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Anticipation-Based Temporal Sequences Learning
in Hierarchical Structure

Janusz A. Starzyk, Senior Member, IEEE, and Haibo He, Member, IEEE

Abstract—Temporal sequence learning is one of the most crit-
ical components for human intelligence. In this paper, a novel
hierarchical structure for complex temporal sequence learning is
proposed. Hierarchical organization, a prediction mechanism, and
one-shot learning characterize the model. In the lowest level of
the hierarchy, we use a modified Hebbian learning mechanism for
pattern recognition. Our model employs both active 0 and active
1 sensory inputs. A winner-take-all (WTA) mechanism is used to
select active neurons that become the input for sequence learning
at higher hierarchical levels. Prediction is an essential element
of our temporal sequence learning model. By correct prediction,
the machine indicates it knows the current sequence and does
not require additional learning. When the prediction is incorrect,
one-shot learning is executed and the machine learns the new
input sequence as soon as the sequence is completed. A four-level
hierarchical structure that isolates letters, words, sentences, and
strophes is used in this paper to illustrate the model.

Index Terms—Hierarchical structure, input anticipation, tem-
poral sequence learning, winner-take-all (WTA).

I. INTRODUCTION

TEMPORAL sequence learning is presumably among the
most important components of human intelligence. Over

the past decade, models and mechanisms for temporal sequence
learning have attracted considerable attention. Sun and Giles [1]
offer a useful review of the characteristics, problems, and chal-
lenges for sequence learning from recognition and prediction to
sequential decision making.

In [2], a dual-weight neural network (DNN) scheme for
fast learning, recognition, and reproduction of temporal se-
quences was developed. In a DNN, each neuron is linked to
other neurons by long-term excitatory weights and short-term
inhibitory weights. Fast learning is achieved by employing a
two-pass training rule to encode the temporal distance between
two arbitrary pattern occurrences. Based on this, the DNN was
extended to a more generalized model, DNN2, which incor-
porates a self-organizing algorithm. In this way, the DNN2
can achieve autonomous temporal sequence recognition and
reproduction. In [3], an online sequential extreme learning
machine (OS-ELM) was proposed for fast and accurate sequen-
tial learning. This algorithm can learn data either one-by-one
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or chunk-by-chunk. In [4], Tijsseling proposed a categoriza-
tion-and-learning-module (CALM) network with time-delayed
connections for sequential information processing. In the
proposed CALM, the modules can autonomously adjust its
structure according to the complexity of the application domain.

Time is critical for human intelligence and manifests itself
in all kinds of sequential behavior, including reasoning, plan-
ning, goal creation, and goal driven learning. As Elman pointed
out [5], the difficult issue is how to represent time in a nat-
ural and biologically plausible way. Traditional way of handling
this problem is to explicitly represent time as an additional di-
mension together with the pattern vector. However, there is no
evidence that biological systems store timing information this
way. Elman presented several other drawbacks of traditional
approach to handle sequence timing, and suggested that time
should be represented implicitly by the effect of the sequence
itself. Our model uses this natural approach to sequence timing.

Recurrent neural network (RNN) is a powerful tool for se-
quence learning and prediction [6], [7]. Characterized with the
recurrent connection, RNN is able to memorize the past infor-
mation, therefore, it can learn and predict dynamic properties
of the sequential behavior. Applications of the hierarchical se-
quence learning in RNN are investigated by Tani and Nolfi [8],
[9]. In [8], a hierarchical forwarding forward model (FF-model)
based on RNN is proposed to learn and generate complex se-
quential behaviors. This model has a higher level and lower level
RNN, and uses both bottom-up (recall the past behavior) and
top–down (predict future behavior) interactions. Simulation re-
sults on an arm robot show that this model can learn and generate
sequential behavior, and adapt to the environment. Hierarchical
representation and learning in RNN for sensory-motor systems
are investigated in [9], where multiple-module RNNs are used to
learn and compete in predicting the sensory-motor flow. Simula-
tion results on robot-based navigation learning problems show
that this mixture of RNN experts architecture is able to learn
the sensory-motor flow dynamically, and also is able to self-or-
ganize its structure across multiple levels for learning and pre-
diction. However, a traditional RNN network with a backprop-
agation through time (BPTT) has some drawbacks as discussed
by Hochreiter and Schmidhuber in [10]. One of the most impor-
tant issues is that in the traditional gradient-descent algorithms
for RNN, the error signals through the backpropagation can
vanish [10]. This will prevent the RNN from learning and pre-
dicting longer time lag sequences. Based on this, an important
contribution was made in [10] by proposing a long short-term
memory (LSTM). LSTM is a modified RNN that is able to
handle such a drawback in the conventional RNN. The key idea
is that the LSTM features a memory cell based on the constant
error carousel (CEC) that is able to sustain its activation over a

1045-9227/$25.00 © 2007 IEEE



STARZYK AND HE: ANTICIPATION-BASED TEMPORAL SEQUENCES LEARNING 345

long period of time, therefore, the error signal will not vanish
and the system will be able to learn the sequential dynamics in
very long time. Details about the architecture and applications
of LSTM can be found in [10].

Wang and Arbib [11] proposed a complex temporal sequence
learning model based on short-term memory (STM). In their
paper, two special types of neurons are proposed for complex
temporal sequence learning. The first one is the dual neuron,
which is used to store a signal for a short period of time. Un-
like the traditional binary signal values used in many neural net-
work models, the output of a dual neuron is a graded signal. The
second neuron is the sequence-detecting neuron. After learning,
this sequence-detecting neuron fires in response to the previous
sequence of patterns, not just the previous pattern. It thereby
overcomes a limitation of networks that cannot reliably recall
sequences that share common patterns.

The same authors presented a framework of learning, recog-
nition, and reproduction of complex temporal sequences in
[12]. In this model, sequences are acquired by the attention
learning rule, which combines Hebbian learning and a normal-
ization rule with sequential system activation. Time intervals
between sequence components do not affect recognition. A
global inhibitor was proposed to enable the model to learn
context lengths required to disambiguate associations in com-
plex sequence reproduction. In order to overcome the capacity
limitation of STM, a hierarchical sequence recognition model
based on the chunking notion was proposed in this paper. For
instance, in a letter–word–sentence hierarchical structure, a unit
for a given word is activated at the end of the presentation of
that word, and the model learns the sequence of letters of that
word on the basis of the letter units active at that time. Once the
word structure has been learned, the same mechanism can be
applied to train a higher hierarchical level on the sequence of
words. One more issue addressed in this paper is interval main-
tenance. This is achieved by coding intervals by connection
weights from the detector layer to the input layer.

In [13], a neural network model capable of learning and gen-
erating complex temporal patterns by self-organization was pro-
posed. The model actively regenerates the next component in
a sequence and compares the anticipated component with the
next input. A mismatch between what the model anticipates
and actual input triggers one-shot learning. Although the an-
ticipation mechanism improves the learning efficiency of this
model, it needs several training sweeps to learn a sequence. As
the number of training sweeps required depends on the degree
of complexity of the sequences, it is not very efficient for highly
complex sequences.

Another paper [14] focused on the learning of the mul-
tiple temporal sequences and “catastrophic interference.” It is
showed that the anticipation model previously proposed by the
same authors is capable of incremental learning with retroactive
interference but without catastrophic interference. In addition,
a chunking mechanism was included in this model to detect
repeated subsequences between and within sequences, thereby
substantially reducing the amount of retraining in sequential
training.

Wang proposed the use of associative memory to learn and
retrieve spatio-temporal sequences in [15] and [16]. In [15], the

static associative neural networks with delayed feedback con-
nections are used for learning and predicting the spatio-temporal
sequences. In the learning stage, the primary input sequence is
presented to the primary input channel, while the corresponding
expected output (pairing sequence) is simultaneously presented
to the pairing input channel. Learning of such spatio-temporal
sequence is achieved by the heteroassociative memory networks
(HANNs). After learning, the system can retrieve (predict) the
whole spatio-temporal sequence from a small cue sequence
presented into the primary input channel. Since the model in
[15] assumes that each HANN only learns heteroassociations
between single patterns and does not learn to associate multiple
patterns in groups, the same authors extended the model [16]
to include associations of one pattern with multiple patterns.
The proposed model has the advantages of short learning time,
fast and accurate retrievals, and the ability to store a large
number of complex sequences consisting of nonorthogonal
spatial patterns. In both of the models, the required number of
networks (HANNs in [15] and multiassociative neural networks
(MANNs) in [16]) for learning and retrieving a sequence in-
creases with the complexity of the sequence. This is needed to
handle complex spatio-temporal sequences. Recently, besides
Wang’s work, Chartier and Boukadoum proposed a sequential
dynamic heteroassociative memory architecture that is capable
of learning and retrieving spatio-temporal sequences [17]. Sim-
ulation results on gray-level images show the effectiveness of
the proposed model. In addition, an associative memory model
with a shift register structure for online temporal sequence
learning, recognition, and prediction was proposed in [18]

A hierarchical structure is important for sequence learning.
For instance, in [19], a linear-time algorithm called SEQUITUR
is proposed for identifying hierarchical structure in sequences.
The main idea of this algorithm is that phrases which appear
more than once can be replaced by a grammatical rule that
generates the phrase, and that this process can be continued
recursively producing a hierarchical representation of the orig-
inal sequences. Although this paper is not focused on sequence
retrieval, it presents the idea of hierarchical representation of
sequences, which is used in many papers that model sequence
learning. For instance, George and Hawkins [20] discuss
the problem of hierarchical structure for temporal sequence
learning targeting invariant pattern recognition. This paper
concludes that the neocortex solves the invariance problem in a
hierarchical structure. Each region in the hierarchy learns and
recalls sequences of inputs, and temporal sequences at each
level of the hierarchy become the spatial inputs to the next
higher regions. Assuming Markovian sequences at each level,
the optimal Bayesian inference rule for any level in the cortical
hierarchy is presented in this paper.

In our paper, we aim to develop a novel, biologically plau-
sible temporal sequence learning model. Our model is hierarchi-
cally organized and efficient in both learning time and storage
capacity. At each hierarchical level, a winner-take-all (WTA)
structure is used to select the firing neurons of this level, and the
firing neurons in one level provide the input to the next hierar-
chical level. A prediction mechanism is proposed in this model
for efficient learning. As long as all predictions are correct, no
learning takes place. Otherwise, a learning signal is issued at
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the end of a sequence. Since the input sequence is stored in input
registers (IRs), one-shot learning is possible and no repetition of
the training data is required. In our model, timing information is
represented by the dynamics of sequential behavior established
through sensory-motor coordination. In addition, we did not use
any shift-registers to shift the sequence. Instead, time-pointer
neurons together with a multiplexer (MUX)-based selection are
used for the prediction mechanism.

Our approach bears some resemblance to the incremental
learning of sequences presented by Wang and Yuwono [13],
[14]. Our model differs, first, in the use of a hierarchical
approach that extends the concept of learning by chunking.
We believe that ours is a more natural approach to sequence
learning and allows a natural grouping of sequences within the
context of learned events.

A second difference relates to the efficiency of learning. In
[13] and [14], training requires several presentations of a com-
plex sequence that includes repetitions of the same subsequence
in different contexts. (For simple sequences in which no subse-
quence is repeated, only one training sweep is necessary.) The
training phase is completed when there is no mismatch occur-
ring during the last training sweep. In our approach, a com-
plex sequence needs to be presented only once. The number
of retraining sweeps required in [13] and [14] is a function of
the sequence degree. The upper bound of the sweep number is

, where is the sequence degree defined as the
shortest prior subsequence that uniquely defines the following
sequence component. This upper bound is reduced to one in
our approach without sacrificing computational efficiency or in-
creasing the hardware cost.

The third difference is the hardware implementation struc-
ture. In our approach, we use a memory-like storage of tem-
poral events rather than the shift register structure proposed in
[13] and [14]. Instead of shifting all inputs as each new ele-
ment of the sequence is presented to the system, we store each
new element at a specified location. Accordingly, the hardware
cost in Wang’s work depends on the degree of complexity of
the sequence while in our method it depends on the sequence
length. One can argue that the sequence degree is smaller than its
length. However, the opposite is true for complex sequences hi-
erarchically represented as sequences of elements representing
chunked sequences. Take, for example, a sequence in which the
same word is repeated more than once. The sequence degree is
then at least equal to the length of this word, and if several words
are repeated, to the combined length of these words. Chunking
may help this to some degree, but it introduces a requirement for
additional training to accommodate chunks. We note that this
is not a natural approach adopted in biological neural systems.
People are not capable of memorizing long sequences even if
their order is low. Instead of learning a sentence as a long se-
quence of letters in which individual words are just part of the
sequence, people learn sentences as sequences of words, learn
stanzas as sequences of sentences, learn songs as sequences of
stanzas, and learn stories as sequences of scenes. We elaborate
on these differences in Section III.

What we have tried to preserve from Wang’s and Yuwono’s
approach is its incremental learning of sentences that allows
learning based on acquired knowledge rather than learning of all
sequences at once. Incremental learning is natural for biological

systems, where knowledge is built upon prior experience, mod-
ifies behavior, and influences further learning. Not all methods
for learning temporal sequences preserve this important feature.
For instance, the approach taken in [2] claims many advantages
over the method presented in [14]. However, it is not an incre-
mental learning model as it requires two-pass training. In the
first pass, all temporal weights are computed and they affect the
global threshold established in the second pass. Thus, whenever
there is a change in the learning sequence, the whole training
process must be repeated.

The importance of incremental learning and the difficulty in-
volved in obtaining such learning has been known at least since
Grossberg [21]. Subsequently, McCloskey and Cohen [22] iden-
tified the problem as the “catastrophic interference.” Sharkey
[23] characterized the catastrophic interference as one of for-
getting previously learned information as new information is
added. There have been many attempts to solve the problem by
minimizing the overlap between synaptic weights storing var-
ious sequences [24]–[26] with little success demonstrated for
relatively small sequences. Catastrophic interference in incre-
mental learning is chiefly the result of modification of weights
representing all previously stored patterns. While some inter-
ference may be found in human memory [27], the catastrophic
interference is not. In our approach, ideally there is no inter-
ference between stored patterns, as a learning increment in-
volves only those neurons not previously involved in informa-
tion storage. Only when the number of presented sequences ex-
ceeds the storage capacity of our associative memory does par-
tial interference appear. The catastrophic interference never ap-
pears.

Another important feature of Wang and Yuwono’s approach
preserved in our method is anticipation-based learning in which
the model actively anticipates the next input. As long as the
anticipated inputs are correctly verified, no learning is required
on any level of the hierarchy. When a mismatch is detected on
a given level of the hierarchy, a new sequence on this and all
higher levels must be learned.

In addition, our model uses one-shot, normalized, Hebbian
learning such that the entire sequence is learned using only a
single presentation of the input data. Any new sequence at any
level of the hierarchy is learned by self-organization that allo-
cates the required resources. The proposed approach can store
arbitrarily complex sequences as long as the number of distinct
subsequences is smaller than the storage capacity expressed by
the total number of neurons on various hierarchy levels.

Hierarchical sequence recognition is also considered in [28]
and [29], where complex sequences are separated into simple
sequences combined at higher hierarchical levels. In [12], hier-
archical learning is used and requires a number of presentations
of the training sequence before a higher level sequence can be
learned. In our paper, learning on all levels proceeds without re-
peated input presentations, and sequence reproduction does not
require special handling. In particular, there is no need for the
interval maintenance required in [12].

The rest of this paper is organized as follows. In Section II,
the overall architecture of our model is presented. A modified
Hebbian learning mechanism and the detailed structure of each
module is described. In Section III, simulation results of the
proposed model for a four-level sequence learning problem
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Fig. 1. Hierarchical organization of sequences.

are shown. This application divided a popular song into four
hierarchical levels: letters, words, sentences, and strophes, and
our model shows correct learning and retrieval of the complex
sequences. Finally, a discussion and conclusion is given in
Section IV.

II. SYSTEM ARCHITECTURE

In this paper, we focus on the learning and retrieval of mul-
tiple complex temporal sequences in the network of neurons. We
adopt the terminology introduced by Wang and Arbib in [11]
and [12]. A temporal sequence is defined as

(1)

where is a component of sequence and
the length of the sequence is . If a sequence includes
repetitions of the same subsequence in different contexts, it is
called a complex sequence, otherwise, it is a simple sequence.
Fig. 1 shows the hierarchical organization to three levels of
a letter–word–sentence. It is believed that such a hierarchical
structure of a sequence is efficient [12], [19], [20].

The overall system architecture of our proposed model is
shown in Fig. 2. It contains a hierarchical layer structure. The
output of one hierarchical level is the input to the next level. At
each level, a WTA algorithm is used to select active neurons.

Winning neurons are drawn in gray. In the first layer (level
0), a modified Hebbian learning mechanism is utilized for
pattern recognition. Levels 1 to N are identical structures
for temporal memory. The key components of each hierar-
chical level are: IR, MUX, prediction neuron (PN), prediction
checking neuron (PCN), prediction matching neuron (PMN),
learning flag neuron (LFN), multiple winner detection neuron
(MWDN), and learning neuron (LN). As described later, the IR
spatially encodes a temporal sequence of outputs from the next
lower level. The sequence may be recent or recalled. The MUX
calls the contents of the IR sequentially for comparison with a
sequence being output by the next lower level. We will show
that this network is efficient for complex temporal sequence
learning and retrieval.

A. Pattern-Recognition Layer: A Modified Hebbian Learning
Mechanism

A modified Hebbian learning mechanism is used in the first
hierarchical layer of our model (level 0 on Fig. 2). Since bio-
logical neurons either fire or not, we assume that each sensory
input from the environment is either 0 or 1, and use a both ac-
tive-0 and active-1 representation of the sensory information.
Fig. 3 illustrates this idea. When the sensory input is 1, the left
neuron will fire. When the sensory input is 0, this input value is
passed through an “inverter” and drives the right neuron to fire.
In this way, different neurons firing represent different sensory
input values for the binary coded input.

Fig. 4 shows the detailed structure of the modified Hebbian
learning mechanism used in this paper. For simplification, we
show a three level hierarchical structure with unsupervised
learning. The neurons in the second layer are grouped into
several groups. Each neuron of a second layer group is sparsely
connected, at random, to the same subset of neurons in the first
layer. There is some overlap of the subsets of neurons in the
first layer to which second layer groups project.

Two similar WTA mechanisms are used in this paper to im-
prove the learning efficiency of the model as well as to reduce
its learning complexity. The first one is a stiff WTA (SWTA),
which can be achieved by a simple counter. SWTA is used in
the second layer. Since the sensory inputs from the environment
are either 0 or 1, SWTA simply counts the number of 1s each
neuron receives, and selects, as winners, the one neuron from
each group that receives the largest number of 1s. The second
WTA mechanism is used in the output layer (layer 3 in Fig. 4).
Initially, all the weights for neurons in the output layer are
randomly set with the following conditions:

(2)

where indexes the neurons, and indexes connec-
tions onto neuron from all the neurons of the previous layer.
The winner is given by

Winner (3)
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Fig. 2. Overall system architecture of the proposed anticipation-based hierarchical temporal sequence learning.

where is the activity (0 or 1) of the neuron from which pro-
jection arises. In each time instance, after the winner is se-
lected, the weights of the winner ( , where the subscript
denotes a winner) are adjusted as follows.

1) For the connections that received input

(4)

2) For the connections that received input

(5)

where is a small adjustment, and and are
the number of 1s and 0s the neuron received. Fig. 3. Two-active area neuron firing mechanism.
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Fig. 4. Hierarchical structure of the modified Hebbian learning.

Fig. 5. Storage of sequence in IR.

This adjustment guarantees that the sum of the weights for
the winner after adjustment still equals 0. After adjusting all
the weights of the winners, we linearly scale their weights to
be in the range . Unsupervised learning is used in our
simulation, meaning that each output neuron updates its activity
whenever a new training sample is presented.

B. Storing Input Sequences

As indicated in the previous section, the first hierarchical level
provides recognition of components in the se-
quence . From now on, we focus on how the model can store
and predict complex sequences.

The output of one level is stored in the corresponding IR of the
next higher level as shown in Fig. 2. Neurons of the IRs project
onto the output neurons of the same level through trainable con-
nections. Initially, all output neurons are fully connected to all
IRs through untrained links with electrical (resistive) synapses.

In our simulation, we randomly set the initial weights for all the
output neurons to be a small positive number 0.001 0.01.

Once an input sequence is stored in the IRs, all the output neu-
rons compete and weights of the winning neuron are adjusted.
All the weights of projections of active neurons onto a win-
ning neuron in IR are set to 1 (excitatory) and all other weights
onto a winning neuron are set to 100 (inhibitory). We employ
this strong inhibition to guarantee that once an output neuron is
trained to store a sequence, it is excluded from further learning.

Example 1: Fig. 5 shows the IR states for one neuron after
training.Thelocationsof thevariousIRsestablish that thisneuron
stores the letter sequence “miss” (i.e., above the letter “m” there is
a excitation link from the section of the IR neurons representing
the first time step). Once an output neuron’s links are trained,
the neuron responds only to one specific input sequence.

Before discussing the prediction mechanism, we describe the
structure of the IR. In our model, the IR stores the input data
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Fig. 6. Structure of IR.

Fig. 7. Timing diagram of neurons firing in the IR.

selected by WTA in the location indicated by a time pointer.
Each pattern in a sequence is directed to a different location.
The structure of the IR is shown in Fig. 6.

Proposition 1: Given sufficient numbers of pointer neurons
and IR neurons, the structure in Fig. 6 stores any input data by
firing the corresponding neurons. This mechanism is biologi-
cally plausible since no computational weights adjustment is
needed.

Proof: We consider a neuron firing delay in activation
of the links between neurons in Fig. 6. Consider also that we

want to store a sequence , where is the sequence length.
At the beginning of the new sequence, an impulse start signal
is presented. The start signal clears all information in the IRs
through inhibitory links. At the same time, PT0 fires. When the
first data is received, the next signal is generated. When the
next signal goes low, the inhibition of the upper pointer neurons
is removed. Therefore, after the delay time , PT1 will fire.
After one more delay time, the lower pointer neuron PT2 fires
since it has an excitatory link from PT1. At the same time, PT1
provides the inhibition to PT3. Suppose that at that time input
data neuron was activated. This will happen if an input pattern,
which corresponds to symbol , (represented by this particular
IR) was recognized and selected for storage. Since start signal
is now low, and both PT1 and input data neuron are active, IR
neuron IR1 fires, which stores the first data in the IR1. Assume
that after some time, the second data in the sequence is presented
and it is also the same symbol . As before, the next signal
inhibits all the upper pointer neurons PT1, PT3, PT5, and so on.
However, PT2 continues firing. When the next signal goes low,
then after the delay time , PT3 fires because it is excited by
PT2. As before, PT4 fires after PT3 with additional delay . At
the same time, IR2 fires provided that it is excited by PT3 and
the input data neuron. This will store the data in the second
input register IR2. If, however, signal was presented, then
IR2 will be activated in the IR that stores signals. The process
continues until the last data in the sequence is presented.

As one can see from the previous analysis, the lower level
pointer neurons provide inhibitory feedback to remove excita-
tion from the prior pointer neurons and to excite the next pointer
neuron. This approach forms long-term memories (LTM) of the
learned sequences. One can make these memories modifiable by
allowing training to decay after some specified period of time.

Example 2: Suppose we want to store the data “AB” in the
IR neuron as illustrated in Fig. 6. Following the mechanism as
described in Proposition 1, Fig. 7 shows the neuron firing di-
agram to store this input data. As we can see from Fig. 7, data
“A” and “B” are correctly stored in the corresponding IR neuron
and such storage will remain active until a new sequence is pre-
sented (i.e., the start signal will generate an impulse and clear
all the previously stored data.)
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C. Predicting the Input Sequences

1) Prediction Mechanism: Predicting an input sequence is an
essential part of sequence learning in this model. By correctly
predicting a sequence, the machine indicates it knows the se-
quence and does not require additional learning. If there is a
single error, the LTM is modified to learn the new sequence. A
simple one-shot learning mechanism is employed.

The first stage of prediction is a competition stage. Several
sequences stored in the LTM compete to determine a unique se-
quence that may correspond to the input sequence. Once such a
sequence is determined, it predicts the consecutive inputs. (No-
tice that the same mechanism is used if LTM is simply playing
back a stored sequence after a high-level node of LTM is trig-
gered by an internal process.) An MWDN is used to detect
whether there are multiple winners with trained links. This is
achieved by setting the threshold of the MWDN equal to 2.
Therefore, it will fire when there are two or more winners in
the output layer. (This occurs when the sum of the weights
of all the winners are the same.) The output of the MWDN
is connected to the LFN as well as all the PNs through in-
hibitory links. This provides a mechanism for setting the proper
learning flag signal. The output of the LFN is connected to the
LN through an excitatory link. Together with the excitatory links
from the end of the input sequence neuron (ESN), the whole
system provides a proper mechanism for setting the learning
signal. It should be noted that each hierarchy level requires its
ESN to indicate the end of input sequence for this level. In ad-
dition, if an ESN neuron fires in a higher hierarchical level, it
automatically generates an ESN signal in all the lower hierar-
chical levels. (This signal flow is not shown in Fig. 2.) Consider
an example in which the first level of hierarchy in LTM stores
letters, the second level stores words, and the third level stores
sentences. The last letter of every word will trigger the activa-
tion of the ESN neuron for the second level. The last letter of the
last word in every sentence will be followed by the activation of
the ESN for the third level, and at the same time, the ESN signal
will also be sent to the lower levels (level 2 in this case).

Since there are three possible outcomes for the competition
stage of the prediction mechanism, we now prove that under
these conditions, the proposed architecture, as shown in Fig. 2,
provides an efficient mechanism for sequence learning and pre-
diction. Some details of the actual competition are left for sub-
sequent sections.

Proposition 2: If there is a single winner with trained links
in the competition stage, the architecture will either activate the
PCN (meaning a correct prediction was made and no learning is
needed so far), or activate the LFN (meaning a one-shot learning
is needed for this new sequence).

Proof: In this case, only a single winner is firing through
competition and MWDN does not fire because it has a threshold
of 2. Therefore, the PN and the LFN are not inhibited. The set
of PNs includes one PN corresponding to each output neuron
of the lower level. By a mechanism described in Section II-C3,
the LTM activates a PN that represents the network prediction
for this time step. The time pointer (TP) is incremented with
each new symbol (pattern) presented to LTM. As may be seen
in Fig. 2, each PN receives an inhibitory projection from the

Fig. 8. Firing mechanism of PMN.

MWDN, as well as the excitatory projection from the MUX.
Since, in this case, the PN is not inhibited by the MWDN,
LTM (acting through the MUX) activates a particular PN
corresponding to the predicted symbol for the input sequence.
Each PN and its corresponding output neuron from the next
lower level form two inputs to a PMN. Firing of a PMN verifies
that the predicted symbol corresponds to the input symbol. The
PMN is activated only if the corresponding prediction and input
neurons fire, as shown in Fig. 8.

All PMNs have their outputs connected to the PCN, as shown
in Fig. 9. This neuron fires to indicate a correct prediction.

If there is no match, the LFN is set automatically (no inhi-
bition from the PCN or the MWDN). LFN remains on, and the
sequence continues until the ESN fires. Thus, the firing of both
LFN and ESN triggers the LN, as shown in Fig. 10(a). If there
is a match on the output of the PMN, PCN will fire, and LFN
is inhibited. Fig. 10(b) and (c) shows the remaining two condi-
tions for activation of the LN. Fig. 10(b) indicates that if only
the LFN fires (meaning there is no correct prediction), the LN
neuron will not fire because ESN does not fire in this situation.
Fig. 10(c) indicates that if only ESN fires, the LN will not fire be-
cause LFN does not fire (meaning there is a correct prediction).

Proposition 3: If there are multiple winners with trained links
in the competition stage, no prediction is made.

Proof: Assume there are output neurons all have
trained links to a particular IR neuron. Therefore, when that
IR neuron is activated, all these neurons will fire. Since the
threshold of the MWDN is set to 2, therefore, MWDN will fire.
From Fig. 2, we can see that MWDN will inhibit both PN and
LFN. MWDN will prohibit the system from predicting what will
be the next data. We will use an example to show this situation
clearly.

Example 3: Consider the situation shown in Fig. 11 where
two words “miss” and “mom” are already stored in LTM (only
the excitation links are shown in Fig. 11) and the new sequence
is “mit.” When the first symbol of this sequence “m” is input,
both neuron n1 and n3 win with trained links to “m” (weight
equal to 1). MWDN then reaches its threshold of 2 and fires. As
indicated in Fig. 11, MWDN inhibits both PN and LFN. Since
both neurons are the winners with trained links, it is premature
for the network to attempt a prediction. (Inhibition of all the PNs
also reduces energy consumption.) When the second symbol “i”
is presented, neuron n1 wins because it receives two excitatory
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Fig. 9. Prediction mechanism.

Fig. 10. Firing mechanism of LN.

projections from IR, while neuron n3 receives an inhibitory pro-
jection from “i.” We now have a single winner with trained links
(i.e., Proposition 2). MWDN does not fire, removing the inhibi-
tion on PN and LFN. With the control of the TP signal through
the MUX, n1 will predict the next symbol as “s,” which is not
correct in this case. Therefore, PMN will not fire, and PCN does
not fire. In this way, LFN will fire because there is no inhibition
from PCN. In addition, LN does not fire because ESN does not
fire. When the third symbol “t” is presented, both n1 and n3 re-
ceive inhibition from IR that stores “t” and neither wins. In this
situation, without loss of generality, we may assume that n2 is
the winner.

Proposition 4: If there is a single winner in the output neu-
rons with untrained links, a learning signal will be issued at the
end of the sequence, and one-shot learning will be executed to
learn this sequence.

Proof: In this situation, the MWDN does not fire, and since
the winner has untrained links, PN does not fire. Therefore,
the PCN does not fire, allowing the LFN to fire. LFN remains
active until the ESN fires. The combination of LFN and ESN
then causes the LN to fire, and a learning signal activates one-
shot learning. Adjusting weights according to the previously de-
scribed rules forms a representation of “mit” in the memory.
Fig. 11 illustrates the strengthened connections after learning.

Propositions 2–4 proved that under all the conditions of the
competition stage, the proposed architecture can either correctly

predict the sequence, or perform a one-shot learning at the end of
a new sequence to learn such sequence. Two matters concerning
the prediction mechanism remain to be discussed in Sections
II-C2 and II-C3. The first is the mechanism for triggering the
activation of the PNs, and the second is the mechanism that im-
plements the time controlled MUX.

2) Activation of a PN: To perform sequence prediction, each
IR neuron is associated with a dual IR neuron. WTA neurons
responsible for storing the sequence are linked to dual IR neu-
rons through untrained links. IR neurons connect to their dual
neurons through trained links. Thus, firing an IR neuron auto-
matically activates its dual neuron. When a sequence is stored
in a WTA neuron, connections from the WTA neuron to dual
IR neurons corresponding to active IR neurons in the sequence
are trained. When a previously stored sequence is input again,
a partially matched sequence may activate the WTA neuron of
this sequence. This will activate all dual IR neurons that com-
pose the entire sequence. The structure is shown in Fig. 12. This
structure combined with the time-controlled MUX provides the
mechanism for the prediction scheme.

3) Time-Controlled MUX: The neural network structure of
the time-controlled MUX is shown in Fig. 13. The output from
WTA activates the dual IR neurons that represent predictions
for each time step as discussed in Section II-C2. At a given time
step indicated by an active pointer neuron, this dual IR neuron
actives the corresponding time-controlled MUX neuron, and,
subsequently, the corresponding PN for the next element of the
stored sequence. This predicted data is connected to the PMN,
which compares the PN with the actual data and fires if the pre-
diction is correct as discussed previously.

Example 4: Assume that through the WTA competition, an
output neuron that stores “miss” is firing. Therefore, this neuron
will activate its dual IR neurons as discussed in Section II-C2.
When the time pointer increases to 3, the upper pointer neuron
PT5 is firing. In this case, the concurrently active PT5 neuron
and the dual IR neuron (that stores the data “s”) will activate the
corresponding time-controlled MUX neuron (active neurons are
represented by gray circles in Fig. 13). This in turn will activate
the corresponding PN, and this activation signal will be send to
the PMN to check whether there is a match or mismatch for this
predicted data. One should note that Fig. 13 represents the IR
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Fig. 11. LTM and multiple winners.

Fig. 12. Activation of PN.

structure that stores letter “s” only, while the IR structures for
“m” and “i” are not shown in Fig. 13.

4) Memory Requirements: Let us analyze the memory re-
quirements for this structure. Considering the hierarchical level
1 in Fig. 2, assume that a structure has input neurons from
its lower hierarchical level (i.e., the output neurons form level
0 in Fig. 2). Therefore, the number of PN and PMN will all be

. Assume that in this level, the number of output WTA neu-
rons (that provide the input to the next higher hierarchical level)
is , and that the longest sequence that this level can store is
of the length . In this case, the total number of IR neurons, dual
IR neurons, and MUX neurons will all be equal to . The
required number of PT neurons will be since such PT neurons

can be shared by all the IR neurons. Therefore, in this particular
hierarchical level, the total required number of neurons will be

.
Let us now estimate the required number of interconnection

links. From Fig. 2, we can see that connections between the input
of WTA neurons and the dual IR neurons dominate, with the total
number of connections equal to . The connections
between the PT neurons inside the IR structure will be
(see Fig. 6). The other connections include the connections be-
tween PMN and the previous hierarchical level output neurons

, PMN and PN , upper pointer neurons and MUX neu-
rons , and MUX and PN . Therefore, the total re-
quiredconnection will be .
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Fig. 13. Time-controlled MUX.

Example 5: Let us assume a hierarchical structure of letter–
word–sentence structure. Let us assume that we want to store
10 000 words in the level 2 and 1000 sentences in level 3 (Fig. 2),
and the longest word will have ten letters while the longest sen-
tence will have 20 words. Therefore, the total required number
of neurons in levels 2 and 3 are 1.08 10 and 6.21 , respec-
tively, and the required number of interconnections in levels 2
and 3 are 2.6 10 and 2.0 10 , respectively.

5) Example of Anticipation-Based Sequence Learning: To
this point, we have shown how the model can implement the
learning and prediction of a complex sequence. We now give a
complete example to summarize how this mechanism works.

Example 6: In order to focus on the sequence learning mech-
anism, we assume that each sensory input from the environment
causes a corresponding winning neuron to fire in the output of
the first level. Therefore, we focus on the hierarchical level 1 in
Fig. 2. As in [13], let “#” be the end-of-sequence marker for this
hierarchical level. Assume that we need to store and retrieve the
multiple sequences “mis#mit#miss#mit#,” as shown in Fig. 14.
Without loss of generality, let this hierarchical level have three
output neurons and 27 input neurons (representing the whole al-
phabet plus the end marker “#”). Each of the output neurons is
fully connected to all of the input neurons of all the IRs and their
initial weights of the synapses are randomly set to 0.001
0.01.

When the first symbol of the first sequence “m” is activated,
we set the time pointer equal to 1. Since all the weights are ini-
tially randomly set, we assume that neuron 1 (N1) is the winner
without loss of generality. Since there is no previous training,
there is no prediction at this time. Therefore, the PCN does not
fire, which causes the LFN to fire. LFN continues to fire until
the ESN fires at the end of the first sequence. The combination
of LFN and ESN activate the LN, which sets the learning signal.
A one-shot learning is triggered and the weights of the winner

are adjusted, as discussed in Section II-B (i.e., the excitatory
weights are set to 1 and inhibitory weights are set to 100).

When the first symbol of the second sequence “m” is acti-
vated, the TP is set to 1. The previously fired neuron (N1) be-
comes the only winner since it receives all the augmented exci-
tatory projections from the first location of the IR. N1 predicts
that the next symbol is “i” through the multiplexer controlled by
the TP signal. In this case, the prediction is correct and the cor-
responding PMN fires, which activates the PCN and inhibits the
LFN. When the second symbol “i” is presented to the model, TP
is incremented to 2. N1 is still the only winner since it has two
excitatory links and no inhibitory links from the first two loca-
tions of the corresponding IRs. The corresponding PN predicts
“s” as the next input symbol. As this prediction is not true, none
of PMN fire, and PCN does not fire. Accordingly, LFN is not
inhibited and fires. When the third symbol “t” is activated, TP is
increased to 3. N1 is not the winner because it has an inhibitory
projection from the IR. Without loss of generality, let us assume
that N2 is the winner. When the end of sequence marker “#” is
activated, ESN fires. When both LFN and ESN fire, LN fires,
which sets the learning signal. A one-shot learning is triggered
and the appropriate weights of the winner (N2) are adjusted.

When the first symbol of the third word “m” is presented to
the model, there will be two winners with trained connections
(N1 and N2). Therefore, MWDN will fire. The firing of MWDN
will inhibit all PNs and LFN. MWDN fires, again, when the
second symbol “i” is presented. When the third symbol “s” is
activated, N1 is the single winner. MWDN does not fire, and
the inhibition of PN and LFN is removed. N1 predicts that the
next symbol is “#,” which is not correct. When the fourth symbol
“s” is activated, both N1 and N2 are inhibited. We can assume
N3 is the winner without loss of generality. Because N3 has
no trained link, there is no prediction. Therefore, PCN does not
fire and LFN does fire. The procedure continues until the “#” is



STARZYK AND HE: ANTICIPATION-BASED TEMPORAL SEQUENCES LEARNING 355

Fig. 14. Learning and anticipation of multiple sequences.

activated and ESN fires. The combined firing of LFN and ESN
sends the learning signal, and a one-shot learning is executed,
adjusting weights on N3.

When the first symbol of the forth sequence “m” is activated,
there are three winners (N1, N2, and N3). MWDN fires and
inhibits the PN and the LFN. When the second symbol “i” is
activated, these three neurons still are winners. MWDN fires and
inhibits PN and LFN. When the third symbol “t” is activated, N2
is the single winner with trained links. MWDN does not fire, and
N2 correctly predicts the next symbol “#.” When the last symbol
of this sequence “#” is activated, ESN fires. Since LFN does not
fire when the prediction is correct, LN does not fire. Therefore,
no learning is needed for this last sequence.

Fig. 14 shows the firing activities of neurons over the course
of the Example 6. The model stored the four sequences in three
output neurons (the second and the last sequence being stored
in the same neuron: N2). The reader should note that our model
does not separate the learning and retrieval processes. We be-
lieve that this anticipation-based model is efficient for sequence
learning and retrieval.

D. Retrieval of the Stored Sequences

Stored spatio-temporal sequences can be retrieved by ac-
tivating neurons at any hierarchical level through internal
processes or by association with a first level (sensory) input
cue. An important element in the process of retrieving the stored
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Fig. 15. Simulation results for the temporal sequence learning model.

sequences is the duration of each element of the sequence. By
scaling this time, different speeds of presentation may be
achieved. Reference [12] describes a mechanism for storing the
presentation time intervals in which timing is related to timing
of the input sequences. While it is necessary for applications
to reproduce the stored sequence at approximately the pace of
the original sequence, it is not necessary in general. If a person
is given a complex task that requires completion of sequence
of operations, timing of the sequence must be determined by
the time needed to complete each task, and this timing may
be either unknown ahead of time or depend on the context in
which the task is executed. Biological organisms commonly
rely on sensory-motor coordination to provide proper timing
for execution of the stored sequences. The speed of retrieval
depends on the natural delay and feedback received through
sensory inputs which verifies that a particular element of the
sequence was completed. This completion of the sequence
element induces presentation of the next element of the stored
sequence. Thus, the process of retrieval of stored temporal
sequences is self-timed and does not depend on any internal
clock, but rather on interaction with the environment. This
may be a desired feature for many real life applications where
spatio-temporal memories are needed.

III. SIMULATION RESULTS

A four-level hierarchical structure with letters, words, sen-
tences, and strophes of the popular song “This land is your land”
was simulated to illustrate the proposed model. The overall se-

quence learning model is shown in Fig. 2 with hierarchical levels
from level 0 to level N (here ). Level 0 was based on
the modified Hebbian learning method described in part (1) of
Section II-A for pattern recognition. The original sensory input
data from the environment contains the scan of pixel im-
ages for the entire alphabet plus three special characters: space,
dot, and semicolon for the end of input sequence for word, sen-
tence, and strophes levels, respectively. There is no distinction
between learning and play back, which means that with each in-
coming sequence, our model will either correctly predict it, or
conduct a one-shot learning at the end of the sequence at a par-
ticular level. Fig. 15 shows the simulation results for this model.
The light gray text is the input sequence and the bold italic text
stands for the correctly predicted elements of sequence. indi-
cates the correct prediction at the word level. For instance, when
the first letter “l” of the second “land” was activated, the memory
correctly predicted the next symbol “a,” because it had already
learned the sequence “land” when presented the first time.

and in Fig. 15 indicate correct predictions at the sen-
tence level. “This land is made for you and me” is repeated at
the end of the second strophe, therefore, the words “for you and
me” were correctly predicted when “This land is made” was pre-
sented. The reason “land is made for you and me” cannot be
predicted after “This” is that we have some sentences, such as
“This land is your land” “This land is my land” with the same
first word. Accordingly, the MWDN neuron fired after “This”
was presented, inhibiting firing of the PN. in Fig. 15 indi-
cates a correct prediction at the strophes level. The last strophe
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Fig. 16. Prediction result based on hint.

is the repetition of the first one. Therefore, after the first sen-
tence of the strophe, the model correctly predicted the rest of
the strophe.

After the model has stored this song, we can also check its
ability to predict the song from an input hint, or to learn a new
sequence without destroying the stored sequence. For example,
if we give the hint “e” to the system, there is a unique neuron in
the word level that stores the word “everywhere; ” so, the model
will play the word “everywhere.” After this neuron in the word
level fires, it will trigger a neuron in the sentence level to fire.
In this case, a unique neuron in the sentence level will be the
winner, and that neuron will play back its stored sequence from
the sentence level, to the word level, and finally generate the
original sequence. Fig. 16 shows the simulation result after the
character “e” was activated as a hint to the model.

In addition, if a new word, sentence or strophe is presented
to our model, the model can further learn this new sequence
without destroying the previously stored sequence, and this
learned sequence can be used for associative predictions.

Since many intelligent behaviors are in the sequential
format, including reasoning, planning, scheduling, and goal
driven learning, the presented hierarchical sequence learning
model has wide application potentials. For instance, this model
can be used for intelligent word processing, or sequential audio
and video signal processing. The model can learn a person’s
speaking style and later can recognize and predict his speech
based on some clues. The most important applications of
temporal sequence learning are in the machine intelligence
models. Such models require constant predictions of incoming
information based on the observed in the past sequences of
events. Temporal sequence learning is needed to perform com-
plex sequences of movements or action in navigating robots or
completing complex tasks in interaction with the environment.

IV. CONCLUSION

In this paper, a novel temporal sequence learning model was
presented. This model is characterized by hierarchical organ-
ization and anticipation-based learning. A modified Hebbian
learning mechanism was proposed for input pattern recognition
at the lowest level of the model. In each hierarchical level, a
WTA mechanism was used to select neurons that serve as the
input for the next higher hierarchical level. The resulting model
can efficiently handle large scale, multiple, complex sequence
learning, and retrieval. Prediction is an essential component of
the temporal sequence learning in our model. By correct pre-
diction, the machine indicates it knows the current sequence
and does not require additional learning. Otherwise, one-shot
learning is executed. To show the effectiveness of the proposed
model, a four-level hierarchical structure of letters, words, sen-
tences, and strophes was simulated for this paper.

The results reported in this paper suggest that this temporal
sequence learning model can be an essential element of an in-

telligent machine, and may be of interest for the construction
of engineered devices. As indicated in the Introduction, we are
also interested in biological memory and intelligence. The use,
in this model, of WTA and single neuron representations of
symbols (so called “grandmother cells”) flies in the face of the
widely held view that real brains use distributed representations,
perhaps consisting of a few hundred neurons. The use of grand-
mother cells prevents the model from showing the “graceful
degradation” of memory seen with loss of neurons from real
brains. The model also seems too highly engineered to be an
evolved device, and there is little in the real environment to serve
as start- or end-of-sequence signals. However, this model is only
a simplification of the biologically plausible process in which
the grandmother cells are replaced by groups of neurons firing
synchronously, as it is suggested in [30]. Groups of neurons or-
ganized in minicolumns are able to perform feature selection
and classification in structures that resemble WTA operation of
grandmother cells as demonstrated in [31]. In addition, suffi-
cient computational resources should make it possible to render
the present model in large associative networks that use sparsely
coded, distributive representations. For example, as in the model
presented here, R-nets [32], [33] implement a mechanism of as-
sociative recall that depends on the absence of inhibitory pro-
jections. The biological plausibility of the mechanism is argued
in [33]. Nearly identical R-nets have already been assembled
in a modular fashion to create the sort of “and,” “or,” and “if
not” gates needed in the present model. As the function of an
R-net depends chiefly on its position in the network, the use
of such networks would reduce the appearance of ad hoc engi-
neering. Finally, by making the persistence of synaptic training
in an assembly of R-nets dependent on the frequency of repeti-
tion of training events, it is possible to for the network to learn a
sequence without including the various events that preceded or
followed the sequence on different occasions [34]. Accordingly,
the requirement for start- and end-of-sequence codes is relieved.
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