Lecture 6 C56800 Artificial Intelligence:
* Admissibility of A*

* Additional properties of A”

e Comparison of A™ algorithms

e “More Informed” algorithms

e The monotone restriction

e Heuristic power of evaluation functions

e Non A” heuristics

e Related Algorithms

* Measures of Performance
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A property of the nodes selected by A’

The f value of a node selected for expansion is
never greater than the cost f*(s) of an optimal

path.

To prove this theorem, let #n be any node
selected for expansion by A*. If n is a goal node,
we have:

f(n) = f*(s)
by RESULT 4.
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Suppose 1 is not a goal node. Now A* selected n
before termination, so that at this time we know
there existed on OPEN some node 1’ on an
optimal path from s to a goal node with:

fn') < f(s)

If n = n’, our result is established. Otherwise, we
know that A* chose to expand n rather than n’;
therefore it must have been the case that:

fn) < f(n’) < f(s)
which leads to:
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RESULT b5:

For any node 7 selected for expansion by A,

fin) < f(s)
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Comparison of A" algorithms

e the larger the i the greater the heuristic
knowledge.

* h(n) =0 retlects complete absence of any
heuristic information; even though such an
estimate leads to an admissible algorithm.
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How can we use A’ for this problem?

21813 11213
1164 =p 8 4
7 5 7165

What would be your choice for an evaluation
function? What should the arc costs be?

* One possibility: h(n) =0, ¢(n)=d(n).

e Second possibility: Let’s think of a more
intelligent choice for the heuristic function.
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Suppose we try W(n)
Where W(n) is the number of tiles out of place.
Will this satisfy the A* constraints?

Lets now look at a comparison of these two
possibilities.
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What does this say about the efficiency
of the two algorithms?

e [t appears that the A* procedure with
h(n) = W(n) leads to a smaller expansion of
the search graph than with h(n) = 0.

Does this mean that this algorithm is more
efficient?

Based on the above observations, we could say
that the larger the h(n) the more informed the A*
algorithm.
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Formal Definition of “More Informed”

If we have two A™ algorithms A; and A»:
Ay fin)=g,n)+h(n)
Ay fo(n)=g4n)+hyn)

where & ; and h, are both lower bounds on h*.

It hy(n) > h,(n) V non-goal nodes n, we say A, is
more informed than A ;.
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Properties of more informed algorithms

We will now show that if A, is more informed
than A, then A; will expand at least as many
nodes as A,. Furthermore, we will show that if
a node n was expanded by A,, then it will also
be expanded by A, but not necessarily vice
versa.

We will use induction to prove this result,
induction on the depth of a node in the A,

search tree at termination.
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Proof cont.

Base case: if A, expands a node # at depth zero,
then so will A;. Why?

Now we will assume that A; expands all the
nodes expanded by A, having depth k, or less,
in A,’s search tree. We must show that any node
n that is expanded by A, and is of depth

k+11in A,’s search tree is also expanded by A;.
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By the induction hypothesis, any ancestor of 7 in
the A, search tree, is also expanded by A;.
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Since node n can only have more parents in the
A, search graph compared to the A, search

graph, the following must be true:

81(1) = gAn)

We will now use proof by contradiction to show
our result. We will assume that A; does not

expand node 1, while A, does.

At termination for A, node n must be on OPEN.
Why? Therefore:

fi(n) = f(s)
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Thus,
g/n)+h(n)=f(s)

But we know a relation with ¢,(n) , thus:

hn) =zf(s)—gyn)

By RESULT 5, since A, expanded node n, we
have:

f(n) < f(s)
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But fo(n) = go(1) + ho(n), thus
gn) + hyn) < f(s)
hon) < f(s) — gon)
 hon) s hy(n)

But this violates an assumption! Which one?

Thus node n must also be expanded by A;.
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RESULT 6

If A; and A, are two versions of A* such that A,
is more informed than A, then at the

termination of their searches on any graph
having a path from s to a goal node, every node
expanded by A, is also expanded by A;.

It follows that A; expands at least as many
nodes as does A,.
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The Monotone Restriction

One of the inefficiencies of the current method is that if we
come to a node that is already on OPEN, then we must check
if the pointer at this node should be redirected.

If we run into a node that is already on CLOSED we have
even more work in checking all its descendents.

This leads us to ask the following question:

Are there any heuristic functions that would give us the best
(least cost) path to the successor of a node on the very first
try?
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Monotone Heuristic Functions

With such heuristic methods, the very first time
the node n is made explicit by expansion, of all
the possible paths between s and # on the
implicit search graph, we will already have the
best possible path on the search tree - never to
be altered as the search continues.

Such heuristic functions must satisfy the
monotone restriction.
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Monotone Restriction

The monotone restriction says that for all nodes
n; and 1, such that njis a successor of 1;,
h(?”li) — h(n]) = C(Tli, n])

with h(t) = 0.
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Similarity to the Triangle Inequality

We can rewrite this restriction in the form:
h(n;) < c(n;, n]-) + h(n]-)

This makes it look more like the triangle
inequality, which says that the distance between
any two points must not be less than the
distance if measured along a path that passes
through a third point.
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Examples

In the 8-puzzle, h(n) = W(n), the number of tiles
out of place. Does this satisfy the monotone
restriction?
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Examples cont.

What about h(n) = 0?

Note: if the function & is changed in any manner
during the search process, then the monotone
restriction might not be satisfied.
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*
A using monotone functions

When A” expands a node, it has already found
an optimal path to that node.

To prove this assertion, let n be any node
selected for expansion by A*.
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Let the sequence (s =ny 1y, ..., n = n) be an
optimal path from s to n on the search graph.
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Proof cont.

For any pair of nodes, n;, and #n; , ; on the

optimal path sequence shown on the previous
figure, the following is true due to the monotone
restriction:

9*(n;) + h(n;)) = ¢g*(n;) + c(n;, n; , ) + hn; , ;)
But
§'(m;, =g () +cln, n;, 4

Why?

CS6800 Advanced Topics in Al Lecture 6 -27- ©2014 David M. Chelberg



Therefore,

g(ny) + h(ny) =g*(n; , ) + h(n; , 1)
By transitivity,

8y 4 ) +hng, =g (m)+hing)

But n; , ; is on the optimal path to n. Therefore

for this node, ¢*(n; , ) = g(n; , ;) . Thus,
fny 4 1) =g (ny) + hiny)
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We also know that for any node # in the search
tree ¢*(n) < g(n). Thus,

g (ny) + h(ny) < g(ny) + h(ny) = f(ny)
Thus,
f(nl + 1) Sf(nk)

But node n; or n was selected to be expanded
before node n; , ;! Thus,

f(nl + 1) =f(nk)

or, finally
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g(n) =g*(n)
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RESULT 7

If the monotone restriction is satisfied, then A*
has already found an optimal path to any node
it selects for expansion. That is, if A* selects n
for expansion, and if the monotone restriction is
satisfied, then

g(n) =g*(n).
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