Fisher’s Linear Discriminant

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu
Supervised Learning

• **Task** = learn an (unknown) function \(t : X \rightarrow T \) that maps input instances \(x \in X \) to output targets \(t(x) \in T \):

 – **Classification**:
 • The output \(t(x) \in T \) is one of a finite set of discrete categories.

 – **Regression**:
 • The output \(t(x) \in T \) is continuous, or has a continuous component.

• Target function \(t(x) \) is known (only) through (noisy) set of training examples:

 \((x_1, t_1), (x_2, t_2), \ldots, (x_n, t_n) \)
Three Parametric Approaches to Classification

1) **Discriminant Functions**: construct $f : X \rightarrow T$ that directly assigns a vector x to a specific class C_k.
 - Inference and decision combined into a single learning problem.
 - *Linear Discriminant*: the decision surface is a hyperplane in X:
 - Fisher ‘s Linear Discriminant
 - Perceptron
 - Support Vector Machines
Three Parametric Approaches to Classification

2) **Probabilistic Discriminative Models**: directly model the posterior class probabilities $p(C_k | x)$.
 - Inference and decision are separate.
 - Less data needed to estimate $p(C_k | x)$ than $p(x | C_k)$.
 - Can accommodate many overlapping features.
 - Logistic Regression
 - Conditional Random Fields
Three Parametric Approaches to Classification

3) Probabilistic Generative Models:
 - Model class-conditional $p(x \mid C_k)$ as well as the priors $p(C_k)$, then use Bayes’s theorem to find $p(C_k \mid x)$.
 - or model $p(x,C_k)$ directly, then marginalize to obtain the posterior probabilities $p(C_k \mid x)$.
 - Inference and decision are separate.
 - Can use $p(x)$ for outlier or novelty detection.
 - Need to model dependencies between features.
 - Naïve Bayes.
 - Hidden Markov Models.
Generative vs. Discriminative

Left-hand mode has no effect on posterior class probabilities.
Linear Discriminant Functions: Two classes ($K = 2$)

- Use a linear function of the input vector:
 \[y(x) = w^T \phi(x) + w_0 \]

- Decision:
 \[x \in C_1 \text{ if } y(x) \geq 0, \text{ otherwise } x \in C_2. \]
 \[
 \Rightarrow \text{ decision boundary is hyperplane } y(x) = 0.\]

- Properties:
 - w is orthogonal to vectors lying within the decision surface.
 - w_0 controls the location of the decision hyperplane.
Linear Discriminant Functions: Two Classes ($K = 2$)
Linear Discriminant Functions: Multiple Classes (K > 2)

1) Train K or K–1 one-versus-the-rest classifiers.
2) Train K(K–1)/2 one-versus-one classifiers.

3) Train K linear functions:

 \[y_k(x) = \mathbf{w}_k^T \varphi(x) + w_{k0} \]

 • Decision:

 \[x \in C_k \text{ if } y_k(x) > y_j(x), \text{ for all } j \neq k. \]

 \[\Rightarrow \text{decision boundary between classes } C_k \text{ and } C_j \text{ is hyperplane defined by } y_k(x) = y_j(x) \text{ i.e. } (\mathbf{w}_k - \mathbf{w}_j)^T \varphi(x) + (w_{k0} - w_{j0}) = 0 \]

 \[\Rightarrow \text{same geometrical properties as in binary case.} \]
Linear Discriminant Functions: Multiple Classes (K > 2)

4) More general ranking approach:

\[y(x) = \arg \max_{t \in T} w^T \varphi(x, t) \quad \text{where} \quad T = \{c_1, c_2, ..., c_K\} \]

- It subsumes the approach with K separate linear functions.
- Useful when T is very large (e.g. exponential in the size of input x), assuming inference can be done efficiently.
Linear Discriminant Functions: Two Classes ($K = 2$)

- What algorithms can be used to learn $y(x) = w^T \varphi(x) + w_0$?
 Assume a training dataset of $N = N_1 + N_2$ examples in C_1 and C_2.

 - Fisher’s Linear Discriminant
 - Perceptron:
 - Voted/Averaged Perceptron
 - Kernel Perceptron
 - Support Vector Machines:
 - Linear
 - Kernel
Fisher’s Linear Discriminant

- Discriminant function $y(x) = w^T x + w_0$ can be interpreted as follows:
 1. Project D-dimensional x down to one dimension $\Rightarrow w^T x$
 2. Use a threshold $-w_0$ to classify x \Rightarrow
 - $x \in C_1$, if $w^T x \geq -w_0$
 - $x \in C_2$, otherwise.

- Fisher’s idea:
 - Maximize the **between-class separation** of projected dataset.
 - Minimize the **within-class variance** of projected dataset.
Fisher’s Linear Discriminant

Line joining the class means vs. Line inferred with Fisher’s criterion.
Fisher’s Linear Discriminant

1) Measure of the separation between the classes is the between class variance:

\[
\begin{align*}
 \mathbf{m}_1 &= \frac{1}{N_1} \sum_{n \in C_1} \mathbf{x}_n \\
 \mathbf{m}_2 &= \frac{1}{N_2} \sum_{n \in C_2} \mathbf{x}_n \\
\end{align*}
\]

\[\mathbf{m}_2 - \mathbf{m}_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1) \Rightarrow (\mathbf{m}_2 - \mathbf{m}_1)^2\]
Fisher’s Linear Discriminant

2) Measure of the *within-class variance*:

\[
\begin{align*}
 s_1^2 &= \sum_{n \in C_1} (w^T x_n - m_1)^2 \\
 s_2^2 &= \sum_{n \in C_2} (w^T x_n - m_2)^2
\end{align*}
\]

\[s_1^2 + s_2^2\]
Fisher’s Linear Discriminant

- Maximize the between-class separation and minimize the within-class variance ⇒ Fisher’s criterion:

\[w^* = \arg \max_w J(w), \text{ where } J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} \]

- The objective function can be rewritten as:

\[J(w) = \frac{w^T S_B w}{w^T S_W w} \]

where

\[S_B = (m_2 - m_1)(m_2 - m_1)^T \]
\[S_W = \sum_{n \in C_1} (x_n - m_1)(x_n - m_1)^T + \sum_{n \in C_2} (x_n - m_2)(x_n - m_2)^T \]
Fisher’s Linear Discriminant

- Optimization formulation:
 \[\mathbf{w}^* = \arg \max_{\mathbf{w}} J(\mathbf{w}) = \arg \max_{\mathbf{w}} \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} \]

- Solution:
 \[\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 0 \implies (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) \mathbf{S}_B \mathbf{w} = (\mathbf{w}^T \mathbf{S}_B \mathbf{w}) \mathbf{S}_W \mathbf{w} \]
 \[\implies \mathbf{S}_B \mathbf{w} = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} \mathbf{S}_W \mathbf{w} \implies \mathbf{S}_B \mathbf{w} = \lambda \mathbf{S}_W \mathbf{w} \]

- If \(\mathbf{S}_W \) is nonsingular:
 \[\implies \mathbf{S}^{-1}_W \mathbf{S}_B \mathbf{w} = \lambda \mathbf{w} \]
Fisher’s Linear Discriminant

- No need to solve the eigenvalue problem:
 \[S_B w = (m_2 - m_1)(m_2 - m_1)^T w \] is a vector in the direction \((m_2 - m_1)\)

- The norm of \(w\) is immaterial, only its direction is important.
 \[\Rightarrow \text{can take} \]
 \[w = S_w^{-1}(m_2 - m_1) \]

- How to find \(w_0\):
 - Assume \(p(w^T x | C_1)\) and \(p(w^T x | C_2)\) are Gaussians.
 - Estimate means and variances using maximum likelihood.
 - Use decision theory to find \(w_0\) i.e. \(p(-w_0 | C_1) = p(-w_0 | C_2)\)
Supplementary Reading

- PRML Section 1.4 (The Curse of Dimensionality).
- PRML Section 1.5 (Decision Theory).
- PRML Section 4 (Linear Models for Classification):
 - 4.1.1 to 4.1.4.