CS 6890: Deep Learning

Feed-Forward Neural Networks
Backpropagation

Razvan C. Bunescu
School of Electrical Engineering and Computer Science
bunescu@ohio.edu
Neuron Function

- Algebraic interpretation:
 - The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
 - It is often transformed through a monotonic activation function.
Activation Functions

unit step \(f(z) = \begin{cases}
0 & \text{if } z < 0 \\
1 & \text{if } z \geq 0
\end{cases} \)

logistic \(f(z) = \frac{1}{1 + e^{-z}} \)

Perceptron

Logistic Regression

ReLU \(f(z) = \begin{cases}
0 & \text{if } z < 0 \\
z & \text{if } z \geq 0
\end{cases} \)

Rectified Linear Unit
ReLU and Generalizations

- It has become more common to use piecewise linear activation functions for hidden units:
 - **ReLU**: the rectifier activation $g(a) = \max\{0, a\}$.
 - **Absolute value ReLU**: $g(a) = |a|$.
 - **Maxout**: $g(a_1, \ldots, a_k) = \max\{a_1, \ldots, a_k\}$.
 - needs k weight vectors instead of 1.
 - **Leaky ReLU**: $g(a) = \max\{0, a\} + \alpha \min(0, a)$.

\Rightarrow the network computes a **piecewise linear function** (up to the output activation function).
ReLU vs. Sigmoid and Tanh

- Sigmoid and Tanh saturate for values not close to 0:
 - “kill” gradients, bad behavior for gradient-based learning.
- ReLU does not saturate for values > 0:
 - greatly accelerates learning, fast implementation.
 - fragile during training and can “die”, due to 0 gradient:
 - initialize all b’s to a small, positive value, e.g. 0.1.
ReLU vs. Softplus

• Softplus \(g(a) = \ln(1+e^a) \) is a smooth version of the rectifier.
 – Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].
Perceptron vs. Logistic vs. ReLU vs. Tanh

- **Logistic neuron:**
 - At inference time, same decision function as perceptron, for binary classification with equal misclassification costs (prove it):
 \[
 \hat{i}(x) = \begin{cases}
 1 & \text{if } w^Tx > 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - Perceptron cannot represent the XOR function:
 - **Logistic neuron, ReLU, Tanh** have the same limitation.

- How can we use (logistic) neurons to achieve better representational power?
Universal Approximation Theorem

- Let σ be a nonconstant, bounded, and monotonically-increasing continuous function;
- Let I_m denote the m-dimensional unit hypercube $[0,1]^m$;
- Let $C(I_m)$ denote the space of continuous functions on I_m;

Theorem: Given any function $f \in C(I_m)$ and $\varepsilon > 0$, there exist an integer N and real constants $\alpha_i, b_i \in \mathbb{R}, \mathbf{w}_i \in \mathbb{R}^m$, where $i = 1, ..., N$, such that:

$$|F(x) - f(x)| < \varepsilon, \quad \forall x \in I_m$$

where

$$F(x) = \sum_{i=1}^{N} \alpha_i \sigma(\mathbf{w}_i^T \mathbf{x} + b_i)$$

Universal Approximation Theorem

\[F(x) = \sum_{i=1}^{N} \alpha_i \sigma(w_i^T x + b_i) \]

\[|F(x) - f(x)| < \varepsilon, \forall x \in I_m \]
Neural Network Model

• Put together many neurons in layers, such that the output of a neuron can be the input of another:
\(n_l = 3 \) is the number of layers.
- \(L_1 \) is the input layer, \(L_3 \) is the output layer
- \((W, b) = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)})\) are the parameters:
 - \(W^{(l)}_{ij} \) is the weight of the connection between unit \(j \) in layer \(l \) and unit \(i \) in layer \(l + 1 \).
 - \(b^{(l)}_i \) is the bias associated unit unit \(i \) in layer \(l + 1 \).
- \(a^{(l)}_i \) is the activation of unit \(i \) in layer \(l \), e.g. \(a^{(1)}_i = x_i \) and \(a^{(3)}_1 = h_{W,b}(x) \).
Inference: Forward Propagation

• The activations in the hidden layer are:

\[
a_1^{(2)} = f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)})
\]
\[
a_2^{(2)} = f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)})
\]
\[
a_3^{(2)} = f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)})
\]

• The activations in the output layer are:

\[
h_{W,b}(x) = a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)})
\]

• Compressed notation:

\[
a_i^{(l)} = f(z_i^{(l)}) \quad \text{where} \quad z_i^{(2)} = \sum_{j=1}^{n} W_{ij}^{(1)} x_j + b_i^{(1)}
\]
Forward Propagation

• Forward propagation (unrolled):

\[
\begin{align*}
a^{(2)}_1 &= f(W^{(1)}_{11}x_1 + W^{(1)}_{12}x_2 + W^{(1)}_{13}x_3 + b^{(1)}_1) \\
a^{(2)}_2 &= f(W^{(1)}_{21}x_1 + W^{(1)}_{22}x_2 + W^{(1)}_{23}x_3 + b^{(1)}_2) \\
a^{(2)}_3 &= f(W^{(1)}_{31}x_1 + W^{(1)}_{32}x_2 + W^{(1)}_{33}x_3 + b^{(1)}_3) \\
h_{W,b}(x) &= a^{(3)}_1 = f(W^{(2)}_{11}a^{(2)}_1 + W^{(2)}_{12}a^{(2)}_2 + W^{(2)}_{13}a^{(2)}_3 + b^{(2)}_1)
\end{align*}
\]

• Forward propagation (compressed):

\[
\begin{align*}
z^{(2)} &= W^{(1)}x + b^{(1)} \\
a^{(2)} &= f(z^{(2)}) \\
z^{(3)} &= W^{(2)}a^{(2)} + b^{(2)} \\
h_{W,b}(x) &= a^{(3)} = f(z^{(3)})
\end{align*}
\]

• Element-wise application:

\[
f(z) = [f(z_1), f(z_2), f(z_3)]
\]
Forward Propagation

• Forward propagation (compressed):

\[z^{(2)} = W^{(1)} x + b^{(1)} \]
\[a^{(2)} = f(z^{(2)}) \]
\[z^{(3)} = W^{(2)} a^{(2)} + b^{(2)} \]
\[h_{W,b}(x) = a^{(3)} = f(z^{(3)}) \]

• Composed of two *forward propagation steps*:

\[z^{(l+1)} = W^{(l)} a^{(l)} + b^{(l)} \]
\[a^{(l+1)} = f(z^{(l+1)}) \]
Multiple Hidden Units, Multiple Outputs

- Write down the forward propagation steps for:
Learning: Backpropagation

- Regularized sum of squares error:

 \[J(W, b, x, y) = \frac{1}{2} \| h_{w,b}(x) - y \|^2 \]

 \[J(W, b) = \frac{1}{m} \sum_{k=1}^{m} J(W, b, x^{(k)}, y^{(k)}) + \frac{\lambda}{2} \sum_{l=1}^{n_t-1} \sum_{i=1}^{s_{l+1}} \sum_{j=1}^{s_l} (W^{(l)}_{ij})^2 \]

- Gradient:

 \[\frac{\partial J(W, b)}{\partial W^{(l)}_{ij}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial W^{(l)}_{ij}} + \lambda W^{(l)}_{ij} \]

 \[\frac{\partial J(W, b)}{\partial b^{(l)}_i} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial b^{(l)}_i} \]
Backpropagation

• Need to compute the gradient of the squared error with respect to a single training example \((x, y)\):

\[
J(W, b, x, y) = \frac{1}{2} \|h_{W, b}(x) - y\|^2 = \frac{1}{2} \|a^{(n_l)} - y\|^2
\]

\[
\frac{\partial J}{\partial W^{(l)}_{ij}} = ? \quad \frac{\partial J}{\partial b^{(l)}_i} = ?
\]
Univariate Chain Rule for Differentiation

- **Univariate Chain Rule:**
 \[
 f = f \circ g \circ h = f(g(h(x)))
 \]
 \[
 \frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial h} \frac{\partial h}{\partial x}
 \]

- **Example:**
 \[
 f(g(x)) = 2g(x)^2 - 3g(x) + 1
 \]
 \[
 g(x) = x^3 + 2x
 \]
Multivariate Chain Rule for Differentiation

• Multivariate Chain Rule:

\[f = f(g_1(x), g_2(x), \ldots, g_n(x)) \]

\[\frac{df}{dx} = \sum_{i=1}^{n} \frac{df}{dg_i} \frac{dg_i}{dx} \]

• Example:

\[f(g_1(x), g_2(x)) = 2g_1(x)^2 - 3g_1(x)g_2(x) + 1 \]

\[g_1(x) = 3x \]

\[g_2(x) = x^2 + 2x \]
Backpropagation: $W_{ij}^{(l)}$

- J depends on $W_{ij}^{(l)}$ only through $a_i^{(l+1)}$, which depends on $W_{ij}^{(l)}$ only through $z_i^{(l+1)}$.

\[
J(W, b, x, y) = \frac{1}{2} \| a^{(n_l)} - y \|^2
\]

\[
a_i^{(l+1)} = f(z_i^{(l+1)})
\]

\[
z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}
\]
Backpropagation: $b_i^{(l)}$

- J depends on $b_i^{(l)}$ only through $a_i^{(l+1)}$, which depends on $b_i^{(l)}$ only through $z_i^{(l+1)}$.

$$J(W, b, x, y) = \frac{1}{2} \| a^{(n_l)} - y \|^2$$

$$a_i^{(l+1)} = f(z_i^{(l+1)})$$

$$z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}$$
Backpropagation: $W_{ij}^{(l)}$ and $b_i^{(l)}$

$$\frac{\partial J}{\partial W_{ij}^{(l)}} = \frac{\partial J}{\partial a_i^{(l+1)}} \times \frac{\partial a_i^{(l+1)}}{\partial z_i^{(l+1)}} \times \frac{\partial z_i^{(l+1)}}{\partial W_{ij}^{(l)}} = a_j^{(l)} \delta_i^{(l+1)}$$

How to compute $\delta_i^{(l+1)}$ for all layers l?

$$\frac{\partial J}{\partial b_i^{(l)}} = \frac{\partial J}{\partial a_i^{(l+1)}} \times \frac{\partial a_i^{(l+1)}}{\partial z_i^{(l+1)}} \times \frac{\partial z_i^{(l+1)}}{\partial b_i^{(l)}} = \delta_i^{(l+1)}$$
Backpropagation: $\delta_i^{(l)}$

\[
\delta_i^{(l)} = \frac{\partial J}{\partial a_i^{(l)}} \times \frac{\partial a_i^{(l)}}{\partial z_i^{(l)}} = \frac{\partial J}{\partial a_i^{(l)}} \times f'(z_i^{(l)})
\]

- J depends on $a_i^{(l)}$ only through $a_1^{(l+1)}$, $a_2^{(l+1)}$, ...

![Diagram of neural network with backpropagation equations and nodes labeled $a_i^{(l)}$, $a_1^{(l+1)}$, $a_2^{(l+1)}$, $a_3^{(l+1)}$, and J.]
Backpropagation: $\delta_i^{(l)}$

- J depends on $a_i^{(l)}$ only through $a_1^{(l+1)}, a_2^{(l+1)}, ...$

\[
\frac{\partial J}{\partial a_i^{(l)}} = \sum_{j=1}^{s_{l+1}} \frac{\partial J}{\partial a_j^{(l+1)}} \times \frac{\partial a_j^{(l+1)}}{\partial a_i^{(l)}} = \sum_{j=1}^{s_{l+1}} \frac{\partial J}{\partial a_j^{(l+1)}} \times \frac{\partial a_j^{(l+1)}}{\partial z_j^{(l+1)}} \times \frac{\partial z_j^{(l+1)}}{\partial a_i^{(l)}} \times \delta_j^{(l+1)} W_{ji}^{(l)}
\]

- Therefore, $\delta_i^{(l)}$ can be computed as:

\[
\delta_i^{(l)} = \frac{\partial J}{\partial a_i^{(l)}} \times f'(z_i^{(l)}) = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)} \right) \times f'(z_i^{(l)})
\]
Backpropagation: $\delta_i^{(l)}$

- Start computing δ’s for the output layer:

$$
\delta_i^{(n_l)} = \frac{\partial J}{\partial a_i^{(n_l)}} \times \frac{\partial a_i^{(n_l)}}{\partial z_i^{(n_l)}} = \frac{\partial J}{\partial a_i^{(n_l)}} \times f'(z_i^{(n_l)})
$$

$$
J = \frac{1}{2} \left\| a^{(n_l)} - y \right\|^2 \Rightarrow \frac{\partial J}{\partial a_i^{(n_l)}} = \left(a_i^{(n_l)} - y_i \right)
$$

$$
\delta_i^{(n_l)} = \left(a_i^{(n_l)} - y_i \right) \times f'(z_i^{(n_l)})
$$
Backpropagation Algorithm

1. Feedforward pass on x to compute activations $a_i^{(l)}$
2. For each output unit i compute:
 \[\delta_i^{(n_l)} = (a_i^{(n_l)} - y_i) \times f'(z_i^{(n_l)}) \]
3. For $l = n_l-1, n_l-2, n_l-3, \ldots, 2$ compute:
 \[\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)} \right) \times f'(z_i^{(l)}) \]
4. Compute the partial derivatives of the cost $J(W, b, x, y)$
 \[\frac{\partial J}{\partial W_{ij}^{(l)}} = a_j^{(l)} \delta_i^{(l+1)} \]
 \[\frac{\partial J}{\partial b_i^{(l)}} = \delta_i^{(l+1)} \]
Backpropagation Algorithm: Vectorization for 1 Example

1. Feedforward pass on x to compute activations $a_i^{(l)}$

2. For last layer compute:
 \[
 \delta^{(n_l)} = \left(a^{(n_l)} - y \right) \cdot f'(z^{(n_l)})
 \]

3. For $l = n_l-1, n_l-2, n_l-3, \ldots, 2$ compute:
 \[
 \delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})
 \]

4. Compute the partial derivatives of the cost $J(W, b, x, y)$
 \[
 \nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)} \right)^T \quad \nabla_{b^{(l)}} J = \delta^{(l+1)}
 \]
Backpropagation Algorithm: Vectorization for Dataset of \(m \) Examples

1. Feedforward pass on \(X \) to compute activations \(a^{(l)}_i \)

2. For last layer compute:
 \[
 \delta^{(n_l)} = (a^{(n_l)} - y) \cdot f'(z^{(n_l)})
 \]

3. For \(l = n_l - 1, n_l - 2, n_l - 3, \ldots, 2 \) compute:
 \[
 \delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})
 \]

4. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
 \[
 \nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)} \right)^T / m \\
 \nabla_{b^{(l)}} J = \delta^{(l+1)} \cdot \text{col_avg()}
 \]
Backpropagation: Softmax Regression

• Consider layer \(n_l \) to be the input to the softmax layer i.e. softmax output layer is \(n_l+1 \).

• Softmax weights stored in matrix \(W^{(n_l)} \).

\[
W^{(n_l)} = \begin{bmatrix}
-w_1^T & - \\
-w_2^T & - \\
\vdots & \\
-w_K^T & -
\end{bmatrix}
\]

• K classes \(\Rightarrow W^{(n_l)} \)
Backpropagation: Softmax Regression

- Softmax output is $a^{(n_l+1)} = \text{softmax}(z^{(n_l+1)})$
Backpropagation Algorithm: Softmax (1)

1. Feedforward pass on \(x \) to compute activations \(a^{(l)} \) for layers \(l = 1, 2, \ldots, n_l \).

2. Compute softmax outputs \(a^{(n_l+1)} \) and objective \(J(a^{(n_l+1)}, y) \).

3. Let \(y = [\delta_1(y), \delta_2(y), \ldots, \delta_K(y)]^T \) be the one-hot vector representation for label \(y \).

4. Compute gradient with respect to softmax weights:

\[
\frac{\partial J}{\partial W^{(n_l)}} = (a^{(n_l+1)} - y)a^{(n_l)}^T
\]
5. Compute gradient with respect to softmax inputs:

\[\delta^{(n_l)} = \left(W^{(n_l)} \right)^T (a^{(n_{l+1})} - y) \circ f'(z^{(n_l)}) \]

6. For \(l = n_{l-1}, n_{l-2}, n_{l-3}, \ldots, 2 \) compute:

\[\delta^{(l)} = \left(\left(W^{(l)} \right)^T \delta^{(l+1)} \right) \cdot f'(z^{(l)}) \]

7. Compute the partial derivatives of the cost \(J(W, b, x, y) \)

\[\nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)} \right)^T \quad \nabla_{b^{(l)}} J = \delta^{(l+1)} \]
Backpropagation Algorithm: Softmax for 1 Example

1. For softmax layer, compute:
 \[\delta^{(n_l+1)} = (a^{(n_l+1)} - y) \]
 one-hot label vector

2. For \(l = n_l, n_l-2, n_l-3, \ldots, 2 \) compute:
 \[\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \bullet f'(z^{(l)}) \]

3. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
 \[\nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)} \right)^T \]
 \[\nabla_{b^{(l)}} J = \delta^{(l+1)} \]
Backpropagation Algorithm: Softmax for Dataset of \(m \) Examples

1. For softmax layer, compute:
 \[
 \delta^{(n_l+1)} = (a^{(n_l+1)} - y)
 \]

2. For \(l = n_l, n_l-1, n_l-2, \ldots, 2 \) compute:
 \[
 \delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})
 \]

3. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
 \[
 \nabla_{W^{(l)}} J = \delta^{(l+1)} a^{(l)} / m \quad \nabla_{b^{(l)}} J = \delta^{(l+1)} .col_avg()
 \]
Backpropagation: Logistic Regression