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Abstract To avoid serious diabetic complications, people with type 1 diabetes must
keep their blood glucose levels (BGLs) as close to normal as possible. Insulin
dosages and carbohydrate consumption are important considerations in managing
BGLs. Since the 1960s, models have been developed to forecast blood glucose
levels based on the history of BGLs, insulin dosages, carbohydrate intake, and other
physiological and lifestyle factors. Such predictions can be used to alert people
to impending unsafe BGLs or to control insulin flow in an artificial pancreas. In
past work, we have introduced an LSTM-based approach to blood glucose level
prediction aimed at "what if" scenarios, in which people could input the number of
carbohydrates in foods they might eat or insulin amounts they might take and then see
the effect on future BGLs. Building on these neural models for "what-if" predictions,
in this work we derive a novel LSTM-based architecture that can be trained to make
either insulin or carbohydrate recommendations to ensure that future BGLs attain a
desired level. Experimental evaluations using data from the OhioT I DM dataset show
that the neural architecture substantially outperforms the baselines. The promising
results suggest that this novel approach could potentially be of practical use to people
with type 1 diabetes for self-management of BGLs.

1 Introduction and Motivation

Diabetes self-management is a time-consuming, yet critical, task for people with
type 1 diabetes. To avoid serious diabetic complications, these individuals must
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continually manage their blood glucose levels (BGLs), keeping them as close to
normal as possible. They must avoid both low BGLs, or hypoglycemia, and high
BGLs, or hyperglycemia, for their physical safety and well-being. Diabetes self-
management entails carefully monitoring BGLs throughout the day, by testing blood
obtained from finger sticks and/or by using a continuous glucose monitoring (CGM)
system. It also entails making numerous daily decisions about the timing and dosage
of insulin and the timing, ingredients, and quantity of food consumed.

Current diabetes self-management may be characterized as reactive, rather than
proactive. When BGLs are too high, individuals may take insulin to lower them, and
when BGLs are too low, they may eat a snack or take glucose tablets to raise them.
The ability to accurately predict BGLs could enable people with type 1 diabetes to
take preemptive actions before experiencing the negative effects of hypoglycemia or
hyperglycemia. There have been efforts to model BGLs for the purpose of determin-
ing insulin dosages dating back to the 1960s [4]. There has been much recent work in
BGL prediction for the purpose of providing support for diabetes self-management,
including our own [5, 13]. Accounts of some of the most recent BGL prediction ef-
forts can be found in the proceedings of two international BGL prediction challenges
[1, 2]. It should be noted that, even with the benefit of accurate BGL predictions,
individuals still need to determine how much to eat, how much insulin to take, and
what other actions they can take to prevent hypoglycemia or hyperglycemia.

The broad goal of the research presented here is to essentially reverse the BGL
prediction problem, and instead predict how many grams of carbohydrate (carbs)
an individual should eat or how much insulin they should take in order to achieve
a desired BGL target. We have previously introduced an LSTM-based neural archi-
tecture that was trained to answer what-if questions of the type “What will my BGL
be in 60 minutes if I eat a snack with 30 carbs 10 minutes from now?” [11]. We
show that, by using the BGL target as a feature and the carbohydrates or insulin as
labels, a similar architecture can be trained instead to predict the number of carbs
that should be consumed or the amount of insulin that should be taken during the
prediction window in order to reach that BGL target.

The work by Mougiakakou and Nikita [12] represents one of the first attempts
to use neural networks for recommending insulin regimens and dosages. Bolus
calculators were introduced as early as 2003 [16], wherein a standard formula is used
to calculate the amount of bolus insulin based on parameters such as carbohydrate
intake, carbohydrate-to-insulin ratio, insulin on board, and target BGL. Walsh et al.
[15] discuss major sources of errors and potential ways to improve bolus advisors,
such as utilizing the massive quantities of clinical data collected by the bolus advisors.
As observed by Cappon et al. in [6], the standard formula approach ignores potentially
useful preprandial conditions, such as the glucose rate of change. They propose a
feed-forward fully connected neural network to exploit CGM information and some
easily accessible patient parameters. Their experimental evaluations on simulated
data show a small, but statistically significant, improvement in the blood glucose
risk index. Simulated data is also used by Sun et al. in [14], where a basal-bolus
advisor is trained using reinforcement learning in order to provide personalized
suggestions to people with type 1 diabetes taking multiple daily injections of insulin.
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The data-driven architecture introduced herein is generic in the sense that it can
be trained to make recommendations about any variable that can impact BGLs, in
particular, carbohydrates and insulin. Carbohydrate recommendations are potentially
useful when someone wants to prevent hypoglycemia well in advance or when
someone wants to achieve a higher target BGL before physical exercise that is
expected to lower it. Bolus recommendations are useful prior to meals and also
for lowering BGLs when individuals experience hyperglycemia. In [3], we reported
preliminary results only for the task of carbohydrate recommendation, where the aim
was to achieve a desired target BGL 30 or 60 minutes into the future. The timing
of the meal was variable within the prediction window and was used as one of the
inputs to the model. In this paper, we change the task definition to make the system
easier to use and more relevant to the type of situations encountered in the daily
life of individuals with type 1 diabetes. As such, the timing of the bolus or meal is
now fixed at 10 minutes into the future, based on the assumption that patients are
most interested in using the system right before making a meal or bolus decision. To
achieve the desired BGL, the user can specify any time horizon between 30 and 90
minutes, giving them more flexibility in terms of how fast they want their BGL to
change.

The rest of this chapter is organized as follows: Section 2 presents three different
recommendation scenarios. Section 3 describes the neural architecture as well as
the baselines used for comparison. Section 4 describes the dataset and explains
how recommendation examples were derived. Section 5 explains the experimental
methodology and presents the results of the experiments. Section 6 contains the
conclusion and plans for future work.

2 Three Recommendation Scenarios

We assume that blood glucose levels are measured at 5 minute intervals through
a CGM system. We also assume that discrete deliveries of insulin (boluses) and
continuous infusions of insulin (basal rates) are recorded. Subjects provide the
timing of meals and estimates of the number of grams of carbohydrate in each meal.
Given the available data up to and including the present (time ¢), the system aims
to estimate how many carbs a person should eat or how much insulin they should
administer 10 minutes from now (time 7+ 10) such that their blood glucose will reach
a target level T minutes after that action (time # + 10 + 7). A system that computes
these estimates could then be used in the following three recommendation scenarios:

1. Carbohydrate Recommendations: Estimate the amount of carbohydrate Cy, g
to have in a meal in order to achieve a target BG value G410+7-

2. Bolus Recommendations: Estimate the amount of insulin B;,1¢ to deliver with
a bolus in order to achieve a target BG value G;410++.

3. Bolus Recommendations given Carbohydrates: Expecting that a meal with
Cr420 grams of carbohydrate will be consumed 20 minutes from now, estimate
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the amount of insulin B, ¢ to deliver with a bolus 10 minutes before the meal in
order to achieve a target BG value G;410++.

These recommendation scenarios were designed to align with decision-making sit-
uations commonly encountered by people with type 1 diabetes. In particular, the
corresponding recommendation systems would help an individual to estimate how
many carbs to eat or how much insulin to administer for the purpose of raising or
lowering their BGL (scenarios 1 and 2, respectively), as well as how much insulin
to administer in conjunction with a planned meal (scenario 3).

In the following section, we describe a number of baseline models and neural
architectures using Long Short-Term Memory (LSTM) networks, all implementing
the three types of recommendations. The LSTM-based models will be trained on
examples extracted from the OhioTIDM dataset [9], as explained in Section 4.
Ideally, to match the intended use of these recommendations in practice, training
examples should not have any extra meals or boluses in the prediction window
[z,#+ 10+ 7]. Following the terminology from [11], we call these examples inertial.
However, to benefit from a larger number of training examples, we also train models
on a more general class of unrestricted examples, in which other bolus or meal events
are allowed to appear in the prediction window. In Section 5.1 we show the extent to
which models trained on the larger set of unrestricted examples transfer to inertial
examples.

3 Baseline Models and Neural Architectures

Given training data containing time series of blood glucose levels, meals with their
carbohydrate intake, and boluses with their corresponding insulin dosages, we define
the following two baselines:

1. Global average: For the carbohydrate recommendation scenario, the average
number u of carbs over all of the meals in the subject’s training data is computed
and used as the estimate for all future predictions for that subject, irrespective
of the context of the example. Analogously, for the bolus and bolus given carbs
recommendation scenarios, u is the average amount of insulin dosage over all
boluses in the subject’s training data. This is a fairly simple baseline, as it predicts
the same average value for every test example for a particular subject.

2. ToD average: In this Time-of-Day (ToD) dependent baseline, an average number
of carbs or an average amount of bolus insulin is computed for each of the
following five time windows during a day:

e 12am-6am: u; = early breakfast / late snacks.

¢ 6am-10am: u, = breakfast.

e 10am-2pm: u3 = lunch.

* 2pm-6pm: u4 = dinner.

* 6pm-12am: us = late dinner / post-dinner snacks.
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Fig. 1 The general neural network architecture for the carbohydrate recommendation scenario. The
dashed blue line in the graph represents a subject’s BGL, while the solid brown line represents the
basal rate of insulin. The gray star represents the meal at ¢ + 10. The other meals are represented
by squares, and boluses are represented by circles. Meals and boluses with a red outline cannot
appear in inertial examples, but are allowed in unrestricted examples. The blue units in LSTM;
receive input from different time steps in the past. The green units in LSTM,; receive input from
the prediction window. The purple trapezoid represents the 5 fully connected layers, whereas the
output node at the end computes the prediction.

The average for each ToD interval is calculated over all of the meals or boluses
appearing in the corresponding time frame in the subject’s training data. At test
time, to make a recommendation for time ¢ + 10, we first determine the ToD
interval that contains ¢ + 10 and output the corresponding ToD average.

Given sufficient historical data, the ToD baseline is expected to perform well for
individuals who tend to eat very consistently and have regular diets. However, it is
expected to perform poorly for individuals who have a lot of variation in their diets.

For the bolus given carbs recommendation scenario, one may ask why not also
implement and evaluate a bolus calculator ‘baseline’, for which insulin dosages
would be computed using the actual bolus calculator employed by the subjects in
the OhioT1DM dataset every time they had a meal. However, assuming subjects had
perfect adherence to using the bolus calculator, this ‘baseline’ would coincide with
the ground truth every time, making it inappropriate as a baseline.

While simple to compute and use at test time, the two baselines are likely to give
suboptimal performance, as their predictions ignore the history of BGL values, in-
sulin (boluses and basal rates), and meals, all of which could significantly modulate
the effect a future meal and/or bolus might have on the BGL. To exploit this informa-
tion, we use the general LSTM-based network architecture shown in Figure 1. The
first component in the architecture is a recurrent neural network instantiated using
Long Short-Term Memory (LSTM) cells [7], which is run over the previous 6 hours
of data, up to and including the present time 7. At each time step (every 5 minutes),
this LSTM; network takes as input the BGL, the carbs, and the insulin dosages
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Fig.2 The general neural network architecture for the bolus and bolus given carbs recommendation
scenarios. The architecture itself is similar with that from Figure 1. The grey star now represents
the bolus at 7 + 10. For the bolus recommendation scenario, the events outlined in red or orange are
not allowed in inertial examples. However, in the bolus given carbs scenario, the meal event Cy20
shown with the yellow outline is an important part of each example, be it inertial or unrestricted.
As such, in this scenario, the dashed C;,,9 becomes part of the input to the FCN.

recorded at that time step. While sufficient for processing inertial examples, this
LSTM cannot be used to process events that may appear in the prediction window
(t,t + 10 + 1) of unrestricted examples, because BGL values are not available in the
future. Therefore, when training on unrestricted examples, the final state computed
by the LSTM; model at time ¢ is projected using a linear transformation and used as
the initial state for a second LSTM model, LSTM,, that is run over all the time steps
in the prediction window (7,7 + 10 + 7). The final state computed either by LSTM;
(for intertial examples) or LSTM, (for unrestricted examples) is then used as input
to a fully connected network (FCN) whose output node computes an estimate of the
carbs or bolus insulin at time ¢ + 10. In addition to the LSTM final state, the input to
the FCN contains the following features:

The target blood glucose level T + 10 minutes into the future, i.e., G¢4+10+z-
¢ The prediction horizon 7.
* The ToD average for the time frame that contains ¢ + 10.

* For the bolus given carbs scenario only, the planned amount C;.,( of carbohydrate
becomes part of the input, too.

Each LSTM uses vectors of size 32 for the states and gates, whereas the FCN is built

with 5 hidden layers, each consisting of 64 ReLLU neurons, and one linear output
node.
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4 Using the OhiocT1DM Dataset for Recommendation Examples

To evaluate the proposed recommendation models, we create training and test exam-
ples based on data collected from 6 subjects with type 1 diabetes that is distributed
with the OhioT1DM dataset [10]. Time series containing the basal rate of insulin,
boluses, meals, and BGL readings were collected over roughly 50 days, although
the exact number of days varies from subject to subject. Insulin and BGL data was
automatically recorded by each subject’s insulin pump. Meal data was collected
in two different ways. Subjects self reported meal times and estimated carbs via a
smartphone interface. Subjects also entered estimated carbs into a "Bolus Wizard,"
or calculator, when administering boluses for meals, and this data was recorded by
the insulin pump.

While exploring the data, it was observed that self-reported meals and their
associated boluses were in unexpected temporal positions relative to each other.
For many meals, patients recorded a timestamp in the smartphone interface that
preceded the corresponding bolus timestamp recorded in the insulin pump. This was
contrary to what was recommended to the subjects by their physicians, which was
to administer a bolus shortly before the meal, and no more than 15 minutes prior to
the meal. This discrepancy is likely due to subjects reporting incorrect meal times
in the smartphone interface.

Pre-processing of meals: To correct the meal events, we used the data input to
the Bolus Wizard in the insulin pump and ran a pre-processing step that changed
the timestamp of each meal associated with a bolus to be exactly 10 minutes after
that bolus. For these meals, we also used the number of carbs provided to the
Bolus Wizard, which is likely to be more accurate than the estimate provided by
the subject through the smartphone interface. To determine the meal event that is
associated with a bolus having non-zero carb input, we searched for the meal that was
closest in time to the bolus, either before or after. In case there are 2 meals that are
equally close to the bolus, we selected the one for which the number of carbs from the
smartphone interface is closest to the number of carbs entered into the Bolus Wizard.
Experimental results reported in Section 5.1 show that this pre-processing of meal
events leads to significantly more accurate predictions, which indirectly justifies the
pre-processing.

Table 1 shows the number of meals in each subject’s pre-processed data, together
with statistics such as the minimum, maximum, median, average, and standard
deviation for the number of carbs per meal. Table 2 shows the same statistics for
boluses and their dosages, expressed in units of insulin. The numbers in Table 1 show
that most subjects have a similar average number of carbs in their meals, with the
exception of 570 who has a significantly larger number of carbs per meal on average.
More importantly, subject 570 also has a much higher standard deviation than the
other subjects, which is likely to make the recommendation task more difficult in
their case.

The number of boluses varies from subject to subject more so than the number of
meals. Most subjects had similar average and standard deviations, with the exception
of subject 563, who had a much larger average and standard deviation than the rest of
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Table 1 Per subject and total meal and carbohydrate statistics: Minimum, Maximum, Median,
Average, and Standard Deviation (StdDev).

Carbs Per Meal
Subject Meals | Minimum Maximum Median Average StdDev
559 179 8.0 75.0 30.0 346 151
563 153 5.0 84.0 34.0 356 184
570 169 5.0 200.0 115.0 106.3  41.6
575 284 2.0 110.0 40.0 402 219
588 257 2.0 60.0 20.0 224 146
591 248 3.0 77.0 28.0 314 141
Total 1290 2.0 200.0 34.0 423 337

Table 2 Per subject and total boluses and insulin units statistics: Minimum, Maximum, Median,
Average, and Standard Deviation (StdDev).

Insulin Per Bolus
Subject Boluses | Minimum Maximum Median Average StdDev
559 186 0.1 9.3 3.6 3.7 1.9
563 424 0.1 24.7 7.8 80 42
570 1,345 0.2 12.1 1.3 1.8 2.1
575 271 0.1 12.8 4.4 4.1 3.0
588 221 0.4 10.0 35 43 23
591 331 0.1 9.4 2.9 3.1 1.8
Total 2758 0.1 24.7 1.9 3.5 3.4

the subjects. It is also interesting to note that subject 570 had a lower bolus average
than most subjects and far more boluses than any of the others. Subject 570 used
many dual boluses, which we did not include as prediction labels, since the scope of
the project to date supports only recommendations for regular boluses.

4.1 From Meals and Bolus Events to Recommendation Examples

In all recommendation scenarios, the prediction window ranges between the present
time ¢ and the prediction horizon ¢ + 10 + 7. For the carbohydrate or bolus recom-
mendation scenarios, the meal or the bolus is assumed to occur at time ¢+ 10. For the
bolus given carbs scenario, the bolus occurs at time ¢ + 10 and is followed by a meal
at time ¢ + 20, which matches the pre-processing of the meal data. For evaluation
purposes, we set 7 to values between 30 and 90 minutes with a step of 5 minutes, i.e,
7 € {30, 35,40, ...,90} for a total of 13 different values. As such, each meal/bolus
event in the data results in 13 recommendation examples, one example for each value
of . While all 13 examples use the same value for the prediction label, e.g., B¢ for
bolus prediction, they will differ in terms of the target BG feature G410+ and the 7
feature, both used directly as input to the FCN module in the architectures shown in
Figures 1 and 2. For the bolus given carbs scenario, the 13 examples are only created
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when there is a meal that had a bolus delivered 10 minutes prior. Due to the way the
data is pre-processed, it is guaranteed that if a meal had a bolus associated with it,

the bolus will be exactly 10 minutes before the meal.

Table 3 shows the number of inertial examples for 5 prediction horizons, as well
as the total over all 13 possible prediction horizons. Table 4 shows the number of
unrestricted examples. Since the same number of unrestricted examples are available
for every prediction horizon, only the totals are shown. The only exceptions would
be if an event was near the end of a subject’s data and the prediction horizon r+10+71

goes past the end of the dataset for some value of 7.

Table 3 Inertial (I) examples by recommendation scenario and prediction horizon.

Carbohydrate recommendation

Horizon Training Validation Testing Total /
7=30 700 190 168 1,058
T =45 684 188 165 1,037
7 =060 664 181 163 1,008
=75 632 177 155 964
7=90 597 170 150 917
All 13 horizons 8,546 2,356 2,088 12,990
Bolus recommendation
Horizon Training Validation Testing Total /
7=30 345 91 107 543
T=45 324 88 101 513
7 =060 293 82 89 464
T=75 258 76 81 415
7=90 234 67 72 373
All 13 horizons 3,790 1,054 1,176 6,020
Bolus given carbs recommendation
Horizon Training Validation Testing Total /
7=30 488 143 142 773
T=45 483 142 140 765
7 =060 474 139 139 752
T=75 460 134 136 730
7=90 444 133 130 707
All 13 horizons 6,118 1,799 1,789 9,706

Table 4 Unrestricted (U) examples by recommendation scenario. Also showing in the last column
the total number of non-inertial (U — I') examples.

Recommendation scenario | Training Validation Testing Total U | Total U — I
Carbohydrate 10,899 2,964 2,665 16,528 3,538
Bolus 12,282 3,595 3,810 19,687 13,667
Bolus given carbs 7,407 2,236 2276 11,919 2,213
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For the carbohydrate and bolus given carbs recommendation scenarios, the gap
between the number of inertial and unrestricted examples is not very large, as
most examples qualify as inertial examples. However, in the bolus recommendation
scenario, there is a very sizable gap between the number of inertial vs. unrestricted
examples. This is because a significant number of boluses are associated with meals,
and since these meals are timestamped to be 10 minutes after the bolus, the result is
that a bolus at time 7 + 10 will be associated with a meal at time ¢ + 20. Therefore,
for preprandial boluses at 7 + 10, the meal at time 7 + 20 will prohibit the creation of
inertial recommendation examples, because by definition inertial examples do not
allow the presence of other events in the prediction window (¢,¢ + 10 + 7).

5 Experimental Methodology and Results

For each of the 6 subjects in the dataset, their time series data is split into three sets,
as follows:

e Testing: the last 10 days of data.
e Validation: the 10 days of data preceding the testing portion.
* Training: the remainder of the data, around 30 days.

The blood glucose, carbs, and insulin values are all scaled to be between [0, 1] by
using maximum and minimum values computed over training data. When computing
the performance metrics at test time, the predicted values are scaled back to the
original range. The neural architecture is trained to minimize the mean squared error
between the actual event (meal or bolus) value recorded in the training data and the
estimated value computed by the output node of the FCN module. The Adam [8]
variant of gradient descent is used for training, with the learning rate and mini-batch
size being tuned on the validation data. To avoid overfitting, both early stopping and
dropout are used. The early stopping has a patience of 10 epochs and the dropout
rate is 10% for all experiments.

Before training a personalized model for a specific subject, a generic model is
first pre-trained on the union of all 6 subjects’ training data. The generic model is
then fine tuned separately for each individual subject, by continuing training on that
subject’s training data only. The pre-training allows the model parameters to be in
a better starting position before fine tuning, allowing faster and better training. The
learning rate and batch size are tuned for each subject on their validation data. Once
the hyper-parameters are tuned, the final models are then fine tuned on the union of
the training and validation data for each subject for a maximum of 100 epochs. For
each subject, the results are aggregated over 5 models that are trained with different
seedings of the random number generators.

The metrics used to evaluate the models are the Root Mean Squared Error (RMSE)
and the Mean Absolute Error (MAE). Two scores are reported for each evaluation
of the LSTM-based recommendation model:
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Table 5 Results for each recommendation scenario, for both classes of examples.

Inertial Unrestricted
Carbohydrate recommendation RMSE MAE | RMSE MAE
Global Average 16.58 13.66 | 16.54 13.65
ToD Average 1591 12.92| 1596 12.97
Model.mean 9.61 7.32 9.37 17.00
Model.best 9.68 17.09 9.88 7.24

Inertial Unrestricted
Bolus recommendation RMSE MAE | RMSE MAE
Global Average 2.19 1.87 3.05 251
ToD Average 228 1.82 297 238
Model.mean 1.64 122 154 1.14
Model.best 1.64 1.20 1.58 1.17

Inertial Unrestricted
Bolus given carbs recommendation | RMSE MAE | RMSE MAE
Global Average 2.64 223 2.67 2.25
ToD Average 255 208 256  2.10
Model.mean 1.18 0.93 1.10 0.81
Model.best 1.17 0.89 1.06 0.77

1. The Model.mean score calculates the average RMSE and MAE on the testing
data across the 5 models trained for each subject, and then averages these scores
across all 6 subjects.

2. The Model.best score instead selects for each subject the model that performed
best in terms of MAE on the validation data, out of the 5 models trained for that
subject. The RMSE and MAE test scores are averaged over all 6 subjects.

Two sets of LSTM-based models were trained for each of the three recommendation
scenarios: a set of models were trained and evaluated on inertial examples and a set
was trained and evaluated on unrestricted examples. For the carbohydrate and bolus
given carbs scenarios, there were no inertial examples in subject 570’s testing data.
To make the results comparable, subject 570 is not used for computing the results in
these scenarios.

5.1 Experimental Results

Table 5 shows the results for the two baselines and the LSTM-based models. Across
all scenarios and for both example classes, the neural models outperform both
baselines by a wide margin. There also is very little difference between the best model
scores and the average model scores, which means that the model performance is
stable with respect to the random initialization of the network parameters.

Of the results reported in Table 5, the most relevant for practical scenarios are
the evaluations on inertial examples; unrestricted examples subsume examples that
contain information about future events, which is difficult to have in practice. How-
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Table 6 Comparison between models trained on Inertial vs. Unrestricted examples, in terms of
their performance on Inertial examples.

Trained on | RMSE | MAE
Inertial 9.61 7.32
. Model.mean Unrestricted | 9.35 7.01
Carbohydrate recommendation :
Model best Inertial 9.68 7.09
o Unrestricted | 9.70 | 7.13
Inertial 1.64 1.22
. Model.mean Unrestricted | 1.77 1.38
Bolus recommendation -
Model best Inertial 1.64 1.20
odel.bes Unrestricted | 1.85 1.46
Inertial 1.18 0.93
. . Model.mean Unrestricted | 1.10 0.82
Bolus given carbs recommendation -
Model best Inertial 1.17 0.89
odel.bes Unrestricted | 1.07 | 0.78

ever, the set of unrestricted examples is larger; as such, it has the potential to improve
performance on inertial examples through transfer learning. To determine if and to
what extent transfer happens, in Table 6 we compare LSTM-based models trained
on inertial vs. unrestricted examples, in terms of their performance on inertial ex-
amples. For the carbohydrate and bolus given carbs recommendation scenarios, the
results show that training on the extra non-inertial examples provided by the unre-
stricted dataset help achieve better performance on the inertial examples. However,
this type of positive transfer does not happen in the bolus recommendation scenario,
for which the models trained solely on inertial examples performed better. This can
be explained by the fact that there are two types of bolus events: boluses associated
with meals, which are intended to proactively prevent spikes in blood glucose due
to carbs in the meals, and boluses that are administered reactively to lower already
high blood glucose levels. The bolus recommendation entry in the last column of
Table 4 shows that the pre-prandial, proactive bolus examples represent the vast ma-
jority of unrestricted bolus examples: i.e., 13,667 out of 19,687, which is more than
twice the 6,020 inertial, reactive bolus examples shown in Table 3. As such, a bolus
recommendation model that is trained on unrestricted bolus examples is likely to be
biased towards pre-prandial boluses for which the blood glucose behavior is different
compared with the inertial, reactive boluses on which the model is evaluated.

In all experiments reported so far, one model was trained for all prediction hori-
zons, using the value of 7 € {30,35,...,90} as an additional input feature for the
FCN component. This global mode was then tested on examples from all prediction
horizons. To determine if transfer learning also happens among different prediction
horizons, for each value of 7 € {30,45,60,75,90} at test time, we compare the
performance of the globally trained model vs. the performance of a model trained
only on examples for that particular prediction horizon, using unrestricted examples
for both. The results in Table 7 show transfer learning clearly happening for the
carbohydrate and bolus recommendation scenarios, where the models trained on all
prediction horizons outperform those trained only on a specific prediction horizon
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when evaluated on that prediction horizon. For the bolus given carbs prediction

scenario, the results are roughly the same.

Table 7 Comparison between models trained on all prediction horizons vs. one prediction horizon
7, when evaluated on the prediction horizon 7.

Carbohydrate recommendation
=30 T=45 =60 7=175 7=90 Average
Trained on | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE

Model.mean One 7 [11.43 8.40(12.04 8.96|11.69 8.57|11.90 9.01{11.96 9.25(11.80 8.84
All T |10.79 8.08{10.56 7.77(10.44 7.69|10.84 7.96|10.69 7.93|10.66 7.89
Model best One 7 |[11.17 8.34|11.83 8.57|11.46 8.28|11.77 8.63|11.58 8.80(11.56 8.52
All T |10.87 8.15{10.79 7.75(10.44 7.54|10.71 7.83|10.66 7.84|10.69 7.82

Bolus recommendation

7 =30 T=45 7 =60 T=175 7=90 | Average

Trained on|RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE
One 7 1.70 1.21] 1.65 1.18| 1.58 1.18| 1.59 1.17| 1.64 1.20{ 1.63 1.19
All T 1.53 1.11| 1.49 1.10| 1.52 1.12| 1.56 1.15| 1.56 1.16| 1.53 1.13
One 7 1.69 1.19| 1.64 1.17| 1.51 1.14| 1.57 1.16| 1.58 1.15| 1.60 1.16
All T 1.54 1.09( 1.50 1.09| 1.51 1.11| 1.54 1.13| 1.53 1.14| 1.52 1.11

Model.mean

Model.best

Bolus given carbs recommendation
7=30 T=45 =060 7=15 7=90 Average
Trained on | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE

Model.mean One 7 | 1.07 0.83| 1.11 0.84| 1.12 0.85| 1.17 0.90| 1.13 0.87| 1.12 0.86
All T 1.13 0.85| 1.13 0.84| 1.14 0.85| 1.15 0.86| 1.13 0.86| 1.14 0.85
Model best One 7 | 1.07 0.82| 1.13 0.85| 1.12 0.84| 1.15 0.90| 1.15 0.90| 1.12 0.86
All T 1.11 0.83| 1.12 0.83| 1.12 0.82| 1.12 0.82| 1.10 0.83| 1.12 0.83

Finally, Table 8 shows the results of training models on unrestricted examples in
the carbohydrate and bolus recommendation scenarios, with and without the pre-
processing of meals described in Section 4. The results show substantial improvement
when pre-processing is done, especially for the carbohydrate recommendation sce-
nario. The fact that the models are able to perform much better when the meals are
pre-processed in this way indicates that the timestamps recorded in the smartphone
interface are very unreliable and meal times should instead be anchored to the bo-
lus timestamps recorded by the Bolus Wizard in the insulin pump, as done by the
pre-processing procedure.

6 Conclusion

We introduced a general neural architecture, composed of two chained LSTMs
and a fully connected network, with the purpose of training models for making
recommendations with respect to any type of quantitative events that may impact
blood glucose levels, in particular, meal carbohydrate amounts and bolus insulin
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Table 8 Results with and without pre-processing of meals, for carbohydrate and bolus recommen-
dation scenarios on unrestricted examples.

Carbohydrate recommendation Bolus recommendation
Pre-process | RMSE MAE Pre-process | RMSE MAE
no 22.45 12.52 no 193 142
Model.mean yes 9.37 7.00 Model.mean yes 1.54 1.14
no 23.86 13.08 no 1.97 143
Model.best yes 988 724 | Modelbest yes 158 117

dosages. Experimental evaluations show that the proposed architecture substantially
outperforms the baselines. The trained models are shown to benefit from transfer
learning and from a pre-processing of meal events that anchors their timestamps
shortly after their corresponding boluses. Overall, the results suggest that this novel
approach could potentially be of significant use in easing the complex task of self-
managing blood glucose levels for people with type 1 diabetes.
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