSIFICATION RATE VERSUS PERCENTAGE OF VERTICAL CONNECTIONS

WITH UNIFORM DISTRIBUTION

After all 150 patterns were trained and tested through the
ten-fold cross-validation, we got the overall correct classifica-
tion rate 86%. Apparently, fewer actively associating neurons
were needed and they only spread to the eighth layer, which indi-
cates the depth of association in this network. We conclude that
with a hierarchical network structure fewer layers are needed to
establish necessary associations with similar correct classifica-
tion rate.

C. Simulation of Small World Networks

In this section, we would like to demonstrate how the classifi-
cation performance varies with different wiring schemes in the
small world network structure. As described in Section IV-B, the
connection probability distribution in the vertical direction is a
superposition of a Gaussian distribution and a uniform distribu-
tion. Table IV shows how the correct classification rate changes
with the percentage of uniformly distributed local connections.

From the results presented in Table IV, it can be seen that
without the superposition of the uniform distribution (0%) neu-
rons cannot connect to distant neighbors, and, therefore, they
may not be able to create sufficient associations. As a result,
the correct classification rate in this case is the lowest. It is also
found that as the percentage of vertical connections following
uniform distribution increases from 0% to 50%, the correct clas-
sification rate increases. However, beyond 50%, the correct clas-
sification rate remains stable within 82% and 88%.

An alternate way of increasing distant neuron connections
is to use a larger standard deviation of the Gaussian distribu-
tion. Table V shows the correct classification rates obtained by
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TABLE V
CORRECT CLASSIFICATION RATE VERSUS GAUSSIAN

STANDARD DEVIATION IN VERTICAL DIRECTION

Fig. 10. Mixed features and class ID code.

Fig. 11. Actively associating neurons and a selected feedback path in the hier-
archical SOLAR network with mixed feature and class ID inputs.

fixing the percentage of uniformly distributed vertical connec-
tions to 20% and varying the standard deviation of the Gaussian
distribution.

As can be seen from Table V, the correct classification rate
increases from 51.33% to 88% as the standard deviation of the
Gaussian distribution increases from 5 to 50.

In conclusion, the analysis of this part indicates that one of the
most critical factors in the wiring scheme is distant connectivity
for a classification task.

D. Mixing Features and Class ID Code

Instead of changing distribution parameters to improve dis-
tant connectivity, we can simply mix the merged feature code
shown in Fig. 5 with the class ID code, as shown in Fig. 10.
Such a mixed input pattern vector automatically guarantees suf-
ficient interconnection between the features and the class ID.

Again, the Iris database was used. Similar to Fig. 6, Fig. 11
shows the actively associating neurons with a feedback path
made by this hierarchical SOLAR network with mixed inputs.
Fig. 12 is a zoomed-in view near some mixed inputs. As ex-
pected, the depth of associations is even less in this network
than the one shown in Fig. 8. An overall correct classification
rate of 94.67% was obtained after the ten-fold cross-validation.

In order to further improve the classification performance
and the stability of the results, multiple networks were

Fig. 12. Class ID inputs correctly recognized by associations, zoomed into
Fig. 11.

used in parallel on the same target problem. Based on the
Hamming distance between the output and the class ID code,
a winner-takes-all voting scheme was used to combine their
recognition outputs. The overall correct classification rate
reached 96.67% with five parallel networks. For comparison,
results reported in [25] give correct classification rates for the
Iris database between 91.33%–97.33%. Obviously, mixing the
features and class ID together with the winner-takes-all voting
scheme results in better classification and fewer layers.

E. Problem Complexity and Hierarchical Depth

We selected the Glass Identification Database [26] to study
the effect of problem complexity on the required depth of as-
sociative network processing. This database contains 214 in-
stances, nine features, and six classes. The features selected in
this database are as follows:

1) RI: refractive index;
2) Na: sodium (unit measurement: weight percent in corre-

sponding oxide, as are attributes 3–9);
3) Mg: magnesium;
4) Al: aluminum;
5) Si: silicon;
6) K: potassium;
7) Ca: calcium;
8) Ba: barium;
9) Fe: iron;

and the six classes of different glass contain: building_win-
dows_float_processed, building_windows_non_float_pro-
cessed, vehicle_windows_float_processed, containers, table-
ware, and headlamps (terminology used in description of Glass
database [26]).

We first trained and tested the network with all instances from
all six classes. In order to evaluate the effect of the problem com-
plexity on the depth of association, we also tested the network on
half of the database containing only three classes. Fig. 13 shows
the average number of actively associating neurons at each layer
in base-2 logarithmic scale.

When the network is dealing with six classes, there was sub-
stantial amount of active associative neurons even in the twenty-
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Fig. 13. Average number of actively associating neurons per layer.

ninth layer, whereas such neurons were only found within the
sixteenth layer when dealing with three classes. The depth of as-
sociation differs by 13 due to higher problem complexity. Neu-
rons located high in the hierarchy (i.e., more distant from the
input) are believed to have better generalization and comprehen-
sion on input information. Thus, more complex problems may
require more layers, and in turn use more resource of the asso-
ciative network.

Although only two classification applications have been pre-
sented in this part, it should be noticed that SOLAR was not
designed to be a classifier. As can be seen from Section IV-A,
the features and class IDs were coded in a similar way and pre-
sented to the network together. Since the network itself does
not differentiate pattern or classification code, it is not limited
to such HA applications. The network will also be suitable for
AA learning tasks by nature. Its learning capacity will be dis-
cussed in future work.

V. CONCLUSION

This paper presents an associative learning network based
on a hierarchical SOLAR structure. SOLAR is a biologically
inspired machine-learning concept. It is a sparsely connected
network organized as a fixed lattice of distributed, parallel pro-
cessing units (neurons). Compared with ANNs, it has a flexible
interconnect structure designed to emulate the organization of
the human cortex structure that is both plausible for a biolog-
ical network and easy to implement in hardware. The associative
learning SOLAR network described in this paper is constructed
as a fixed interconnection network with feedback and inhibitory
links. Similar to Vogel’s distributed AA memories [7], SOLAR
learns to associate patterns that can be defined on a subset of
input neurons. SOLAR discovers the correlation between inputs
and establishes associations inside the neurons, without a need
to differentiate between the associated class ID patterns and
target data patterns. It is capable of handling a wide variety of
machine learning tasks including image recognition, classifica-
tion, and data recovery, and is suitable for online learning. This

work validates the associative learning ability of the SOLAR
structure.

The current realization is straightforward and rather primi-
tive. SOLAR neurons execute very simple functions and their
firing behavior is not as natural as biological neurons. The
SOLAR organization will be further modified to develop an
advanced machine intelligence system capable of associative
learning, adaptation, and value driven interaction with the
environment.
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