Lecture 6 CS6800 Artificial Intelligence:

- Admissibility of A*
- Additional properties of A^{*}
- Comparison of A* algorithms
- "More Informed" algorithms
- The monotone restriction
- Heuristic power of evaluation functions
- Non A* heuristics
- Related Algorithms
- Measures of Performance

A property of the nodes selected by A*

The f value of a node selected for expansion is never greater than the cost $f^{*}(s)$ of an optimal path.
To prove this theorem, let n be any node selected for expansion by A^{*}. If n is a goal node, we have:

$$
f(n)=f^{*}(s)
$$

by RESULT 4.

Suppose n is not a goal node. Now A* selected n before termination, so that at this time we know there existed on OPEN some node n^{\prime} on an optimal path from s to a goal node with:

$$
f\left(n^{\prime}\right) \leq f^{*}(s)
$$

If $n=n^{\prime}$, our result is established. Otherwise, we know that A^{*} chose to expand n rather than n^{\prime}; therefore it must have been the case that:

$$
f(n) \leq f\left(n^{\prime}\right) \leq f^{*}(s)
$$

which leads to:

RESULT 5:

For any node n selected for expansion by A*,

$$
f(n) \leq f^{*}(s)
$$

Comparison of A^{*} algorithms

- the larger the h the greater the heuristic knowledge.
- $h(n)=0$ reflects complete absence of any heuristic information; even though such an estimate leads to an admissible algorithm.

How can we use A^{*} for this problem?

2	8	3
1	6	4
7		5
7	6	5

What would be your choice for an evaluation function? What should the arc costs be?

- One possibility: $h(n)=0, g(n)=d(n)$.
- Second possibility: Let's think of a more intelligent choice for the heuristic function.

Suppose we try $W(n)$

Where $W(n)$ is the number of tiles out of place.
Will this satisfy the A^{*} constraints?
Lets now look at a comparison of these two possibilities.

What does this say about the efficiency of the two algorithms?

- It appears that the A^{*} procedure with $h(n)=W(n)$ leads to a smaller expansion of the search graph than with $h(n)=0$.
Does this mean that this algorithm is more efficient?
Based on the above observations, we could say that the larger the $h(n)$ the more informed the A^{*} algorithm.

Formal Definition of "More Informed"

If we have two A^{*} algorithms A_{1} and A_{2} :

$$
\begin{array}{ll}
\mathrm{A}_{1}: & f_{1}(n)=g_{1}(n)+h_{1}(n) \\
\mathrm{A}_{2}: & f_{2}(n)=g_{2}(n)+h_{2}(n)
\end{array}
$$

where h_{1} and h_{2} are both lower bounds on h^{*}.
If $h_{2}(n)>h_{1}(n) \forall$ non-goal nodes n, we say A_{2} is more informed than A_{1}.

Properties of more informed algorithms

 We will now show that if A_{2} is more informed than A_{1}, then A_{1} will expand at least as many nodes as A_{2}. Furthermore, we will show that if a node n was expanded by A_{2}, then it will also be expanded by A_{1}, but not necessarily vice versa.We will use induction to prove this result, induction on the depth of a node in the A_{2} search tree at termination.

Proof cont.

Base case: if A_{2} expands a node n at depth zero, then so will A_{1}. Why?

Now we will assume that A_{1} expands all the nodes expanded by A_{2} having depth k, or less, in \boldsymbol{A}_{2} 's search tree. We must show that any node n that is expanded by A_{2} and is of depth $k+1$ in \boldsymbol{A}_{2} 's search tree is also expanded by A_{1}.

By the induction hypothesis, any ancestor of n in the A_{2} search tree, is also expanded by A_{1}.

Since node n can only have more parents in the A_{1} search graph compared to the A_{2} search graph, the following must be true:

$$
g_{1}(n) \leq g_{2}(n)
$$

We will now use proof by contradiction to show our result. We will assume that A_{1} does not expand node n, while A_{2} does.

At termination for A_{1}, node n must be on OPEN. Why? Therefore:

$$
f_{1}(n) \geq f^{*}(s)
$$

Thus,

$$
g_{1}(n)+h_{1}(n) \geq f^{*}(s)
$$

But we know a relation with $g_{1}(n)$, thus:

$$
h_{1}(n) \geq f^{*}(s)-g_{2}(n)
$$

By RESULT 5, since A_{2} expanded node n, we have:

$$
f_{2}(n) \leq f^{*}(s)
$$

But $f_{2}(n)=g_{2}(n)+h_{2}(n)$, thus
$g_{2}(n)+h_{2}(n) \leq f^{*}(s)$
$h_{2}(n) \leq f^{*}(s)-g_{2}(n)$
$\therefore h_{2}(n) \leq h_{1}(n)$
But this violates an assumption! Which one?
Thus node n must also be expanded by A_{1}.

RESULT 6

If A_{1} and A_{2} are two versions of A^{*} such that A_{2} is more informed than A_{1}, then at the termination of their searches on any graph having a path from s to a goal node, every node expanded by A_{2} is also expanded by A_{1}.

It follows that A_{1} expands at least as many nodes as does A_{2}.

The Monotone Restriction

One of the inefficiencies of the current method is that if we come to a node that is already on OPEN, then we must check if the pointer at this node should be redirected.
If we run into a node that is already on CLOSED we have even more work in checking all its descendents.
This leads us to ask the following question:
Are there any heuristic functions that would give us the best (least cost) path to the successor of a node on the very first try?

Monotone Heuristic Functions

With such heuristic methods, the very first time the node n is made explicit by expansion, of all the possible paths between s and n on the implicit search graph, we will already have the best possible path on the search tree - never to be altered as the search continues.

Such heuristic functions must satisfy the monotone restriction.

Monotone Restriction

The monotone restriction says that for all nodes n_{i} and n_{j}, such that n_{j} is a successor of n_{i},

$$
h\left(n_{i}\right)-h\left(n_{j}\right) \leq c\left(n_{i}, n_{j}\right)
$$

with $h(t)=0$.

Similarity to the Triangle Inequality

We can rewrite this restriction in the form:

$$
h\left(n_{i}\right) \leq c\left(n_{i}, n_{j}\right)+h\left(n_{j}\right)
$$

This makes it look more like the triangle inequality, which says that the distance between any two points must not be less than the distance if measured along a path that passes through a third point.

Examples

In the 8 -puzzle, $h(n)=W(n)$, the number of tiles out of place. Does this satisfy the monotone restriction?

Examples cont.
What about $h(n)=0$?

Note: if the function h is changed in any manner during the search process, then the monotone restriction might not be satisfied.

A * using monotone functions
When A^{*} expands a node, it has already found an optimal path to that node.

To prove this assertion, let n be any node selected for expansion by A^{*}.

Let the sequence $\left(s=n_{0}, n_{1}, \ldots, n_{k}=n\right)$ be an optimal path from s to n on the search graph.

Proof cont.

For any pair of nodes, n_{i}, and n_{i+1} on the optimal path sequence shown on the previous figure, the following is true due to the monotone restriction:

$$
g^{*}\left(n_{i}\right)+h\left(n_{i}\right) \leq g^{*}\left(n_{i}\right)+c\left(n_{i}, n_{i+1}\right)+h\left(n_{i+1}\right)
$$

But

$$
g^{*}\left(n_{i+1}\right)=g^{*}\left(n_{i}\right)+c\left(n_{i}, n_{i+1}\right)
$$

Why?

Therefore,

$$
g^{*}\left(n_{i}\right)+h\left(n_{i}\right) \leq g^{*}\left(n_{i+1}\right)+h\left(n_{i+1}\right)
$$

By transitivity,

$$
g^{*}\left(n_{l+1}\right)+h\left(n_{l+1}\right) \leq g^{*}\left(n_{k}\right)+h\left(n_{k}\right)
$$

But n_{l+1} is on the optimal path to n. Therefore for this node, $g^{*}\left(n_{l+1}\right)=g\left(n_{l+1}\right)$. Thus,

$$
f\left(n_{l+1}\right) \leq g^{*}\left(n_{k}\right)+h\left(n_{k}\right)
$$

We also know that for any node n in the search tree $g^{*}(n) \leq g(n)$. Thus,

$$
g^{*}\left(n_{k}\right)+h\left(n_{k}\right) \leq g\left(n_{k}\right)+h\left(n_{k}\right)=f\left(n_{k}\right)
$$

Thus,

$$
f\left(n_{l+1}\right) \leq f\left(n_{k}\right)
$$

But node n_{k} or n was selected to be expanded before node n_{l+1} ! Thus,

$$
f\left(n_{l+1}\right)=f\left(n_{k}\right)
$$

or, finally

$$
g(n)=g^{*}(n)
$$

RESULT 7

If the monotone restriction is satisfied, then A^{*} has already found an optimal path to any node it selects for expansion. That is, if A^{*} selects n for expansion, and if the monotone restriction is satisfied, then
$g(n)=g^{*}(n)$.

