CS 6840: Natural Language Processing

Syntactic Parsing

Razvan C. Bunescu
School of Electrical Engineering and Computer Science
bunescu@ohio.edu
Syntactic Parsing

- **Syntactic Parsing** = assigning a syntactic structure to a sentence.
 - For CFGs: assigning a *phrase-structure tree* to a sentence.

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow NP \ VP$</td>
<td>$Det \rightarrow that \mid this \mid a$</td>
</tr>
<tr>
<td>$S \rightarrow Aux \ NP \ VP$</td>
<td>$Noun \rightarrow book \mid flight \mid meal \mid money$</td>
</tr>
<tr>
<td>$S \rightarrow VP$</td>
<td>$Verb \rightarrow book \mid include \mid prefer$</td>
</tr>
<tr>
<td>$NP \rightarrow Pronoun$</td>
<td>$Pronoun \rightarrow I \mid she \mid me$</td>
</tr>
<tr>
<td>$NP \rightarrow Proper-Noun$</td>
<td>$Proper-Noun \rightarrow Houston \mid NWA$</td>
</tr>
<tr>
<td>$NP \rightarrow Det \ Nominal$</td>
<td>$Aux \rightarrow does$</td>
</tr>
<tr>
<td>$Nominal \rightarrow Noun$</td>
<td>$Preposition \rightarrow from \mid to \mid on \mid near \mid through$</td>
</tr>
</tbody>
</table>

```
Book that flight.
```
Syntactic Parsing as Search

- Parsing \equiv search through the space of all possible parse trees such that:
 1. The leaves of the final parse tree coincide with the words in the input sentence.
 2. The root of the parse tree is the symbol S, i.e. complete parse tree.

\Rightarrow 2 search strategies:
- **Top-Down** parsing (goal-directed search).
- **Bottom-Up** parsing (data-directed search).
Top-Down Parsing

- Build the parse tree from the root S down to the leaves:
 - Expand tree nodes N by using CFG rules $N \rightarrow N_1 \ldots N_k$.
 - Grow trees downward until reaching the POS categories at the bottom of the tree.
 - Reject trees that do not match all the words in the input.
Bottom-Up Parsing

• Build the parse tree from the leaf words up to the root S:
 – Find root nodes $N_1 \ldots N_k$ in the current forest such that they match a CFG rule $N \rightarrow N_1 \ldots N_k$.
 – Reject sub-trees that cannot lead to the start symbol S.
Top-Down vs. Bottom-Up

• **Top-down:**
 – Only searches for trees that are complete (i.e. S’s)
 – But also suggests trees that are not consistent with any of the words.

• **Bottom-up:**
 – Only forms trees consistent with the words.
 – But also suggests trees that make no sense globally.

• How expensive is the entire search process?
Syntactic Parsing as Search

• How to keep track of the search space and how to make choices:
 – Which node to try to expand next.
 – Which grammar rule to use to expand a node.

• Backtracking (naïve implementation of parsing):
 – Expand the search space incrementally, choose a state to expand in the search space (depth-first, breadth-first, or other strategies).
 – If strategy arrives at an inconsistent tree, backtrack to an unexplored search on the agenda.
 – Doomed because of large search space and redundant work due to shared subproblems.
Large Search Space

- **Global Ambiguity:**
 - coordination: *old men and women*
 - attachment: *we saw the Eiffel Tower flying to Paris*

- **Local Ambiguity**
• Parse the sentence:
 “a flight from Indianapolis to Houston on NWA”

• Use backtracking with a top-down, depth-first, left-to-right strategy:
 – Assume a top-down parse making choices among the various Nominal rules, in particular, between these two:
 • Nominal → Noun
 • Nominal → Nominal PP
 – Staticaly choosing the rules in this order leads to the following bad results, in which every part of the final tree is derived more than once:
Shared Subproblems
Syntactic Parsing using Dynamic Programming

- Shared subproblems ⇒ **dynamic programming** could help.

- Dynamic Programming:
 - **CKY** algorithm (bottom-up search).
 - Need to transform the CFG into Chomsky Normal Form (CNF).
 - Any CFG can be transformed into CNF automatically.
 - **Earley** algorithm (top-down search).
 - does not require a normalized grammar.
 - a single left-to-right pass that fills an array/chart of size $n + 1$.
 - more complex than CKY.
 - **Chart parsing**:
 - more general, retain completed phrases in a chart, can combine top-down and bottom-up search.
CKY Parsing: Chomsky Normal Form

- All rules should be of one of two forms:
 \[A \rightarrow B C \text{ or } A \rightarrow w \]

- CNF conversion procedure:
 1. Convert terminals to dummy non-terminals:
 \[\text{INF-VP} \rightarrow to \ VP \Leftrightarrow \text{INF-VP} \rightarrow \text{TO VP} \text{ and } \text{TO} \rightarrow to \]
 2. Convert unit productions
 \[\text{Nominal} \rightarrow \text{Noun} \]
 \[\text{Noun} \rightarrow book \mid flight \]
 \[\Leftrightarrow \text{Nominal} \rightarrow book \mid flight \]
 3. Make all rules binary by adding new non-terminals:
 \[\text{VP} \rightarrow \text{Verb NP PP} \Leftrightarrow \text{VP} \rightarrow \text{VX PP} \]
 \[\text{VX} \rightarrow \text{Verb NP} \]
L_1 Grammar

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow NP \ VP$</td>
<td>$Det \rightarrow that</td>
</tr>
<tr>
<td>$S \rightarrow Aux \ NP \ VP$</td>
<td>$Noun \rightarrow book</td>
</tr>
<tr>
<td>$S \rightarrow VP$</td>
<td>$Verb \rightarrow book</td>
</tr>
<tr>
<td>$NP \rightarrow Pronoun$</td>
<td>$Pronoun \rightarrow I</td>
</tr>
<tr>
<td>$NP \rightarrow Proper-Noun$</td>
<td>$Proper-Noun \rightarrow Houston</td>
</tr>
<tr>
<td>$NP \rightarrow Det Nominal$</td>
<td>$Aux \rightarrow does$</td>
</tr>
<tr>
<td>Nominal \rightarrow Noun</td>
<td>$Preposition \rightarrow from</td>
</tr>
<tr>
<td>Nominal \rightarrow Nominal Noun</td>
<td></td>
</tr>
<tr>
<td>Nominal \rightarrow Nominal PP</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow$ Verb</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow$ Verb NP</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow$ Verb NP PP</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow$ Verb PP</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow$ VP PP</td>
<td></td>
</tr>
<tr>
<td>$PP \rightarrow$ Preposition NP</td>
<td></td>
</tr>
<tr>
<td>\mathcal{L}_1 Grammar</td>
<td>\mathcal{L}_1 in CNF</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>$S \rightarrow NP \ VP$</td>
<td>$S \rightarrow NP \ VP$</td>
</tr>
<tr>
<td>$S \rightarrow Aux \ NP \ VP$</td>
<td>$S \rightarrow X1 \ VP$</td>
</tr>
<tr>
<td>$S \rightarrow VP$</td>
<td>$X1 \rightarrow Aux \ NP$</td>
</tr>
<tr>
<td>$S \rightarrow book \mid include \mid prefer$</td>
<td>$S \rightarrow Verb \ NP$</td>
</tr>
<tr>
<td>$S \rightarrow X2 \ PP$</td>
<td>$S \rightarrow Verb \ PP$</td>
</tr>
<tr>
<td>$S \rightarrow VP \ PP$</td>
<td>$S \rightarrow VP \ PP$</td>
</tr>
<tr>
<td>$NP \rightarrow Pronoun$</td>
<td>$NP \rightarrow I \mid she \mid me$</td>
</tr>
<tr>
<td>$NP \rightarrow Proper-Noun$</td>
<td>$NP \rightarrow TWA \mid Houston$</td>
</tr>
<tr>
<td>$NP \rightarrow Det \ Nominal$</td>
<td>$NP \rightarrow Det \ Nominal$</td>
</tr>
<tr>
<td>Nominal $\rightarrow Noun$</td>
<td>Nominal $\rightarrow book \mid flight \mid meal \mid money$</td>
</tr>
<tr>
<td>Nominal $\rightarrow Nominal \ Noun$</td>
<td>Nominal $\rightarrow Nominal \ Noun$</td>
</tr>
<tr>
<td>Nominal $\rightarrow Nominal \ PP$</td>
<td>Nominal $\rightarrow Nominal \ PP$</td>
</tr>
<tr>
<td>$VP \rightarrow Verb$</td>
<td>$VP \rightarrow book \mid include \mid prefer$</td>
</tr>
<tr>
<td>$VP \rightarrow Verb \ NP$</td>
<td>$VP \rightarrow Verb \ NP$</td>
</tr>
<tr>
<td>$VP \rightarrow Verb \ NP \ PP$</td>
<td>$VP \rightarrow X2 \ PP$</td>
</tr>
<tr>
<td>$VP \rightarrow Verb \ PP$</td>
<td>$X2 \rightarrow Verb \ NP$</td>
</tr>
<tr>
<td>$VP \rightarrow VP \ PP$</td>
<td>$VP \rightarrow VP \ PP$</td>
</tr>
<tr>
<td>$PP \rightarrow Preposition \ NP$</td>
<td>$PP \rightarrow Preposition \ NP$</td>
</tr>
</tbody>
</table>
CKY Parsing: Dynamic Programming

• Use indeces to point at gaps between words:

 0 Book 1 _the_ 2 _flight_ 3 _through_ 4 _Houston_ 5

• A sentence with _n_ words ⇒ _n + 1_ positions.

• Define a (_n + 1_×(_n + 1)) matrix _T_:
 – _T_[i,j] = the set of non-terminals that can generate the sequence of words between gaps _i_ and _j_.
 – _T_[0,n] contains _S_ ⇒ the sentence can be generated by the CFG.

• How can we compute _T_[i,j]?
 – Only interested in the upper-triangular portion (i.e. _i_ < _j_).
CKY: Dynamic Programming

- Recursively define the table values:
 1. $A \in T[i-1,i]$ if and only if there is a rule $A \rightarrow \text{words}[i]$.
 2. $A \in T[i,j]$ if and only if $\exists \ k, \ i < k < j$, such that:
 - $B \in T[i,k]$ and $C \in T[k,j]$.
 - There is a rule $A \rightarrow B C$ in the CFG.

- Bottom-up computation:
 - In order to compute the set $T[i,j]$, the sets $T[i,k]$ and $T[k,j]$ need to have been computed already, for all $i < k < j$.
 \Rightarrow (at least) two possible orderings:
 - which one is more “natural”?
CKY: Bottom-Up Computation

\[
A[i,k]

A[i,j]

A[k,j]
\]

0 1 2 3 4 5 6 7

i = 1

0 1 2 3 4 5 6 7

j = 6

1 2 3 4 5 6 7
CKY Parsing

- Fill the table a column at a time, left to right, bottom to top.

```
function CKY-PARSE(words, grammar) returns table

for j ← from 1 to LENGTH(words) do
    table[j - 1, j] ← \{A \mid A \rightarrow words[j] \in grammar\}

for i ← from j - 2 downto 0 do
    for k ← i + 1 to j - 1 do
        table[i,j] ← table[i,j] \cup \{A \mid A \rightarrow BC \in grammar, B \in table[i,k], C \in table[k,j]\}
```
CKY Parsing: Example

<table>
<thead>
<tr>
<th></th>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 1]</td>
<td>S, VP, Verb Nominal, Noun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1, 2]</td>
<td>Det</td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2, 3]</td>
<td>Nominal, Noun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3, 4]</td>
<td>Prep</td>
<td>PP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4, 5]</td>
<td>NP, Proper-Noun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows the CKY parsing process for the sentence "Book the flight through Houston." The arrows indicate the order and structure of the parsing process.
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
S → NP PP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP

<table>
<thead>
<tr>
<th>0</th>
<th>Book</th>
<th>1</th>
<th>the</th>
<th>2</th>
<th>flight</th>
<th>3</th>
<th>through</th>
<th>4</th>
<th>Houston</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S, VP, Verb, Nominal, Noun</td>
<td></td>
<td>S, VP, X2</td>
<td></td>
<td>Noun, Nominal</td>
<td></td>
<td>Noun</td>
<td></td>
<td>Nominal</td>
<td></td>
</tr>
<tr>
<td>[0,1]</td>
<td>[0,2]</td>
<td>[0,3]</td>
<td>[0,4]</td>
<td>[0,5]</td>
<td>[1,2]</td>
<td>[1,3]</td>
<td>[1,4]</td>
<td>[1,5]</td>
<td>[2,3]</td>
<td>[2,4]</td>
</tr>
<tr>
<td>Det</td>
<td>NP</td>
<td>NP</td>
<td>Nominal</td>
<td>Nominal</td>
<td>Prep</td>
<td>PP</td>
<td>NP, Proper-Noun</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
S → X2 PP
PP → Prep NP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP
CKY Parsing

• How do we change the algorithm to output the parse trees?
• Time complexity:
 – for computing the table?
 – for computing all parses?

function CKY-PARSE(words, grammar) returns table

for j ← from 1 to LENGTH(words) do
 table[j - 1, j] ← \{A | A → words[j] ∈ grammar\}
 for i ← from j - 2 downto 0 do
 for k ← i + 1 to j - 1 do
 table[i,j] ← table[i,j] ∪
 \{A | A → BC ∈ grammar, B ∈ table[i,k], C ∈ table[k,j]\}
The parse trees correspond to the CNF grammar, not the original CFG:

\[\rightarrow \] complicates subsequent syntax-direct semantic analysis.

Post-processing of the parse tree:

- For binary productions:
 - delete the new dummy non-terminals and promote their daughters to restore the original tree.

- For unit productions:
 - alter the basic CKY algorithm to handle them directly.
 - homework exercise 13.3
CKY Parsing

• Does CKY solve ambiguity?
 – Book the flight through Houston.

 Use *probabilistic* CKY parsing, output *highest probability* tree.

• Will probabilistic CKY solve all ambiguity?
 – One morning I shot an elephant in my pajamas.
 – How he got into my pajamas I don’t know.
Statistical Parsing

• Define a probabilistic model of syntax $P(T | S)$:
 • Probabilistic Context Free Grammars (PCFG).
 • Lexicalized PCFGs:
 – Collins’ parser, Charniak’s parser, …

• Use probabilistic model for:
 – Statistical parsing \equiv choose the most probable parse:
 $$\hat{T}(S) = \arg\max_{T: \text{yield}(T) = S} P(T | S)$$
 – Language Modeling \equiv compute the probability of a sentence:
 $$P(S) = \sum_{T: \text{yield}(T) = S} P(T, S)$$
Probabilistic CFG (PCFG)

- Augment each rule in a CFG with a conditional probability:

\[
A \rightarrow \beta \ [p]
\]

\[
p = p(A \rightarrow \beta) = p(\beta \mid A)
\]

\[
\sum_{\beta} p(A \rightarrow \beta) = 1
\]

\[N\] a set of non-terminal symbols (or variables)
\[\Sigma\] a set of terminal symbols (disjoint from \(N\))
\[R\] a set of rules or productions, each of the form \(A \rightarrow \beta \ [p]\),
where \(A\) is a non-terminal,
\(\beta\) is a string of symbols from the infinite set of strings \((\Sigma \cup N)^*\),
and \(p\) is a number between 0 and 1 expressing \(P(\beta \mid A)\)
\[S\] a designated start symbol
<table>
<thead>
<tr>
<th>Grammar</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow NP \ VP$</td>
<td>$Det \rightarrow that [.10]</td>
</tr>
<tr>
<td>$S \rightarrow Aux \ NP \ VP$</td>
<td>$Noun \rightarrow book [.10]</td>
</tr>
<tr>
<td>$S \rightarrow VP$</td>
<td>$\quad</td>
</tr>
<tr>
<td>$NP \rightarrow Pronoun$</td>
<td>$\quad</td>
</tr>
<tr>
<td>$NP \rightarrow Proper-Noun$</td>
<td>$Verb \rightarrow book [.30]</td>
</tr>
<tr>
<td>$NP \rightarrow Det Nominal$</td>
<td>$\quad</td>
</tr>
<tr>
<td>$NP \rightarrow Nominal$</td>
<td>$Pronoun \rightarrow I [.40]</td>
</tr>
<tr>
<td>Nominal $\rightarrow Noun$</td>
<td>$\quad</td>
</tr>
<tr>
<td>Nominal $\rightarrow Nominal Noun$</td>
<td>$Proper-Noun \rightarrow Houston [.60]</td>
</tr>
<tr>
<td>Nominal $\rightarrow Nominal PP$</td>
<td>$Aux \rightarrow does [.60]</td>
</tr>
<tr>
<td>$VP \rightarrow Verb$</td>
<td>$Preposition \rightarrow from [.30]</td>
</tr>
<tr>
<td>$VP \rightarrow Verb NP$</td>
<td>$\quad</td>
</tr>
<tr>
<td>$VP \rightarrow Verb NP PP$</td>
<td>$\quad</td>
</tr>
<tr>
<td>$VP \rightarrow Verb PP$</td>
<td>$\quad</td>
</tr>
<tr>
<td>$VP \rightarrow VP PP$</td>
<td>$\quad</td>
</tr>
<tr>
<td>$PP \rightarrow Preposition NP$</td>
<td>$\quad</td>
</tr>
</tbody>
</table>
Probability of Parse Trees

- Assume rewriting rules are chosen independently:
 \[P(T) = P(T,S) = \prod_{i=1}^{n} P(RHS_i \mid LHS_i) \]

- **Statistical parsing** ≡ choose the most probable parse:
 \[\hat{T}(S) = \arg \max_{T : \text{yield}(T) = S} P(T \mid S) = \arg \max_{T : \text{yield}(T) = S} P(T) \]

- **Language Modeling** ≡ compute the probability of a sentence:
 \[P(S) = \sum_{T : \text{yield}(T) = S} P(T,S) = \sum_{T : \text{yield}(T) = S} P(T) \]
\[
P(T_1) = 0.05 \times 0.20 \times 0.20 \times 0.75 \times 0.30 \times 0.60 \times 0.10 \times 0.40 = 2.2 \times 10^{-6}
\]
\[
P(T_2) = 0.05 \times 0.10 \times 0.20 \times 0.15 \times 0.75 \times 0.75 \times 0.30 \times 0.60 \times 0.10 \times 0.40 = 6.1 \times 10^{-7}
\]
PCFGs

- **Statistical parsing** \(\equiv\) choose the most probable parse:
 \[
 \hat{T}(S) = \arg \max_{T:yield(T)=S} P(T) = T_1
 \]

- **Language Modeling** \(\equiv\) the probability of a sentence:
 \[
 P(S) = \sum_{T:yield(T)=S} P(T) = 2.2 \times 10^{-6} + 6.1 \times 10^{-7}
 \]
HMMs: Inference and Training

• **Three fundamental questions:**

 1) Given a model $\mu = (A, B, \Pi)$, compute the probability of a given observation sequence i.e. $p(O|\mu)$ (*Forward/Backward*).

 2) Given a model μ and an observation sequence O, compute the most likely hidden state sequence (*Viterbi*).

 $\hat{X} = \arg \max_{X} P(X | O, \mu)$

 3) Given an observation sequence O, find the model $\mu = (A, B, \Pi)$ that best explains the observed data (*EM*).

• Given observation and state sequence O, X, find μ (*ML*).
PCFGs: Inference and Training

• Three fundamental questions:
 1) Given a model μ, compute the probability of a given sentence S i.e. $p(S|\mu)$ (Inside/Outside).

 $$P(S) = \sum_{T: \text{yield}(T)=S} P(T, S) = \sum_{T: \text{yield}(T)=S} P(T)$$

 2) Given a model μ and a sentence S, compute the most likely parse tree ($pCKY$).

 $$\hat{T}(S) = \arg \max_{T: \text{yield}(T)=S} P(T | S) = \arg \max_{T: \text{yield}(T)=S} P(T)$$

 3) Given a set of sentences $\{S\}$, find the model μ that best explains the observed data (EM).

 • Given sentences and parses $\{S, T\}$ find μ (ML).
2) Probabilistic CKY (pCKY) Parsing

2) Given a model μ and a sentence S, compute the most likely parse tree ($pCKY$):

$$\hat{T}(S) = \arg \max_{T: \text{yield}(T)=S} P(T \mid S) = \arg \max_{T: \text{yield}(T)=S} P(T)$$

- CKY can be modified for PCFG parsing by including in each cell a probability for each non-terminal.
- $T[i,j]$ must retain the most probable derivation of each constituent (non-terminal) covering words $i+1$ through j together with its associated probability.
- When transforming the grammar to CNF, must set production probabilities to preserve the probability of derivations.
<table>
<thead>
<tr>
<th>Original Grammar</th>
<th>Chomsky Normal Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8 S → NP VP</td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1 S → X1 VP</td>
</tr>
<tr>
<td></td>
<td>X1 → Aux NP</td>
</tr>
<tr>
<td>S → VP</td>
<td>0.1 S → book</td>
</tr>
<tr>
<td></td>
<td>0.01 0.004 0.006</td>
</tr>
<tr>
<td></td>
<td>S → Verb NP</td>
</tr>
<tr>
<td></td>
<td>0.05 S → VP PP</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>NP → Pronoun</td>
<td>0.2 NP → I</td>
</tr>
<tr>
<td></td>
<td>0.1 0.02 0.02 0.06</td>
</tr>
<tr>
<td>NP → Proper-Noun</td>
<td>0.2 NP → Houston</td>
</tr>
<tr>
<td></td>
<td>0.16 .04</td>
</tr>
<tr>
<td>NP → Det Nominal</td>
<td>0.3 NP → Det Nominal</td>
</tr>
<tr>
<td>Nominal → Noun</td>
<td>0.6 Nominal → book</td>
</tr>
<tr>
<td></td>
<td>0.03 0.15 0.06 0.06</td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2 Nominal → Nominal Noun</td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5 Nominal → Nominal PP</td>
</tr>
<tr>
<td>VP → Verb</td>
<td>0.2 VP → book</td>
</tr>
<tr>
<td></td>
<td>0.1 0.04 0.06</td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5 VP → Verb NP</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3 VP → VP PP</td>
</tr>
<tr>
<td>PP → Prep NP</td>
<td>1.0 PP → Prep NP</td>
</tr>
</tbody>
</table>
Probabilistic CKY (pCKY) Parsing

Book the flight through Houston

S:.01, VP:.1, Verb:.5, Nominal:.03, Noun:.1

None

Det:.6

NP:.6*.6*.15 = .054

Nominal:.15, Noun:.5
Probabilistic CKY (pCKY) Parsing

![Animation by Ray Mooney](animation.png)

<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S : .01, VP : .1, Verb : .5, Nominal : .03, Noun : .1</td>
<td>None</td>
<td>VP : .5 * .5 * .054 = .0135</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Det : .6</td>
<td>None</td>
<td>VP : .5 * .5 * .054 = .0135</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nominal : .15, Noun : .5</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

- **S**: Start symbol
- **VP**: Verb Phrase
- **Nominal**: Noun Phrase
- **Noun**: Noun
- **Det**: Determiner
- **NP**: Noun Phrase
- **VP**: Verb Phrase
Probabilistic CKY (pCKY) Parsing

Animation by Ray Mooney

Book the flight through Houston

S :.01, VP:.1, Verb:.5 ← Nominal:.03 Noun:.1

None

Det:.6

NP:.6*.6*.15 =.054

Nominal:.15 Noun:.5

S:.05*.5*.054 =.00135

VP:.5*.5*.054 =.0135

S:.05*.5*.054 =.00135
Probabilistic CKY (pCKY) Parsing

![Animation by Ray Mooney]

<table>
<thead>
<tr>
<th></th>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>.01, VP:.1, Verb:.5, Nominal:.03, Noun:.1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>.05*.5*.054 = .00135</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>.05*.5*.054 = .0135</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>.6*.6*.15 = .054</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>.15</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noun</td>
<td>.5</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep</td>
<td>.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic CKY (pCKY) Parsing

[Animation by Ray Mooney]

<table>
<thead>
<tr>
<th></th>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S :.01, VP:.1, Verb:.5, Nominal:.03, Noun:.1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S :.05*.5*.054 = .00135</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VP :.5*.5*.054 = .0135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det :.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP :.6*.6*.15 = .054</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal :.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noun :.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prep :.2</td>
<td></td>
<td>PP :1.0*.2*.16 = .032</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP :.16</td>
<td>PropNoun :.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic CKY (pCKY) Parsing

[Animation by Ray Mooney]

<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (.01, VP:.1, Verb:.5, Nominal:.03, Noun:.1)</td>
<td>None</td>
<td>S (.055.054 =.00135)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Det:.6</td>
<td>NP(.66.15 =.054)</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal:.15</td>
<td>Noun:.5</td>
<td>None</td>
<td>Nominal(.515.032 =.0024)</td>
<td></td>
</tr>
<tr>
<td>Prep:.2</td>
<td>PP(1.02.16 =.032)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP(.16)</td>
<td>PropNoun(.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic CKY (pCKY) Parsing

[Animation by Ray Mooney]

```
<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S :.01, VP:.1, Verb:.5, Nominal:.03, Noun:.1</td>
<td>None</td>
<td>S :.05*.5*.054 = .00135</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det:.6</td>
<td>VP :.5*.5*.054 = .0135</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal:.15, Noun:.5</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prep:.2</td>
<td>PP :1.0*.2*.16 = .032</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP:.16</td>
<td>PropNoun:.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Animation by Ray Mooney
Probabilistic CKY (pCKY) Parsing

<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S :.01, VP:.1, Verb:.5< Nominal:.03 Noun:.1</td>
<td>None</td>
<td>S:.05*.5*.054 =.00135</td>
<td>None</td>
<td>S:.05*.5* .000864 =.0000216</td>
</tr>
<tr>
<td>Det:.6</td>
<td>NP:.6*.6*.15 =.054</td>
<td>None</td>
<td>NP:.6*.6* .0024 =.000864</td>
<td></td>
</tr>
<tr>
<td>Nominal:.15 Noun:.5</td>
<td>None</td>
<td>Nominal: .5*.15*.032 =.0024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep:.2</td>
<td>PP:1.0*.2*.16 =.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP:.16 PropNoun:.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic CKY (pCKY) Parsing

Book the flight through Houston

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S :01, VP:.1, Verb:.5, Nominal:.03, Noun:.1</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Det:.6</td>
<td>NP:.6*.6*.15 =.054</td>
<td>None</td>
<td>None</td>
<td>NP:.6*.6* .024 =.000864</td>
</tr>
<tr>
<td>Nominal:.15, Noun:.5</td>
<td>None</td>
<td>None</td>
<td>Nominal:.5*.15*.032 =.0024</td>
<td></td>
</tr>
<tr>
<td>Prep:.2</td>
<td>PP:1.0*.2*.16 =.032</td>
<td>None</td>
<td>None</td>
<td>NP:.16 PropNoun:.8</td>
</tr>
</tbody>
</table>

Animation by Ray Mooney
Probabilistic CKY (pCKY) Parsing

<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S :.01, VP:.1, Verb:.5, Nominal:.03, Noun:.1</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>S:.0000216</td>
</tr>
<tr>
<td>Det:.6</td>
<td>NP:.6*.6*.15 = .054</td>
<td>None</td>
<td>None</td>
<td>NP:.6*.6* .0024 = .000864</td>
</tr>
<tr>
<td>Nominal:.15, Noun:.5</td>
<td>None</td>
<td>Nominal:.5*.15*.032 = .0024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep:.2</td>
<td>PP:1.0*.2*.16 = .032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP:.16</td>
<td>PropNoun:.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most probable parse.
Probabilistic CKY Algorithm

function PROBABILISTIC-CKY(words, grammar) returns most probable parse and its probability

for \(j \leftarrow 1 \) to \(\text{LENGTH}(words) \) do
 for all \(\{ A \mid A \rightarrow \text{words}[j] \in \text{grammar} \} \)
 \(\text{table}[j-1, j, A] \leftarrow P(A \rightarrow \text{words}[j]) \)
 for \(i \leftarrow j-2 \) downto 0 do
 for \(k \leftarrow i+1 \) to \(j-1 \) do
 for all \(\{ A \mid A \rightarrow BC \in \text{grammar}, \)
 \(\text{and} \ \text{table}[i, k, B] > 0 \ \text{and} \ \text{table}[k, j, C] > 0 \} \)
 if \((\text{table}[i, j, A] < P(A \rightarrow BC) \times \text{table}[i, k, B] \times \text{table}[k, j, C]) \) then
 \(\text{table}[i, j, A] \leftarrow P(A \rightarrow BC) \times \text{table}[i, k, B] \times \text{table}[k, j, C] \)
 \(\text{back}[i, j, A] \leftarrow \{ k, B, C \} \)
 return BUILD_TREE(back[1, \text{LENGTH}(words), S]), table[1, \text{LENGTH}(words), S]
1) Observation Probability using pCKY

1) Given a model μ, compute the probability of a given sentence S i.e. $p(S|\mu)$ (Inside/Outside):

- Use Inside probabilities, the analogue of Backward probabilities in HMMs:
 \[\beta_j(p,q) = p(w_{pq} | N_{pq}^j, G) \]
 - Compute Inside probabilities by replacing max with sum inside the pCKY algorithm.

- Or use Outside probs, the analogue of Forward probs in HMMs.
Probabilistic CKY (pCKY) Parsing: Sum

<table>
<thead>
<tr>
<th></th>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>:01, VP:.1, Verb:.5, Nominal:.03, Noun:.1</td>
<td>None</td>
<td>S:.0550.054 =.00135</td>
<td>None</td>
<td>S:.00001296</td>
</tr>
<tr>
<td>VP</td>
<td>:.550.054 =.0135</td>
<td>None</td>
<td>VP:.550.054 =.0135</td>
<td>None</td>
<td>S:.0000216</td>
</tr>
<tr>
<td>NP</td>
<td>:660.15 =.054</td>
<td>None</td>
<td>None</td>
<td>NP:.66 .0024 =.000864</td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>:.15 Noun:.5</td>
<td>None</td>
<td>Nominal: .5*.15*.032 =.0024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep</td>
<td>:.2</td>
<td>PP:1.02.16 =.032</td>
<td>None</td>
<td>NP:.16 PropNoun:.8</td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic CKY (pCKY) Parsing: Sum

<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S : .01, VP:.1, Verb:.5, Nominal:.03, Noun:.1</td>
<td>None</td>
<td>S:.05*.5*.054 =.00135</td>
<td>None</td>
<td>S: .00001296 +.0000216 =.00003456</td>
</tr>
<tr>
<td>Det:.6</td>
<td>NP:.6*.6*.15 =.054</td>
<td>None</td>
<td>NP:.6*.6* .0024 =.000864</td>
<td></td>
</tr>
<tr>
<td>Nominal:.15 Noun:.5</td>
<td>None</td>
<td>Nominal:.5*.15*.032 =.0024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep:.2</td>
<td>PP:1.0*.2*.16 =.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP:.16 PropNoun:.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum probabilities of each derivation.
PCFG Training: Unsupervised

3) Given a set of sentences \(\{S\} \), find the model \(\mu \) that best explains the observed data (EM).
 - Use **Inside-Outside**, a generalization of **Forward-Backward**.
 1. Begin with a grammar with equal rule probabilities / random.
 2. For each sentence, compute the probability of each parse.
 3. Re-estimate the rule probabilities by using the parse probabilities as weights for the Counts.
 4. Repeat from 2, until probabilities converge.
 - Problems: each iteration is slow \(O(m^3n^3) \), sensitive to initialization
 \(\Rightarrow \) many local maxima, no guarantee learned non-terminals correspond to linguistic intuitions / constituents.
 - Exact algorithm in M&S, pages 398 – 402.
3) Given sentences and parses \(\{S, T\} \) find \(\mu \) (ML):

- estimate parameters directly from counts in the treebank.

\[
P(\alpha \rightarrow \beta | \alpha) = \frac{\text{count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \text{count}(\alpha \rightarrow \gamma)} = \frac{\text{count}(\alpha \rightarrow \beta)}{\text{count}(\alpha)}
\]
Limitations of Vanilla PCFGs

- **Poor Independence Assumptions:**
 - cannot model the fact that:
 - NPs that are syntactic subjects are far more likely to be pronouns.
 - NPs that are syntactic objects are far more likely to be non-pronominal.

<table>
<thead>
<tr>
<th></th>
<th>Pronoun</th>
<th>Non-Pronoun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>Object</td>
<td>34%</td>
<td>66%</td>
</tr>
</tbody>
</table>

- **Lack of Lexical Conditioning:**
 - can only model general preference for PP attachment to NPs vs VPs.
 - but PPs sometimes attach to NPs, sometimes attach to VPs, depending on the actual Verb, Preposition, Noun.
Splitting Non-terminals

- Split the NP into two versions: one for subjects, one for objects.
- **Parent Annotation:**
 - annotate each node with its parent in the parse tree.
 - NP subject ⇒ annotated as NP^S
 - NP object ⇒ annotated as NP^VP
Splitting Non-terminals

- Split pre-terminals to allow *if* to prefer a sentential complements:
Split and Merge [Petrov et al., 2006]

- Node splitting increases the size of the grammar ⇒ need to find the right level of granularity:
 - automatically search for the optimal splits.
 - start with a simple X-bar grammar.
 - alternate between splitting and merging non-terminals.
 - stop when likelihood of training treebank is maximized.

- Alternatively, use hand-written rules to find an optimal number of non-terminals:
 - [Klein and Manning, 2003]
If preference is given to verb attachment, then the PCFG get the wrong parse for “fishermen caught tons of herring”.

\[\text{VP} \rightarrow \text{VBD NP PP} \]

\[\text{VP} \rightarrow \text{VBD NP} \]
\[\text{NP} \rightarrow \text{NP PP} \]
Lexicalized PCFGs

- **Lexicalized Grammar** ≡ in every rule, associate each non-terminal symbol with its lexical **head** and **head tag**.

\[
\begin{align*}
\text{VP}(\text{dumped}, \text{VBD}) & \rightarrow \\
\text{VBD}(\text{dumped}, \text{VBD}) \text{ NP}(\text{sacks}, \text{NNS}) \text{ PP}(\text{into}, \text{IN})
\end{align*}
\]
Internal Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP</td>
<td>$S(dumped,VBD)$</td>
</tr>
<tr>
<td>$S(dumped,VBD)$</td>
<td>$NP(workers,NNS)$, $VP(dumped,VBD)$</td>
</tr>
<tr>
<td>$NP(workers,NNS)$</td>
<td>$NNS(workers,NNS)$</td>
</tr>
<tr>
<td>$NNS(workers,NNS)$</td>
<td>$VBD(dumped,VBD)$, $VP(dumped,VBD)$</td>
</tr>
<tr>
<td>$VBD(dumped,VBD)$</td>
<td>$NP(sacks,NNS)$, $PP(into,P)$</td>
</tr>
<tr>
<td>$PP(into,P)$</td>
<td>$NP(bin,NN)$</td>
</tr>
<tr>
<td>$NP(bin,NN)$</td>
<td>$DT(a,DT), NN(bin,NN)$</td>
</tr>
</tbody>
</table>

Lexical Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$NNS(workers,NNS)$</td>
<td>$workers$</td>
</tr>
<tr>
<td>$VBD(dumped,VBD)$</td>
<td>$dumped$</td>
</tr>
<tr>
<td>$NNS(sacks,NNS)$</td>
<td>$sacks$</td>
</tr>
<tr>
<td>$PP(into,P)$</td>
<td>$into$</td>
</tr>
<tr>
<td>$NP(bin,NN)$</td>
<td>bin</td>
</tr>
</tbody>
</table>
Lexicalized PCFGs

- **Lexicalized Grammar**
 - in every rule, associate each non-terminal symbol with its lexical **head** and **head tag**.
 - important to have rules for head identification.

 \[
 \text{VP}(\text{dumped, VBD}) \rightarrow \\
 \text{VBD}(\text{dumped, VBD}) \text{ NP}(\text{sacks, NNS}) \text{ PP}(\text{into, IN})
 \]

- Estimating the corresponding probabilities is not feasible, due to sparse counts.
- Need to make further independence assumptions ⇒ Collins’ Parser.
Collins’ Parser

• All rules are expressed as:
 - $P(h) \rightarrow L_{n+1} L_n(l_n) \ldots L_1(l_1) H(h) R_1(r_1) \ldots R_m(r_m) R_{m+1}$
 - where $L_{n+1} = \text{STOP}$, $R_{m+1} = \text{STOP}$

• Generative story:
 1. Generate the head label of the phrase: $P_h(H|P,h)$
 2. Generate modifiers to the left of the head, independently given the head info: $P_L(L_i(l_i)|P,h,H)$
 • stop when STOP is generated.
 3. Generate modifiers to the right of the head, independently given the head info: $P_R(R_i(r_i)|P,h,H)$
 • stop when STOP is generated.
Workers \([_{VP} \text{ dumped sacks into bins}].\)

\[VP(\text{dumped, VBD}) \rightarrow \]
\[\text{STOP} \ VBD(\text{dumped, VBD}) \ NP(\text{sacks, NNS}) \ PP(\text{into, IN}) \ \text{STOP} \]

\[P(h) \rightarrow L_{n+1} \ L_n(l_n) \ \ldots \ L_1(l_1) \ H(h) \ R_1(r_1) \ \ldots \ R_m(r_m) \ R_{m+1} \]
\[n = 0, \ m = 2 \]
\[P = VP, \ H = VBD, \ L_1 = \text{STOP}, \ R_1 = NP, \ R_2 = PP, \ R_3 = \text{STOP} \]
\[h = \langle \text{dumped, VBD} \rangle, \ r_1 = \langle \text{sacks, NNS} \rangle, \ r_2 = \langle \text{dumped, VBD} \rangle \]

\[P_H(VBD \mid VP, \text{dumped}) \times P_L(\text{STOP} \mid VP, VBD, \text{dumped}) \]
\[\times P_R(NP(\text{sacks, NNS}) \mid VP, VBD, \text{dumped}) \]
\[\times P_R(PP(\text{into, IN}) \mid VP, VBD, \text{dumped}) \]
\[\times P_R(\text{STOP} \mid VP, VBD, \text{dumped}) \]
Collins’ Parser: Training

• Estimate P_H, P_L and P_R from treebank data:

$$P_R(PP\text{into-IN} \mid VP\text{dumped-VBD}) = \frac{\text{Count}(PP\text{into-IN right of head in a VP\text{dumped-VBD production})}}{\text{Count(symbol right of head in a VP\text{dumped-VBD})}}$$

• Smooth estimates by linearly interpolating with simpler models conditioned on just POS tag or no lexical info.

$$P_R(PP\text{into-IN} \mid VP\text{dumped-VBD}) = \lambda_1 P_R(PP\text{into-IN} \mid VP\text{dumped-VBD}) + (1-\lambda_1) \left(\lambda_2 P_R(PP\text{into-IN} \mid VP\text{VBD}) + (1-\lambda_2) P_R(PP\text{into-IN} \mid VP) \right)$$

Witten-Bell discounting.
Collins’ Parser

- Model 1 also conditions on a distance feature:
 - distance as a function of words between modifier and head:
 - is the distance 0?
 - do the words contain a verb?

- Model 2 adds more sophisticated features:
 - condition on the subcategorization frames for each verb.
 - distinguish arguments from adjuncts.
 - *IBM bought* Lotus *yesterday*.

- Parsing algorithm is an extension of pCKY.
Shallow Parsing: Chunking

- **Chunking** = find all non-recursive major types of phrases:
 - \([\text{NP} \text{ The morning flight}] [\text{PP from}] [\text{NP Denver}] [\text{VP has arrived}]\)
 - \([\text{NP The morning flight}] \text{ from } [\text{NP Denver}] \text{ has arrived}\)

- Chunking can be approached as **Sequence Labeling**.

- Evaluation:

 \[
 \text{Precision (P)} = \frac{\# \text{correct chunks found}}{\text{total \# chunks found}}
 \]

 \[
 \text{Recall (R)} = \frac{\# \text{correct chunks found}}{\text{total \# actual chunks}}
 \]

 \[
 F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}
 \]

 \[
 F_1 = \frac{2PR}{P + R}
 \]

Currently, best NP chunking system obtains \(F_1=96\%\).