CS 6890: Deep Learning

Python Stack
Linear Algebra and Optimization in NumPy
Computation Graphs in PyTorch

Razvan C. Bunescu
School of Electrical Engineering and Computer Science
bunescu@ohio.edu
Python Programming Stack for Deep Learning

- **Python** = object-oriented, interpreted, scripting language.
 - imperative programming, with functional programming features.

- **NumPy** = package for powerful N-dimensional arrays:
 - sophisticated (broadcasting) functions.
 - useful linear algebra, Fourier transform, and random number capabilities.

- **SciPy** = package for numerical integration and optimization.

- **Matplotlib** = comprehensive 2D and 3D plotting library.
Python Programming Stack for Deep Learning

- **PyTorch** = a wrapper of **NumPy** that enables the use of GPUs and automatic differentiation:
 - **Tensors** similar to NumPy’s ndarray, but can also be used on GPU.

- **Jupyter Notebook** = a web app for creating documents that contain live code, equations, visualizations and markdown text.

- **Anaconda** = an open-source distribution of Python and Python packages:
 - Package versions are managed through **Conda**.
 - Install all packages above using Anaconda / Conda install.
Anaconda Install

- **Anaconda**: Installation instructions for various platforms can be found at: https://docs.anaconda.com/anaconda/install/
 - For Mac and Linux users, the system PATH must be updated after installation so that ‘conda’ can be used from the command line.
 - **Mac OS X**:
 - For bash users: export PATH=~/anaconda3/bin:$PATH
 - For csh/tcsh users: setenv PATH ~/anaconda3/bin:$PATH
 - **For Linux**:
 - For bash users: export PATH=~/anaconda3/bin:$PATH
 - For csh/tcsh users: setenv PATH ~/anaconda3/bin:$PATH
 - It is recommend the above statement be put in the ~/.bashrc or ~/.cshrc file, so that it is executed every time a new terminal window is open.
 - To check that conda was installed, running “conda list” in the terminal should list all packages that come with Anaconda.
Installing Packages with Conda / Anaconda

- A number of tools and libraries that we will use can be configured from Anaconda:
 - PyTorch can be installed from Anaconda, with ‘conda’ from the command line:
 - The actual command line depends on the platform as follows:
 - Using the GUI on pytorch.org, choose the appropriate OS, conda, Python 3.6, CUDA or CPU version.
import numpy as np

- np.array()
 - indexing, slices.
- ndarray.shape, .size, .ndim, .dtype, .T
- np.zeros(), np.ones(), np.arange(). np.eye()
 - dtype parameter.
 - tuple (shape) parameter.
- np.reshape(), np.ravel()
- np.amax(), np.maximum(), np.sum(), np.mean(), np.std()
 - axis parameter, also np.ndarray
- np.stack(), np.[hv]stack(), np.column_stack(), np.split()
- np.exp(), np.log(),
- https://docs.scipy.org/doc/numpy/user/quickstart.html
NumPy: Broadcasting

• Broadcasting describes how numpy treats arrays with different shapes during arithmetic operations.
• The smaller array is “broadcast” across the larger array so that they have compatible shapes, subject to broadcasting rules:
 – NumPy compares their shapes element-wise.
 – It starts with the trailing dimensions, and works its way forward.
 – Two dimensions are compatible when:
 • they are equal, or one of them is 1.

• https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Other Numpy Functions

- `np.dot()`, `np.vdot()`
 - also `np.ndarray`

- `np.outer()`, `np.inner()`

- import `numpy.random` as `random`:
 - `randn()`, `randint()`, `uniform()`

- import `numpy.linalg` as `la`:
 - `la.norm()`, `la.det()`, `la.matrix_rank()`, `np.trace()`
 - `la.eig()`, `la.svd()`
 - `la.qr()`, `la.cholesky()`

- https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
Logistic Regression: Vectorization

- **Version 1**: Compute gradient component-wise.

\[
\nabla E(w) = \sum_{n=1}^{N} (h_n - t_n)x_n^T
\]

```python
grad = np.zeros(K)
for n in range(N):
    h = sigmoid(w.dot(X[:, n]))
    temp = h - t[n]
    for k in range(K):
        grad(k) = grad(k) + temp * X[k,n]
```

```
Logistic Regression: Vectorization

- **Version 2**: Compute gradient, partially vectorized.

\[
\nabla E(w) = \sum_{n=1}^{N} (h_n - t_n) x_n^T
\]

\[
\text{grad} = \text{np.zeros}(K)
\]

\[
\text{for } n \text{ in range}(N):
\]

\[
\text{grad} = \text{grad} + (\text{sigmoid}(w\text{.dot}(X[:, n])) - t[n]) * X[:, n]
\]
Logistic Regression: Vectorization

- **Version 3**: Compute gradient, vectorized.

\[
\nabla E(w) = \sum_{n=1}^{N} (h_n - t_n)x_n^T
\]

\[
\text{grad} = X @ (\text{sigmoid}(w \cdot X) - t)
\]

def sigmoid(x):
    return 1 / (1 + np.exp(-x))
import scipy

- scipy.sparse.coo_matrix()
  
  groundTruth = coo_matrix((np.ones(numCases, dtype = np.uint8),
                          (labels, np.arange(numCases)))).toarray()

- scipy.optimize:
  
  - scipy.optimize.fmin_l_bfgs_b()
    
    theta, _, _ = fmin_l_bfgs_b(softmaxCost, theta,
                              args = (numClasses, inputSize, decay, images, labels),
                              maxiter = 100, disp = 1)

  - scipy.optimize.fmin_cg()

  - scipy.minimize

https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html
Towards PyTorch: Graphs of Computations

• A function \( J \) can be expressed by the **composition** of **computational elements** from a given set:
  – logic operators.
  – logistic operators.
  – multiplication and additions.

• The function is defined by a **graph of computations**:
  – A directed acyclic graph, with one node per computational element.
  – Depth of architecture = depth of the graph = longest path from an input node to an output node.
Logistic Regression as a Computation Graph
Neural Network as a Computation Graph

Inference = Forward Propagation

Learning = Backward Propagation
What is PyTorch

• A wrapper of NumPy that enables the use of GPUs.
  – Tensors similar to NumPy’s ndarray, but can also be used on GPU.

• A flexible deep learning platform:
  – Deep Neural Networks built on a tape-based autograd system:
    • Building neural networks using and replaying a tape recorder.
    • Reverse-mode auto-differentiation allows changing the network at runtime:
      – The computation graph is created on the fly.
      – Backpropagation is done on the dynamically built graph.

http://pytorch.org/about/
Automatic Differentiation

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

- Deep learning packages offer automatic differentiation.

- PyTorch has the *autograd* package:
  - *torch.Tensor* the main class; *torch.Function* class also important.
    - When *requires_grad = True*, it tracks all operations on this tensor (e.g. the parameters).
    - An acyclic graph is build **dynamically** that encodes the history of computations, i.e. compositions of functions.
      - TensorFlow compiles **static** computation graphs.
    - To compute the gradient, call *backward()* in a scalar valued Tensor (e.g. the *loss*).
Tensors

- PyTorch **tensors** support the same operations as NumPy.
  - Arithmetic.
  - Slicing and Indexing.
  - Broadcasting.
  - Reshaping.
  - Sum, Max, Argmax, …

- PyTorch tensors can be converted to NumPy tensors.
- NumPy tensors can be converted to PyTorch tensors.

http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html
Autograd

• The autograd package provides automatic differentiation for all operations on Tensors.
  – It is a define-by-run framework, which means that the gradient is defined by how your code is run:
    • Every single backprop iteration can be different.

• autograd.Tensor is the central class of the package.
  – Once you finish your computation you can call .backward() and have all the gradients computed automatically.

http://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
A **Tensor** $v$ has three important attributes:

- $v$.data holds the raw tensor value.
- $v$.grad is another Tensor which accumulates the gradient w.r.t. $v$:
  - The gradient of what?
    - The gradient of any variable $u$ that uses $v$ on which we call $u$.backward().
  - $v$.grad_fn stores the **Function** that has created the Tensor $v$:
    - http://pytorch.org/docs/master/autograd.html
Multivariate Chain Rule for Differentiation

- Multivariate Chain Rule:

\[ f = f(g_1(x), g_2(x), \ldots, g_n(x)) \]

\[ \frac{\partial f}{\partial x} = \sum_{i=1}^{n} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial x} \]

- Example 2:

\[ \text{loss}(x) = (h_1(x) - h_2(x))^2 \]

\[ h_1(x) = 2g_1(x) + 1 \]

\[ h_2(x) = 2g_1(x) + g_2(x) \]

\[ g_1(x) = 3x \]

\[ g_2(x) = x^2 + x \]
PyTorch

- Install using Anaconda:
  - conda install pytorch torchvision -c pytorch
  - http://pytorch.org

- Install from sources:
  - https://github.com/pytorch/pytorch#from-source

- Tutorials:
  - http://pytorch.org/tutorials/
  - http://pytorch.org/tutorials/beginner/pytorch_with_examples.html