Gradient Descent Algorithms

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu
Machine Learning is Optimization

- Parametric ML involves minimizing an **objective function** $J(w)$:
 - Also called **cost function**, **loss function**, or **error function**.
 - Want to find $\hat{w} = \arg\min_w J(w)$

- Numerical optimization procedure:
 1. Start with some guess for w^0, set $\tau = 0$.
 2. Update w^τ to $w^{\tau+1}$ such that $J(w^{\tau+1}) \leq J(w^\tau)$.
 3. Increment $\tau = \tau + 1$.
 4. Repeat from 2 until J cannot be improved anymore.
Gradient-based Optimization

• How to update \(w^\tau \) to \(w^{\tau+1} \) such that \(J(w^{\tau+1}) \leq J(w^\tau) \)?

• Move \(w \) in the direction of steepest descent:
 \[
 w^{\tau+1} = w^\tau + \eta g
 \]
 - \(g \) is the direction of steepest descent, i.e. direction along which \(J \) decreases the most.
 - \(\eta \) is the learning rate and controls the magnitude of the change.
Gradient-based Optimization

• Move \(\mathbf{w} \) in the direction of **steepest descent**:
 \[
 \mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} + \eta \mathbf{g}
 \]

• What is the direction of steepest descent of \(J(\mathbf{w}) \) at \(\mathbf{w}^{\tau} \)?
 – The gradient \(\nabla J(\mathbf{w}) \) is in the direction of steepest ascent.
 – Set \(\mathbf{g} = -\nabla J(\mathbf{w}) \Rightarrow \) the **gradient descent** update:
 \[
 \mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \eta \nabla J(\mathbf{w}^{\tau})
 \]
Gradient Descent Algorithm

• Want to minimize a function $J : \mathbb{R}^n \rightarrow \mathbb{R}$.
 - J is differentiable and convex.
 - compute gradient of J i.e. direction of steepest increase:

$$\nabla J(w) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, ..., \frac{\partial J}{\partial w_n} \right]$$

1. Set learning rate $\eta = 0.001$ (or other small value).
2. Start with some guess for w^0, set $\tau = 0$.
3. Repeat for epochs E or until J does not improve:
4. $\tau = \tau + 1$.
5. $w^{\tau+1} = w^\tau - \eta \nabla J(w^\tau)$
Gradient Descent: Large Updates

![Diagram showing the concept of gradient descent with large updates. The graph illustrates the movement from an initial point to a minimum point, with arrows indicating the direction of updates and the change in the cost function J.](image)
Gradient Descent: Small Updates
The Learning Rate

1. Set learning rate $\eta = 0.001$ (or other small value).
2. Start with some guess for w^0, set $\tau = 0$.
3. Repeat for epochs E or until J does not improve:
 4. $\tau = \tau + 1$.
 5. $w^{\tau+1} = w^\tau - \eta \nabla J (w^\tau)$

- How big should the learning rate be?
 - If learning rate too small => slow convergence.
 - If learning rate too big => oscillating behavior => may not even converge.
Learning Rate too Small
Learning Rate too Large
Learning Rates vs. GD Behavior

http://scs.ryerson.ca/~aharley/neural-networks/
The Learning Rate

• How big should the learning rate be?
 – If learning rate too big => oscillating behavior.
 – If learning rate too small => hinders convergence.

 o Use line search (backtracking line search, conjugate gradient, …).
 o Use second order methods (Newton’s method, L-BFGS, …).
 • Requires computing or estimating the Hessian.
 o Use a simple learning rate annealing schedule:
 – Start with a relatively large value for the learning rate.
 – Decrease the learning rate as a function of the number of epochs or as a function of the improvement in the objective.
 o Use adaptive learning rates:
 • Adagrad, Adadelta, RMSProp, Adam.
Gradient Descent: Nonconvex Objective

Cost

Local minimum Global minimum Plateau

Saddle point
Convex Multivariate Objective
Gradient Step and Contour Lines
Gradient Descent: Nonconvex Objectives
Gradient Descent & Plateaus
Gradient Descent & Saddle Points
Gradient Descent & Ravines
Gradient Descent & Ravines

- **Ravines** are areas where the surface curves much more steeply in one dimension than another.
 - Common around local optima.
 - GD oscillates across the slopes of the ravines, making slow progress towards the local optimum along the bottom.

- Use **momentum** to help accelerate GD in the relevant directions and dampen oscillations:
 - Add a fraction of the past *update vector* to the current update vector.
 - The momentum term increases for dimensions whose previous gradients point in the same direction.
 - It reduces updates for dimensions whose gradients change sign.
 - Also reduces the risk of getting stuck in local minima.
Gradient Descent & Momentum

Vanilla Gradient Descent:
\[\mathbf{v}^{\tau+1} = \eta \nabla J(\mathbf{w}^{\tau}) \]
\[\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \mathbf{v}^{\tau+1} \]

Gradient Descent w/ Momentum:
\[\mathbf{v}^{\tau+1} = \gamma \mathbf{v}^{\tau} + \eta \nabla J(\mathbf{w}^{\tau}) \]
\[\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \mathbf{v}^{\tau+1} \]

\(\gamma \) is usually set to 0.9 or similar.
Momentum & Nesterov Accelerated Gradient

GD with Momentum:
\[\mathbf{v}^{\tau+1} = \gamma \mathbf{v}^\tau + \eta \nabla J(\mathbf{w}^\tau) \]
\[\mathbf{w}^{\tau+1} = \mathbf{w}^\tau - \mathbf{v}^{\tau+1} \]

Nesterov Accelerated Gradient:
\[\mathbf{v}^{\tau+1} = \gamma \mathbf{v}^\tau + \eta \nabla J(\mathbf{w}^\tau - \gamma \mathbf{v}^\tau) \]
\[\mathbf{w}^{\tau+1} = \mathbf{w}^\tau - \mathbf{v}^{\tau+1} \]

By making an anticipatory update, NAGs prevents GD from going too fast => significant improvements when training RNNs.
Gradient Descent Optimization Algorithms

- **Momentum.**
- **Nesterov Accelerated Gradient (NAG).**
- Adaptive learning rates methods:
 - Idea is to perform larger updates for infrequent params and smaller updates for frequent params, by accumulating previous gradient values for each parameter.
 - **Adagrad:**
 - Divide update by sqrt of sum of squares of past gradients.
 - **Adadelta.**
 - **RMSProp.**
 - **Adaptive Moment Estimation** (Adam)
AdaGrad

• Optimized for problems with sparse features.

• Per-parameter learning rate: make smaller updates for params that are updated more frequently:

\[w_i = w_i - \eta \frac{g_{t,i}}{\sqrt{\epsilon + G_{t,i}}} \]

where \(G_{t,i} = \sum_{\tau=1}^{t} g_{\tau,i}^2 \)

\[g_{t,i} = \frac{\partial J(w)}{\partial w_i} \]

• Require less tuning of the learning rate compared with SGD.
RMSProp

- Element-wise gradient: \(g_i^t = \nabla_{w_i} J(w_t) \)
- Gradient is \(g_t = [g_1^t, g_2^t, \ldots, g_K^t] \)
- Element-wise square gradient: \(g_t^2 = g_t \circ g_t \)

RMSProp:

\[
E_t[g^2] = \gamma E_{t-1}[g^2] + (1 - \gamma) g_t^2
\]

\[
w_{t+1} = w_t - \frac{\eta}{\sqrt{E_t[g^2] + \epsilon}} g_t
\]

\(\gamma \) is usually set to 0.9, \(\eta \) is set to 0.001
Adam: Adaptive Moment Estimation

• Maintain an exponentially decaying average of past gradients (1st m.) and past squared gradients (2nd m.):

1) \(\mathbf{m}_t = \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \mathbf{g}_t \)

2) \(\mathbf{v}_t = \beta_1 \mathbf{v}_{t-1} + (1 - \beta_1) \mathbf{g}_t^2 \)

• Biased towards 0 during initial steps, use bias-corrected first and second order estimates:

1) \(\hat{\mathbf{m}}_t = \frac{\mathbf{m}_t}{1 - \beta_1^t} \)

2) \(\hat{\mathbf{v}}_t = \frac{\mathbf{v}_t}{1 - \beta_2^t} \)
Adam: Adaptive Moment Estimation

- First and second moment:
 \[m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t \]
 \[v_t = \beta_1 v_{t-1} + (1 - \beta_1) g_t^2 \]
- Bias-correction:
 \[\hat{m}_t = \frac{m_t}{1 - \beta_1^t} \text{ and } \hat{v}_t = \frac{v_t}{1 - \beta_2^t} \]

Adam:

\[w_{t+1} = w_t - \frac{\eta}{\sqrt{\hat{v}_t + \epsilon}} \hat{m}_t \]
Visualization

- Adagrad, RMSprop, Adadelta, and Adam are very similar algorithms that do well in similar circumstances.
 - Insofar, **Adam** might be the best overall choice.
Variants of Gradient Descent

$$w^{\tau+1} = w^{\tau} - \eta \nabla J(w^{\tau})$$

- Depending on how much data is used to compute the gradient at each step:
 - **Batch gradient descent:**
 - Use all the training examples.
 - **Stochastic gradient descent** (SGD).
 - Use one training example, update after each.
 - **Minibatch gradient descent.**
 - Use a constant number of training examples (minibatch).
Batch Gradient Descent

- Sum-of-squares error:

\[
J(w) = \frac{1}{2N} \sum_{n=1}^{N} (h_w(x^{(n)}) - t_n)^2
\]

\[
w^{\tau+1} = w^{\tau} - \eta \nabla J(w^{\tau})
\]

\[
w^{\tau+1} = w^{\tau} - \eta \frac{1}{N} \sum_{n=1}^{N} (h_w(x^{(n)}) - t_n) x^{(n)}
\]
Stochastic Gradient Descent

- Sum-of-squares error:

\[J(w) = \frac{1}{2N} \sum_{n=1}^{N} (h_w(x^{(n)}) - t_n)^2 = \frac{1}{2N} \sum_{n=1}^{N} J(w^\tau, x^{(n)}) \]

\[w^{\tau+1} = w^\tau - \eta \nabla J(w^\tau, x^{(n)}) \]

\[w^{\tau+1} = w^\tau - \eta (h_w(x^{(n)}) - t_n) x^{(n)} \]

- Update parameters \(w \) after each example, sequentially:

 \(\Rightarrow \) the least-mean-square (LMS) algorithm.
Batch GD vs. Stochastic GD

• Accuracy:
• Time complexity:
• Memory complexity:
• Online learning:
Batch GD vs. Stochastic GD
Pre-processing Features

• Features may have very different scales, e.g. $x_1 = \text{rooms}$ vs. $x_2 = \text{size in sq ft}$.

 – **Right** (*different scales*): GD goes first towards the bottom of the bowl, then slowly along an almost flat valley.
 – **Left** (*scaled features*): GD goes straight towards the minimum.

![Diagram illustrating GD optimization in different scales](image-url)
Feature Scaling

• Scaling between [0, 1] or [-1, +1]:
 – For each feature x_j, compute min_j and max_j over the training examples.
 – Scale $x^{(n)}_j$ as follows:

• Scaling to standard normal distribution:
 – For each feature x_j, compute sample μ_j and sample σ_j over the training examples.
 – Scale $x^{(n)}_j$ as follows:
Implementation: Gradient Checking

• Want to minimize $J(\theta)$, where θ is a scalar.

• Mathematical definition of derivative:

$$\frac{d}{d\theta} J(\theta) = \lim_{\varepsilon \to \infty} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2\varepsilon}$$

• Numerical approximation of derivative:

$$\frac{d}{d\theta} J(\theta) \approx \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2\varepsilon} \quad \text{where } \varepsilon = 0.0001$$
Implementation: Gradient Checking

- If \(\theta \) is a vector of parameters \(\theta_i \),
 - Compute numerical derivative with respect to each \(\theta_i \).
 - Aggregate all derivatives into numerical gradient \(G_{\text{num}}(\theta) \).

- Compare numerical gradient \(G_{\text{num}}(\theta) \) with implementation of gradient \(G_{\text{imp}}(\theta) \):

\[
\frac{\|G_{\text{num}}(\theta) - G_{\text{imp}}(\theta)\|}{\|G_{\text{num}}(\theta) + G_{\text{imp}}(\theta)\|} \leq 10^{-6}
\]