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Abstract—This paper discusses a numerically efficient approach
to identify complex ambiguity groups for the purpose of analog
fault diagnosis in low-testability circuits. The approach presented
uses a numerically efficient QR factorization technique applied
to the testability matrix. Various ambiguity groups are identified.
This helps to find unique solution of fault diagnosis equations or
identifies which groups of components can be uniquely determined.
This work extends results reported earlier in literature, where QR
factorization was used in low-testability circuits, significantly in-
creasing efficiency to determine ambiguity groups. Matlab pro-
gram that implements this method was integrated with a symbolic
analysis program that generates test equations. The method is il-
lustrated on two low-testability electronic circuits. Finally, method
efficiency is tested on larger electronic circuits with several hun-
dred tested parameters.

Index Terms—Ambiguity groups, analog system testing, low
testability, QR factorization.

NOMENCLATURE

Element of ambiguity group.
Ambiguity group.
Set of columns in ambiguity group.
Testability matrix.
Elements of a basis.
Elements of a cobasis.
Linear combination matrix.
Binary equivalent matrix.
Selection matrix.
Identity matrix.
Sets of indexes.
Number of test measurements.
Order of ambiguity group.
Order of complexity.
Number of tested parameters.
Vector of tested parameters.
Orthogonal matrix.
Upper triangular matrix.
Rank of the testability matrix.
Set of testable components.
Vector of test measurements.
Set of elements.
Matrix of elements.
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I. INTRODUCTION

FAULT diagnosis and fault location are important parts of
analog circuit testing and in the past they have received

the attention of many researchers [1]–[8]. These subjects con-
tinued to interest researchers (see, for example, [9]–[15]), es-
pecially the efforts to automate fault diagnosis procedures [16].
In analog or mixed digital-analog systems, fault diagnosis and
fault location are very complex tasks due to the lack of simple
fault models and to the presence of component tolerances and
circuit nonlinearities. For these reasons the automation level of
fault diagnosis and fault location procedures in the analog field
has not yet achieved the development level of the digital field, in
which well-consolidated techniques for automated test and fault
diagnosis are commonly used.

Analog fault diagnosis procedures are usually classified into
two categories: the simulation-after-test approach (SAT) and the
simulation-before-test approach (SBT). The SAT is currently
the prevalent technique but needs more computational time than
the SBT technique based on generated off line fault dictionaries.
Usually, SBT is suitable for single catastrophic fault location
because of the very large dictionary size in multiple soft fault
situations.

Independent of the testing approach, testability quantifies
the degree of problem solvability and is related to the network
element value solvability introduced by Berkowitz [17]. Later,
a very useful testability measure was introduced by Saekset al.
[18]–[20]. Although other definitions exist [8], [21], the Saeks
definition is still very popular as a well-defined quantitative
testability measure. Given the circuit topology, selected test
points and unknown components, testability can establish
a priori about the unique solvability of the problem. In the
worst case it is necessary to consider further test points or
decrease the number of potentially faulty components that can
be uniquely diagnosed.

In the case of low-testability, the canonical ambiguity group
becomes extremely useful. Roughly speaking, an ambiguity
group is a set of components that, if considered as potentially
faulty, do not give a unique solution in the fault location.
A canonical ambiguity group is simply an ambiguity group
containing no other ambiguity groups and is related to the solv-
ability of the fault diagnosis problem with a bounded number
of faults ( -fault hypothesis). However, if these important
concepts are not taken into account properly, the quality of the
obtained test results is severely limited [22].

Testability measure algorithms have been developed first
by a numerical approach [23], [24]. Because of the inevitable
roundoff errors, they were limited to networks of moderate size.
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However, this was solved by the symbolic approach [25]–[27]
through an efficient manipulation of algebraic expressions [28],
[29]. Furthermore, an efficient algorithm to find ambiguity
groups has been proposed by Stenbakken, Souders, and Stewart
[30]. Recently, a new method determining all canonical am-
biguity groups of a circuit has been developed by the authors
[31], [32] by finding all possible ambiguity groups and all sets
of circuit parameter values consistent with the test equations.
However, the proposed algorithm was combinatorial in nature
and was useful only for small analog circuits.

In this paper the ambiguities of the test equations of linear
analog systems are dealt with using efficient numerical proce-
dures based on the QR factorization of the testability matrix.
The idea of the QR factorization for the testability measure has
already been used in [30] and [33] but both methods require
combinational searches for ambiguity groups and use QR fac-
torization only to identify dependence of a selected combination
of parameters. In the second section of this paper some con-
cepts relevant to the testability matrix and ambiguity groups are
recalled [32] and new lemmas and theorems related to the deter-
mination of a canonical form of the testability matrix and to its
QR factorization are proposed. In the third and fourth sections
the identification and complexity reduction problem of ambi-
guity groups is faced by introducing new theoretical results and
explicative examples.

II. CANONICAL FORM OF TESTABILITY MATRIX

Let us assume that test equations were formulated and circuit
parameters are related to test measurementsthrough the
testability matrix as follows:

(1)

where testability matrix was generated from the test
equations and is either related to the Jacobian of the test equa-
tions or is equal to a matrix used in linear verification techniques
[6]. and are either incremental changes of parameters and
measurements from the nominal values (related to the Jacobian)
or the parameter and the measurement values in the verification
approach. Notice that each parameter in the test equations is re-
lated to a corresponding column of the testability matrix. We
will then identify columns of the testability matrix with their
corresponding parameters while discussing ambiguity groups
and their solutions.

In a large design many parameters influence the circuit re-
sponse, which would require huge test equations to solve. This,
in turn, would require a large number of the test points and
the measurements to formulate the test equations. Such require-
ments are unacceptable in an industrial testing where both the
testing time and the number of test points must be minimized
for economical reasons. Fortunately, the number of indepen-
dent parameter faults in a modern design is limited and param-
eter changes track each other in the uniform VLSI fabrication
process. So, it is reasonable to assume that the number of faulty
parameters which have to be identified using the test equations
is small.

For a numerical stability and a reduction of the roundoff er-
rors the testability matrix must have a larger number of rows

than columns. So, the number of the measurementsis greater
than the number of tested parameters. The rank of defines
circuit testability —a maximum number of the identifiable cir-
cuit parameters obtained from test equations. In order to prop-
erly handle the ambiguity groups, we relate their presence to
the solvability and uniqueness of the test equations solution. If

does not have the full column rank, then it can be partitioned
into two submatrices which are linearly depen-
dent

(2)

and where matrix has the full column rank equal to the
rank of the matrix and the columns of matrix ,
called a linear combination matrix, represent an expansion of
the corresponding columns of in the basis vectors obtained
from the columns of . Using this partition we can write as

(3)

Selection of independent columns is not unique and is an
important issue in solving the test equations in the presence of
ambiguities.

Mathematically, an ambiguity group can be defined as a set
of circuit parameters which correspond to linearly dependent
columns of the testability matrix . In addition, a canonical am-
biguity group is defined as a minimal set of parameters which
correspond to linearly dependent columns of. This means
that if a single parameter is removed from the canonical ambi-
guity group, then the remaining set corresponds to independent
columns of and can be uniquely testable. All canonical ambi-
guity groups have the rank deficiency equal to one, which means
that the rank of the corresponding set of columns is equal to the
number of parameters in the canonical ambiguity group minus
one.

Lemma 1: If is a subset of columns of which cor-
responds to the canonical ambiguity group, then the following
equation is satisfied:

(4)

where is a vector with all nonzero coefficients.
Proof: The requirement for to have all its coefficients

different than zero is easily justified. First, cannot be equal
to zero on the basis of the linear dependence of columns.
Suppose that a coefficient is equal to zero. Then, a
proper subset of obtained from by removing th column
will be dependent, which violates the definition of the canonical
ambiguity group.

The order of a canonical ambiguity group was defined in [32]
as equal to the number of components included in the ambiguity
group. A combination of canonical ambiguity groups with at
least one common element was defined in [32] as global ambi-
guity group, but in this paper is named the ambiguity cluster for
the sake of brevity. Finally, all circuit components which corre-
spond to columns of testability matrix that are not included in
any ambiguity group are called surely testable components. The
canonical ambiguity group has the following property.

Lemma 2: If the order of the canonical ambiguity group
is less or equal to the rankof the testability matrix , then
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there exists such a partition in which a column
of that corresponds to an element of this ambiguity group
has elements equal to zero.

Lemma 2, which results from the simple transformation of
(4) is very useful in deriving a method to break up complex am-
biguities (ambiguity clusters) into a number of canonical ambi-
guities of which it is composed. Finding a proper partition of
the testability matrix is not a trivial task, as it may require
combinatorial searches.

Let us consider an ambiguity cluster composed of two
canonical ambiguity groups and which correspond to set
of columns and with a common element

. The set of columns that corresponds to is
equal to and the rank deficiency of is equal to 2.
Using Lemma 2 it is easy to demonstrate that there exists such
a partition in which two columns of that
correspond to two elements of this ambiguity cluster different
than the common element have the number of zero elements
respectively equal to and , where and

are the corresponding orders of the two ambiguity groups.
In addition, these two columns have only one common nonzero
element.

Lemma 2, states only the existence of a partition. In order
to efficiently find such a partition for any ambiguity group or
its combination, we will look for a partition (3) with the matrix

in a minimum form, where a matrix is in a minimum
form if it has the maximum number of coefficients equal to zero.
The corresponding partition (3) is called a canonical form of the
testability matrix.

In [31] ambiguity groups were analyzed by checking all pos-
sible combinations of tested components with the computational
cost on the order of . This exponential dependence of
the search time on the number of tested parameters renders am-
biguity analysis impractical for all but very small designs. In-
stead, we will discuss a numerically robust solution algorithm
based on the QR factorization. Test equations use more mea-
surements than the number of unknown components in order to
be able to find a unique solution as well as to compensate for
measurement errors and the noise of the measurement equip-
ment [34]. The QR algorithm finds a numerically stable solution
of overdetermined system of linear equations that minimizes the
least square error. Its numerical complexity is on the order of

.
As a result of the QR factorization of testability matrix
we can formulate the following equation:

(5)

where
is column selection matrix;
is orthogonal matrix;
is upper triangular matrix.

Matrix has only a single nonzero element equal to one in
each column. Matrix product represents a permutation of
the original columns of the testability matrix. Matrix has
its rank equal to the rank of the testability matrix. Since is
an upper triangular matrix and , therefore, all rows of
from to are zero and, as a result, we need only to generate

the first columns of the orthogonal matrix . Therefore, in
our analysis we will assume that was reduced to matrix
by removing all its zero rows. Furthermore, in the presence of
ambiguity groups in the testability matrix , its rank and the
rank of are less than. Therefore

(6)

where is upper triangular and has its rank equal to the
rank of the testability matrix .

The following theorem provides a basis for a numerically ef-
ficient approach to finding the ambiguity groups, the ambiguity
clusters, and surely testable components.

Theorem 1: A linear combination matrix can be numeri-
cally obtained from the QR factorization of the testability matrix

using

(7)

Proof: As a result of QR factorization we have
, where consists of the first columns of

the orthogonal matrix . On the other hand, is
a partition of that defines , with the matrix that corre-
sponds to representing the independent set of columns (
has full column rank equal to). From the definition of we
have , so this corresponds to .
Since is composed of full columns of the orthogonal matrix
we have and multiplying both sides of the previous
equation by we get , which in turns yields
(7).

Typically, the QR algorithm, like the one used in Matlab QR
routine, performs selection of independent columns by choosing
a dominating vector in the orthogonal projection space at each
step of the algorithm. We can alter this selection by first nor-
malizing all columns of the testability matrix and then premul-
tiplying columns that we want to be selected first by a constant
greater than one (for instance ten). This will not affect column
dependencies and will yield a correct result for ambiguity group
identification.

III. I DENTIFICATION OF AMBIGUITY GROUPS

From the above discussion, identification of ambiguity
groups becomes easy provided that the linear combination
matrix is in its minimum form. The following lemma
provides a sufficient condition for the matrix to be in the
minimum form.

Lemma 3a: If any two columns of the linear combination
matrix have simultaneously nonzero elements in at most one
common row, then is in its minimum form.

Different partitions define different linear combination ma-
trices . Let us define the basis of a partition as the set of
components that correspond to columns of matrixand the
cobasis as a set of components that correspond to columns of
matrix . A minimum form is not unique, as it is enough
to switch a component of the basis (that corresponds to a row of

with a single nonzero component) with the corresponding
component of the cobasis (that corresponds to a column which
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includes this nonzero component) to obtain another minimum
form of .

As was discussed in [19], the system testability measure de-
fined as the rank of the testability matrix is independent on pa-
rameter values, which means that the rank of the testability ma-
trix is equal to a given testability measure almost everywhere
in the parameter space. We will extend this result to ranks of
all submatrices of the testability matrix that are used to deter-
mine the existence of ambiguity groups. Under this assumption
we may study properties of the linear combination matrix
considering its equivalent binary matrix that has the same
size as . An element of the matrix is equal to one if the
corresponding element of is nonzero, all other elements are
set to zero. As in matrix , rows of correspond to the ele-
ments of the basis and columns correspond to the elements of
the cobasis on a given partition. This equivalent representation
simplifies the analysis of as the set theory can be used to
study its structural properties.

Using the equivalent binary matrix , Lemma 3a can be
written in the equivalent form as follows.

Lemma 3b: If the intersection any two columns of the equiv-
alent binary matrix have at most one nonzero element, than

is in its minimum form.
Our aim in solving the ambiguity problem is to first identify

ambiguities and, subsequently, to describe them in the simplest
possible way that corresponds to a minimum form of the linear
combination matrix . Useful results closely related to Lemma
3 describe the existence of surely testable components, canon-
ical ambiguity groups, and ambiguity clusters.

Lemma 4a: A circuit component is surely testable if and only
if the corresponding row of is zero.

In order to define the canonical ambiguity groups and the am-
biguity clusters, let us identify a set of elements of the cobasis

that corresponds to a union of columns
of such that for each column that corresponds to
there exists another column that corresponds to ,

such that the two columns have a nonempty intersection.
This set of columns can be easily obtained from the matrix
using less than operations. Let the set of the ele-
ments of the basis correspond to nonzero
rows in the set of columns described by.

Lemma 4b: A set of components described by the union
constitutes an ambiguity group of the testability matrix

.
Ambiguity groups identified by Lemma 4b are either ambi-

guity clusters or canonical ambiguity groups. Canonical ambi-
guity groups can be identified by using the following lemma.

Lemma 4c: The ambiguity group represented by the set
is canonical if and only if cardinality of is equal to

one.
Obviously, if the ambiguity group identified in Lemma 4 is

not canonical it is an ambiguity cluster. Lemma 4 does not re-
quire that the linear combination matrix is in the minimum
form. It partitions all the columns of into row disjoint sets
and this partition identifies all the ambiguity groups, ambiguity
clusters, as well as all surely testable components. The numer-
ical cost of this partition is very modest compared to the combi-
natorial search. It cost on the order of operations to obtain

the QR factorization (it is enough to run the QR factorization on
submatrix of to determine ambiguities) of the testability

matrix and on the order of to obtain all canonical
ambiguity groups and ambiguity clusters.

Example 1: As an example of the ambiguity identification
let us consider the following testability matrix as shown in (8) at
the bottom of the next page. After running the QR factorization
process the following equivalent binary matrixwas obtained:

(9)

and the following columns were selected for the basis
and the cobasis

. Using Lemma 4a we can identify the surely
testable components as those elements of the basis that cor-
respond to zero rows of , so they are .
There are three different sets described in Lemma 4b.
The first one corresponds to the first and third column of

so it contains elements three and one, and the other two
have a single element only (corresponding to columns two
and four). Elements three and one combined with elements
of the basis for which the first and the third column have
nonzero components form an ambiguity cluster

. The remaining two are canonical
ambiguity groups (according to Lemma 4c) and are as follows:

and .
As mentioned before, Lemma 3 is only a sufficient condition

for a minimum form of . If two or more columns of have
an intersection with more than one common element we have to
analyze these common elements to check for possible simplifi-
cation that will yield a minimum form. Since at the beginning
of the ambiguity analysis we have no idea about the existence
and the complexity of the ambiguity groups, the QR algorithm
is run and the results are used to reduce the complexity of the
ambiguity identification problem.

As a result of a single QR factorization, we can simplify our
task by removing all surely testable components and all canon-
ical ambiguity groups from further consideration. Only the am-
biguity clusters have to be further analyzed in order to find a
minimum form of the linear combination matrix . Since all
ambiguity clusters identified by Lemma 4 are disjoint sets of the
circuit components we can analyze them separately, which sig-
nificantly reduces our effort to find the minimum form.

IV. UNTANGLING THE COMPLEXITY OF AMBIGUITY CLUSTERS

As a result of a single QR run we were able to identify all
canonical ambiguity groups and all surely testable components
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in the testability matrix from Example 1. The remaining task is
to analyze the ambiguity clusters.

Let us assume that is an ambiguity cluster and se-
lect which corresponds to. We define a minimum form
partition of an ambiguity cluster as a minimum form partition
of . If the QR factorization is repeated onand columns
are selected for the basis with columns selected as the
cobasis , then the resulting matrix is obtained on
the intersection of rows that correspond toand columns that
correspond to . Any reduction in the number of nonzero ele-
ments of will result from swapping an element of the basis
with an element of the cobasis.

If the matrix does not include structural zeros (an element
of the testability matrix is a structural zero if it is equal to zero
for all values of circuit parameters) we could also reduce the
number of rows of . This reduced submatrix will have an
identical matrix as the original submatrix almost every-
where in the parameter space, therefore it can be used to iden-
tify a minimum form partition of the ambiguity cluster with less
computational expense. For numerical stability we could chose
the number of rows of slightly larger than the number of its
columns to identify a minimum form partition of the ambiguity
cluster, without a significant increase in the computational ef-
fort.

Example 2: Using results of the QR factorization in Example
1, we will analyze the ambiguity cluster

. To do so, let us se-
lect a 6 6 submatrix of the testability matrix in Example
1 which includes the set of columns .

(10)

Its equivalent binary matrix can be obtained from the sub-
matrix on the intersection of rows that correspond
to the elements of the basis included inand columns
that correspond to the elements of the cobasis included in

(11)

In this case the only possible simplification may result from
swapping elements of the cobasis with elements of the basis
that correspond to rows one and three of. Therefore we run
the QR factorization on by trying to select as the basis these
columns of which correspond to the original circuit compo-
nents . However, in this case, columns which corre-
spond to are dependent and cannot be selected to be
a basis of the ambiguity group partition. As the result of the
QR factorization, columns that correspond to the circuit com-
ponents were selected as a new basis of a partition
of , and the components are in the cobasis. The reduced
equivalent binary matrix is as follows:

(12)

According to Lemma 3b, the linear combination matrix
which corresponds to is in its minimum form, therefore, the
obtained partition of columns constitutes the minimum form
partition of the ambiguity cluster .

Finally, combining this result with the result of Example 1
we can obtain a minimum form partition of the original testa-
bility matrix . This minimum form partition has the basis
columns which define matrix in (3) that correspond to the
set and the cobasis equal

(8)
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to . Using this minimum form partition we ob-
tain the following linear combination matrix of the original
testability matrix :

(13)

The linear combination matrix is critical for the optimum
solution of test diagnosis equations in the network with ambi-
guities.

In general, ambiguity clusters can be much more complex
than those discussed so far. For instance, if we use the first 11
columns of depicted in (8) as a basis

and create a new testability matrix by appending the
basis columns with new columns obtained
from the linear combination matrix equal to as shown in

(14) at the bottom of this page where the selected cobasis

define components which correspond to columns of, then,
as a result of the QR factorization of this new testability
matrix, we may obtain the following nonminimum form of

(the following form shows only two digits of the result
multiplied by 100 for the simplicity of the presentation) as
shown in (15) at the bottom of this page. The QR factorization
selected the following columns as a basis

and columns of are arranged ac-
cording to the selected cobasis

. Due to the roundoff to two digits, some
of zeros in the new are not structural zeros. The binary
equivalent matrix computed with the machine precision is as
shown in (16) at the bottom of the next page. Our task is to find
a minimum form partition of the ambiguity cluster represented
by matrix . By comparing obtained and we see that
some zeros in are a result of rounding off to the nearest
integer. The true count of zero coefficients, based on the matrix

shows that this form has 51 zeros while the original matrix
had 133 zeros. Definitely is not in a minimum form.

However, finding this minimum form requires a systematic
approach to untangle the complexity of the ambiguity cluster.
This approach is discussed next.

(14)

(15)
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An exhaustive search for possible simplifications of the
ambiguity cluster represented by the equivalent binary matrix

would require us to generate and check combina-
tions of columns, where is the size of the cobasis (number
of columns in ) and is the size of the basis (number of
rows in ). Since the motivation for this work was to avoid the
combinatorial searches, we need to simplify this task. Finding
the minimum form partition corresponds to a proper selection
of the basis, therefore, we will concentrate on swapping an
element of the basis with an element of the cobasis in the am-
biguity cluster. Swapping elements of the basis and the cobasis
can be performed independently in different ambiguity clusters,
since different clusters have mutually disjoint sets of compo-
nents.

Let us consider a linear combination matrix in a minimum
form. The th column of the corresponding cobasis
is related to columns of the basis through the th column of

as follows:

(17)

or using the elements of the th column of

(18)

where is the th column of the basis. Let us consider
a nonzero coefficient of the th column of in a minimum
form. If we swap the th element of the basis withth element
of the cobasis, then

(19)

In addition, all other columns of the cobasis will be equal to

(20)

After swapping, column becomes an element of the basis
and th column of changes to

(21)

such that all zero locations in theth column of will remain
zero as they were in the original . However, as can be de-
duced from (20), the zero locations in columns that had
nonzero element inth row ( ) will become nonzero if only
the was not zero before transformation. Therefore, the linear
combination matrix will no longer have its minimal form.

Lemma 5: A linear combination matrix can be mini-
mized only if it has a singular submatrix of nonzero coef-
ficients.

Proof: Let us consider a submatrix of obtained on the
intersection of rows, and columns , that resulted from
transformation of a previously zero location using (19) and
(20). As a result of swapping this submatrix will be expressed
by elements of matrix before swapping as follows:

(22)

It is easy to check that this submatrix is singular.
Although the existence of a singular matrix of all

nonzero coefficients is necessary for progress toward a min-
imum form a number of matrices would have to be
checked out for possible simplification of the matrix form. In
addition, simplification of the matrix form in one location may
result in additional nonzero elements in other locations if it is
not done properly.

Let us consider a nonzero coefficient of the linear combi-
nation matrix , and let be a set of rows of the equivalent
binary matrix that have 1 in theth column.

(16)
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Lemma 6: A necessary condition for swapping of theth el-
ement of the basis with theth element of the cobasis not to in-
crease the numberof nonzero coefficients ina linearcombination
matrix is that all nonzero coefficients in theth row of are also
nonzero in the corresponding columns of all rows of.

An element of the linear combination matrix that sat-
isfies condition of Lemma 6 is called a candidate for reduction
toward a minimum form. In order to swap a number of basis
and cobasis elements we define a prime candidate for reduction
toward a minimum form as the largest minor of whose ele-
ments are candidates for reduction toward a minimum form. Let

and represent the set of indexes of a prime candidate rows
and columns, respectively.

Lemma 7: If a submatrix of obtained on intersection of
rows and columns is a prime candidate then all rowsof
the equivalent binary matrix are equal.

Let represent a set of rows of that have a nonzero
element in one of the columns.

Lemma 8: If a submatrix of obtained on intersection of
rows and columns is a prime candidate then all nonzero
coefficients in the rows of are also nonzero in the corre-
sponding columns of all rows .

Lemma 8 extends the results of Lemma 6 to sets of rows and
columns and improves efficiency of an algorithm that identifies
prime candidates for reduction. The following lemma reduces
identification of a prime candidate to identification of its diag-
onal:

Lemma 9: If two elements and , where and
are the candidates for reduction and the corresponding

rows of are equal, then all elements of the submatrix obtained
on the intersection of rows and and columns and are
candidates for reduction.

Using Lemma 9, the largest set of candidates on the inter-
section of different rows and columns of with all rows equal
identify the prime candidate. The first step toward untangling
a complex ambiguity cluster is to find all prime candidates for
reduction toward a minimum form based on Lemmas 7–9. Then
these prime candidates are used in swapping elements of the
basis and the cobasis and the results of swapping are evaluated.
The following procedure describes this approach.

Procedure 1—Finding a Minimum Form Partition of an Am-
biguity Cluster:

1) Define the row equivalence classes as the subsets of iden-
tical rows of .

2) Starting from the largest row equivalence class, determine
a largest subset of rowsin this equivalence class and the
corresponding subset of columnsfor which Lemma 9
is satisfied. If there is no nonzero coefficient for which
Lemma 6 is satisfied—stop.

3) Repeat Point 2) for each row equivalence class that is
larger than the size of the largest subset found in 2.

4) Use the largest subset found in Point 2) as a prime candi-
date and swap the basis elements that correspond to its
rows with the co-basis elements that correspond to its
columns.

5) If as a result of swapping, the number of zero coefficients
in did not increase, then repeat Points 2)–4) for the
next prime candidate.

6) If there was no increase in the number of zero elements
in after executing Points 2)–5), then reduce the size
of prime candidates by one and repeat Points 2)–5).

7) If the number of zero elements in increased after ex-
ecuting Points 2)–6), then go back to Point 1, otherwise
stop.

In order to illustrate the procedure to find a minimum form par-
tition of an ambiguity cluster let us consider the following ex-
ample.

Example 3: Let us apply Procedue 1 to the matrix de-
scribed in (16).

1) We have the following row equivalence classes:
, , , , , .

2) To illustrate Lemma 6, let us consider the element,
for which . Now
we check all the elements of the first row of that
are nonzero and verify if all the elements of the corre-
sponding column of are nonzero. Since the coeffi-
cients and , the necessary condition
for swapping is not satisfied and, based on Lemma 6,
the first element of the basis and the cobasis cannot
be swapped. However, Lemma 6 is satisfied for,
so this element is a candidate for reduction. To find
a prime candidate we first analyze other rows in the
largest equivalence class looking for candidates for re-
duction. We see that Lemma 6 is also satisfied for the
following elements: , , , , , there-
fore, based on Lemma 9, a prime candidate for reduc-
tion is a submatrix on the intersection of rows

and columns .
3) Since no row equivalence class is larger than the size

of no other subsets of rows are considered.
4) We swap the basis elementswith the cobasis ele-

ments . As a result the elements
of the old basis

, will be replaced by the elements
, such that the proposed order of

element selection for the new basis is
. Notice that not all of the proposed

elements may be selected as a result of QR factor-
ization, since they may be mutually dependent. This
dependence will be automatically detected by the QR
algorithm and dependent columns will be moved to the
cobasis. When the QR is run again with the proposed
basis it returns a new equivalent binary matrixas
shown in (23) at the bottom of the next page.

The selected basis is and the
cobasis is .
The number of zeros in increased significantly to 121 after
this step and the matrix is now closer to its minimum form.

5.6.7. Since as a result of swapping, the number of zero co-
efficients in increased, then we proceed to Step 1).

Steps 1)–7) are repeated for the new matrix. Since there is
no identical rows, each row is its own equivalence class. The
largest row equivalence class have size one, so it is enough to
find a single coefficient for which Lemma 6 is satisfied. We
can check that Lemma 6 is satisfied for the coefficient as
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row number one of is included in all other rows that contain
13th element of the cobasis (rows 7, 9, and 10) therefore, the
first element of the basis and the 13th element of the cobasis
will be swapped.

In a similar fashion we will swap the ninth element of the
cobasis with the second element of the basis as well as 12th el-
ement of the cobasis with the eighth element of the basis and,
finally, the sixth element of the cobasis with the tenth element of
the basis. As a result, new basis components tried for QR factor-
ization are . When the QR algorithm
is run again with the selected elements of the proposed basis
it returns a new equivalent binary matrix is in its minimum
form as shown in (24) at the bottom of this page. The selected
basis elements are and the cobasis
is . Since
there is no nonzero coefficient for which Lemma 6 is satis-
fied, the procedure stops.

Based on the presented discussion the following procedure
identifies all surely testable components, ambiguity clusters,
and canonical ambiguity groups, as well as finds a canonical
form of the testability matrix.

Procedure 2—Canonical Form of the Testability Matrix:

1) Formulate test equations (1) and identify the testability
matrix .

2) Run the QR factorization on to obtain (5).
3) Use the column selection matrix to find initial ele-

ments of the basis and the cobasis.

4) Represent in the form (6).
5) Find the linear combination matrix using (7).
6) Find the equivalent binary matrix for .
7) Use Lemma 4 to identify all surely testable components,

canonical ambiguity groups, and ambiguity clusters.
8) Find a minimum form partition of each ambiguity cluster

as described in Procedure 1).
9) Combine all basis components from all ambiguity clus-

ters with all surely testable components to form the final
basis and the cobasis.

10) Use the final basis to obtain the canonical form of the
testability matrix .

V. ANALOG CIRCUIT EXAMPLES

Procedures 1) and 2) presented in previous section were pro-
grammed in Matlab and combined with symbolic analysis pro-
gram SAPWIN [35] and SYFAD [16] to obtain and analyze
testability equations of analog circuits.

Example 4: To illustrate results of these programs let us con-
sider the following BJT transistor circuit shown in Fig. 1.

The BJT model used for the symbolic analysis is the simpli-
fied one that considers only the input conductanceand the
current gain . If we select Test 1 in Fig. 1 as test point we
obtain the following test point equation, written in a symbolic
form, obtained with the software tool SAPWIN, as shown in
(25) at the bottom of the next page. We consider as the second
test point Test 2 in Fig. 2.

(23)

(24)
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Fig. 1. An example of a low-testability circuit

Fig. 2. Second test point selection

The symbolic test equation as it has been given by the soft-
ware SAPWIN is as shown in (26) at the bottom of the page.
Then the testability matrix , written in a symbolic form was
obtained by the software SYFAD, as shown at the bottom of the
next page. If we assign the following integer values to the pa-

rameters: ; ; ; ; ;
then we obtain the following numerical testability matrix:

The following results were obtained by the Matlab program
which implements Procedures 1) and 2):

The order of columns selected by QR factorization is (2, 5,
4, 3, 1, and 6). The basis elements selected are
and the cobasis is . Hence, the following canonical
ambiguity groups have been determined ,
and corresponding to the following circuit
parameters: and . These
two groups form the ambiguity cluster with equivalent binary
matrix .

As expected, this result is in full agreement with the result
of symbolic analysis, however, it is obtained at a fraction of the
time needed for symbolic analysis. Time savings are important,
particularly when the size of the test equation is large as the
combinatorial search is replaced by a program of polynomial
complexity.

Example 5: A somehow larger example, the attenuator
circuit shown in Fig. 3 [30], has system test equation
with matrix obtained by sensitivity analysis. Sensitivities
with respect to 19 circuit parameters were calculated at 41
frequency points spread evenly from 10 Hz to 1 MHz. The only
test point selected was the circuit output voltage. The complete
sensitivity matrix in this example contains 19 columns and
41 rows and was analyzed using the Matlab based program
called ambiguous test equations solver (ATES). To consider
week dependencies between parameters we selected rank
of the testability matrix using only the singular values that
were greater than 10 . In addition, elements of the linear

Test (25)

Test (26)
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Fig. 3. Attenuator circuit example.

combination matrix that were less than 10were set to zero.
With this two threshold values, we obtained results similar to
those reported in [30]. Basis elements selected were

and the cobasis were
. Parameter

was ambiguous by itself due to its low sensitivity values (zero
column in the linear combination matrix). Parameters

were surely testable. All ambiguity groups in
this circuit were determined in 0.19 s.

Due to the complex dependencies between columns of testa-
bility matrix this circuit is difficult to test as observed in [30]
and the observed dependencies between parameters vary signifi-
cantly with changes in the selected threshold levels. This numer-
ical study of ambiguity group dependencies on the measurement
error and machine precision is an interesting topic, however, it
is beyond the scope of this paper.

To demonstrate the numerical efficiency of the method, a
number of test matrices of various dimensions were analyzed
and ambiguity groups determined using the described method-
ology. All of these matrices were too big to complete calcula-
tions based on symbolic analysis, so no direct comparison is
possible. The computer simulation time required to find all am-
biguity groups in the analyzed matrices are displayed on Fig. 4.

The simulation time is shown as a function of the number of
matrix columns.

Simulation was performed using program ATES on 300-MHz
Pentium PC computer with 128-MB RAM and Windows 95. In
all cases the number of rows were greater than the number of
columns. As can be seen from the Fig. 4 the simulation time
grows approximately as a cube of the number of circuit param-
eters (number of columns of the sensitivity matrices). Based on
the observed results we can perform ambiguity group analysis
for medium size analog circuit with several hundred discrete pa-
rameters.

VI. CONCLUSIONS

An efficient numerical approach for testing linear analog sys-
tems with ambiguities has been presented. The paper describes
techniques to identify various ambiguity groups and to present
them in a simplest possible way in order to diagnose low-testa-
bility systems. All canonical ambiguity groups, ambiguity clus-
ters and surely testable components can be easily identified by
using results of the QR factorization of the circuit testability ma-
trix. Computational complexity of the algorithm that identifies
ambiguity groups is on the order of . The method can be
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(a)

(b)

Fig. 4. Simulation time as a function of number of parameters. (a) Time in
seconds. (b) Cubic root of the simulation time

used to find a unique solution of the test diagnosis equations
if such unique solution exists or determine which components
are uniquely determined and which have ambiguous solutions.
Such information is of fundamental importance in the fault di-
agnosis procedures or in the circuit parameters extraction, be-
cause it gives rigorous upper limit to the theoretical solvability
of the problem. The computational cost of the method presented
here are very little comparing to the combinatorial one pro-
posed in the previous works. This allows to deal with analog
circuits having several hundred parameters in an efficient way.
A Matlab–based algorithm was developed to implement the de-
scribed procedure and was integrated with the symbolic analysis
program SYFAD that determines the testability matrix and pro-
gram SAPWIN that determines testability equations. This has
allowed to obtain a fully automated method that, starting from
the topology of the circuit under test, determines the ambiguity
groups and the surely testable circuit parameters.

REFERENCES

[1] W. Hochwald and J. D. Bastian, “A dc approach for analog fault dic-
tionary determination,”IEEE Trans. Circuits Syst., vol. CAS-26, pp.
523–529, July 1979.

[2] K. C. Varghese, J. H. Williams, and D. R. Towill, “Simplified ATPG and
analog fault location via a clustering and separability technique,”IEEE
Trans. Circuits Syst., vol. CAS-26, pp. 496–505, July 1979.

[3] N. Navid and A. N. Willson, “A theory and an algorithm for analog
circuit fault diagnosis,”IEEE Trans. Circuits Syst., vol. CAS-26, pp.
440–457, July 1979.

[4] R. M. Biernacki and J. W. Bandler, “Multiple-fault location of analog
circuits,” IEEE Trans. Circuits Syst., vol. CAS-28, pp. 361–367, May
1981.

[5] C. C. Wu, K. Nakajima, C. L. Wey, and R. Saeks, “Analog fault diag-
nosis with failure bounds,”IEEE Trans. Circuits Syst., vol. CAS-29, pp.
277–284, May 1982.

[6] J. A. Starzyk and J. W. Bandler, “Multiport approach to multiple-fault
location in analog circuits,”IEEE Trans. Circuits Syst., vol. CAS-30, pp.
762–765, Oct. 1983.

[7] A. E. Salama, J. A. Starzyk, and J. W. Bandler, “A unified decomposition
approach for fault location in large analog circuits,”IEEE Trans. Circuits
Syst., vol. CAS-31, pp. 609–622, July 1984.

[8] J. W. Bandler and A. E. Salama, “Fault diagnosis of analog circuits,”
Proc. IEEE, vol. 73, pp. 1279–1325, Aug. 1985.

[9] R. Liu, Testing and Diagnosis of Analog Circuits and Systems. New
York: Van Nostrand Reinhold, 1991.

[10] J. L. Huertas, “Test and design for testability of analog and mixed-signal
integrated circuits: Theoretical basis and pragmatical approaches,” in
Proc. Circuit Theory Design, ECCTD’93, H. Dedieu, Ed., Amsterdam,
The Netherlands, 1993, pp. 77–156.

[11] H. Zhihua Wang, G. Gielen, and W. Sansen, “A novel method for the
fault location of analog integrated circuits,” inProc. IEEE Int. Symp.
Circuits Systems, ISCAS’94, London, U.K., May 1994, pp. 347–350.

[12] M. Slamani and B. Kaminska, “Multifrequency analysis of faults in
analog circuits,”IEEE Design Test Comput., vol. 12, pp. 70–80, Summer
1995.

[13] , “Fault observability analysis of analog circuits in frequency do-
main,” IEEE Trans. Circuits Syst., vol. 43, pp. 134–139, Feb. 1996.

[14] H. T. Sheu and Y. H. Chang, “Robust fault diagnosis for large-scale
analog circuits with measurement noises,”IEEE Trans. Circuits Syst.
I, vol. 44, pp. 198–209, Mar. 1997.

[15] R. Spina and S. Upadhyaya, “Linear circuit fault diagnosis using neuro-
morphic analyzers,”IEEE Trans. Circuits Syst. II, vol. 44, pp. 188–196,
Mar. 1997.

[16] G. Fedi, R. Giomi, A. Luchetta, S. Manetti, and M. C. Piccirilli, “On
the application of symbolic techniques to the multiple fault location in
low testability analog circuits,”IEEE Trans. Circuits Syst. II, vol. 45, pp.
1383–1388, Oct. 1988.

[17] R. S. Berkowitz, “Conditions for network-element-value solvability,”
IEEE Trans. Circuit Theory, vol. CT-9, pp. 24–29, Mar. 1962.

[18] TXR. Saeks, “A measure of testability and its application to test point se-
lection theory,”Proc. 20th Midwest Symp. Circuits Systems., Aug. 1977.

[19] N. Sen and R. Saeks, “Fault diagnosis for linear systems via multi-
frequency measurement,”IEEE Trans. Circuits Syst., vol. CAS-26, pp.
457–465, July 1979.

[20] H. M. S. Chen and R. Saeks, “A search algorithm for the solution of
multifrequency fault diagnosis equations,”IEEE Trans. Circuits Syst.,
vol. CAS-26, pp. 589–594, July 1979.

[21] R. W. Priester and J. B. Clary, “New measures of testability and test com-
plexity for linear analog failure analysis,”IEEE Trans. Circuits Syst.,
vol. CAS-28, pp. 1088–1092, Nov. 1981.

[22] G. Fedi, S. Manetti, and M. C. Piccirilli, “Comments on Linear circuit
fault diagnosis using neuromorphic analyzers,”IEEE Trans. Circuits
Syst. II, vol. 46, pp. 483–485, Apr. 1999.

[23] G. Iuculano, A. Liberatore, S. Manetti, and M. Marini, “Multifrequency
measurement of testability with application to large linear analog sys-
tems,”IEEE Trans. Circuits Syst., vol. CAS-23, pp. 644–648, June 1986.

[24] M. Catelani, G. Iuculano, A. Liberatore, S. Manetti, and M. Marini, “Im-
provements to numerical testability evaluation,”IEEE Trans. Instrum.
Meas., vol. IM-36, pp. 902–907, Dec. 1987.

[25] R. Carmassi, M. Catelani, G. Iuculano, A. Liberatore, S. Manetti, and
M. Marini, “Analog network testability measurement: A symbolic for-
mulation approach,”IEEE Trans. Instrum. Meas., vol. 40, pp. 930–935,
Dec. 1991.

[26] A. Liberatore, S. Manetti, and M. C. Piccirilli, “A new efficient method
for analog circuit testability measurement,” inProc. IEEE Instrumenta-
tion Measurement Technology Conf., Hamamatsu, Japan, May 1994, pp.
193–196.

[27] M. Catelani, G. Fedi, A. Luchetta, S. Manetti, M. Marini, and M. C.
Piccirilli, “ A new symbolic approach for testability measurement of
analog networks ,” inProc. MELECON ’96, Bari, Italy, May 1996, pp.
517–520.



STARZYK et al.: FINDING AMIBIGUITY GROUPS IN LOW TESTABILITY ANALOG CIRCUITS 1137

[28] S. Manetti, “A new approach to automatic symbolic analysis of electric
circuits,” Proc. Inst. Elect. Eng., pt. G, vol. 138, pp. 22–28, 1991.

[29] A. Liberatore and S. Manetti, “Network sensivity analysis via symbolic
formulation,” in Proc. IEEE Int. Symp. Circuits Systems, ISCAS’89,
Portland, OR, May 1989, pp. 705–708.

[30] G. N. Stenbakken, T. M. Souders, and G. W. Stewart, “Ambiguity groups
and testability,”IEEE Trans. Instrum. Meas., vol. IM-38, pp. 941–947,
Oct. 1989.

[31] G. Fedi, R. Giomi, A. Luchetta, S. Manetti, and M. C. Piccirilli, “Sym-
bolic algorithm for ambiguity group determination in analog fault diag-
nosis,” inProc. ECCTD’97, Budapest, Hungary, Aug. 1997.

[32] G. Fedi, S. Manetti, . C. Piccirilli, and J. A. Starzyk, “Determination of
an optimum set of testable components in the fault diagnosis of analog
linear circuits,”IEEE Trans. Circuits Syst. I, vol. 46, pp. 779–787, July
1999.

[33] G. N. Stenbakken and T. M. Souders, “Test point selection and testability
measures via QR factorization of linear models,”IEEE Trans. Instrum.
Meas., vol. IM-36, pp. 406–410, June 1987.

[34] V. Brygilevicz, J. Wojciechowski, and J. A. Starzyk, “Testing of analog
dynamic systems based on integral sensisitivity,” inProc. ECCTD,
Stresa, Italy, Aug. 1999.

[35] A. Liberatore, A. Luchetta, S. Manetti, and M. C. Piccirilli, “A new
symbolic program package for the interactive design of analog circuits,”
in Proc. 1995 Int. Symp. Circuits Systems, Seattle, WA, May 1995, pp.
2209–2212.

Janusz A. Starzyk (SM’83) received the M.S.
degree in applied mathematics and the Ph.D. degree
in electrical engineering from Warsaw University
of Technology, Warsaw, Poland, in 1971 and 1976
respectively.

From 1977 to 1981 he was an Assistant Professor
at the Institute of Electronics Fundamentals, Warsaw
University of Technology, Warsaw, Poland. From
1981 to 1983 he was a Postdoctorate Fellow and Re-
search Engineer at McMaster University, Hamilton,
Ont. Canada. In 1983 he joined the Department of

Electrical and Computer Engineering, Ohio University, Athens, where he is
currently a Professor of EECS. He has cooperated with the National Institute
of Standards and Technology in the area of testing and mixed signal fault
diagnosis. He has been a consultant to AT&T Bell Laboratories, Sverdrup
Technology, and Magnetek Corporation. In 1991 he was a Visiting Professor
at the University of Florence, Florence, Italy. He was a Visiting Researcher
at Redstone Arsenal, U.S. Army Test, Measurement, and Diagnostic Activity
and at Wright Labs, Advanced Systems Research and Sensor ATR Technology
Development. His current research is in the areas of neural networks, VLSI
and VHDL design, computer-aided design of analog MOS circuits, and mixed
signal testing.

Jing Pang(S’98) received the B.E. and M.E. degrees
in electrical engineering from Xi’an Jiaotong Univer-
sity in 1993 and 1996, respectively.

She is currently a Ph.D. student in the Department
of Electrical Engineering and Computer Science at
Ohio University. Her current research focuses on
computer-aided design of integrated circuits.

Stefano Manetti (M’96) received the degree in electronic engineering from the
University of Florence, Florence, Italy, in 1977.

From 1977 to 1979, he was a Research Fellow at the Engineering Faculty,
University of Florence. He was an Assistant Professor of applied electronics at
the Academia Navale of Livomo, Livomo, Italy, from 1980 to 1983 and a Re-
searcher in the Electronic Engineering Department, the University of Florence,
from 1983 to 1987. From 1987 to 1994 he was an Associate Professor of network
theory at the University of Florence. In 1994, he joined the University of Basil-
icata, Potenza, Italy, as a Full Professor of electrical sciences. Since November
1996, he has been a Full Professor of electrical sciences at the University of Flo-
rence. His research interests are in the areas of circuit theory, neural networks,
and fault diagnosis of electronic circuits.

Dr. Manetti is a member of the ECS and AEI.

Maria Cristina Piccirilli (M’00) received the degree
in electronic engineering from the University of Flo-
rence, Florence, Italy, in 1987.

From 1988 to 1990 she was a Research Fellow
at the University of Pisa, Pisa, Italy. From March
1990 to October 1998 she was a Researcher at the
Department of Electronic Engineering, the Univer-
sity of Florence. Since November 1998, she has
been an Associate Professor of network theory in the
Department of Electronics and Telecommunications,
the University of Florence, where she works in

the area of circuit theory, fault diagnosis of electronic circuits, and symbolic
analysis.

Giulio Fedi (S’94–M’95) was bom in Milano, Italy,
in 1970. He received the Laurea degree in electronic
engineering (summa cum laude) from the University
of Florence, Florence, Italy, in 1995 and the Ph.D.
degree in electrical engineering from the University
of Pisa, Pisa, Italy, in 1999.

He is now a Researcher at the Department of
Electronics and Telecommunications, the University
of Florence. His research activities are in the areas
of analog circuit fault diagnosis using symbolic
techniques and neural network applications to circuit

modeling.
Dr. Fedi is a member of the AEI.


