HW Assignment 6 (Due date: April 14, 9:00am)

1. [Divide & Conquer, 15 points] You are given an infinite array $A[\cdot]$ of integers in which the first n elements are in sorted order and the rest of the cells are filled with ∞. You are not given the value of n. Describe an algorithm that takes x as input and finds a position in the array containing x, if such a position exists, in $O(lgn)$ time.

2. [Greedy, 10 + 5 points] There are n customers that need to be served in a restaurant. The restaurant can service only one customer at a time. For each customer i, the service time required is t_i. Design a greedy algorithm that finds an ordering of the customers that minimizes the total waiting time of the n customers. Analyze its time complexity and prove its correctness.

 For example, if 4 customers with service times $t_1 = 17, t_2 = 20, t_3 = 6, t_4 = 12$ are serviced in this order, the total waiting time will be $0 + 17 + (17 + 20) + (17 + 20 + 6)$. Find an ordering that minimizes the waiting time.

3. [Dijkstra’s SSSP, 10 points] Exercise 24.3-2, page 663.

4. [Dijkstra’s SSSP, 10 points] Exercise 24.3-3, page 663.

5. [SSSP, 15 points] Exercise 24.3-6, page 663.

7. (*) [Dijkstra’s SSSP, 10 points] Exercise 24.3-4, page 663.