

CS6800 Advanced Topics in AI Lecture 5 -1- ©2014 David M. Chelberg

Lecture 5 CS6800 Artificial Intelligence:
• Breadth First Search
• Heuristic Graph Search
• Algorithm A
• Algorithm A*
• Admissibility of A*

CS6800 Advanced Topics in AI Lecture 5 -2- ©2014 David M. Chelberg

Heuristic Search Procedures
Characteristics of uninformed search methods:
• Exhaustive
• Expands many nodes
Heuristic information may be used to order the exploration
of the search graph through the use of an evaluation
function that gives the measure of the “promise” of a node.
The choice of this function critically determines the search
results. A function that underestimates the promise of a
node may not find a minimum cost path, while one that
overestimates the promise may expand too many nodes.

CS6800 Advanced Topics in AI Lecture 5 -3- ©2014 David M. Chelberg

Algorithm A
We will now consider different evaluation functions and
develop theoretical results about the performance of
GRAPH-SEARCH under these functions.
Let’s define the evaluation function f so that its value, f(n), at
any node n estimates the sum of the cost of the minimal cost
path from the start node s to node n plus the cost of the
minimal cost path from node n to a goal node.
f(n) estimates the minimum cost of a path from the start
node to a goal node, with the path constrained to go through
node n.

CS6800 Advanced Topics in AI Lecture 5 -4- ©2014 David M. Chelberg

The Evaluation Function f(n)
We will order the nodes on OPEN in such a way that the
node with the least value of f is at the head, and therefore
expanded next.
We define h*(n) to be the actual cost of a minimal cost path
from node n to any of the goal nodes.
g*(n) is the actual cost of a minimal cost path from the start
node to node n.
Then f*(n) may be defined as the actual cost of a minimal cost
path from the start node to a goal node through node n.

CS6800 Advanced Topics in AI Lecture 5 -5- ©2014 David M. Chelberg

The Evaluation Function f(n)
Clearly,

 f*(n) = g*(n) + h*(n)

Note that when n = s, then g*(s) = 0, and f*(s) = h*(s).
We desire f to be an estimate of f*. We can express this
estimate as:

 f(n) = g(n) + h(n)

CS6800 Advanced Topics in AI Lecture 5 -6- ©2014 David M. Chelberg

The Evaluation Function cont.
In the GRAPHSEARCH procedure, we will use for g(n) the
cost of the path from s to n in the search tree.
Note that at a given instant, g(n), may not equal g*(n). Why?
However, the following relation holds:

 g(n) ≥ g*(n)
For h(n) we will use heuristic information about the problem
domain. We call h, our estimate of h*(n), the heuristic
function.

CS6800 Advanced Topics in AI Lecture 5 -7- ©2014 David M. Chelberg

Algorithm A
A GRAPHSEARCH procedure using an evaluation function
f(n) as defined above, for ordering the nodes on OPEN is
called Algorithm A.
If we use an h(n) that is a lower bound on h*(n), then the
GRAPHSEARCH procedure is called Algorithm A*.
A function h(n) is a lower bound on h*(n) if:

 h(n) ≤ h*(n) ∀ nodes n.

CS6800 Advanced Topics in AI Lecture 5 -8- ©2014 David M. Chelberg

Examples of h(n)
For example, h ≡ 0 is definitely a lower bound on h*(n). If
h(n) = 0, and g(n) = d(n), the depth of node n, we will
obtain the breadth-first version of the algorithm.
Therefore, the breadth-first GRAPHSEARCH procedure is a
special case of Algorithm A*.

Can you think of a definition of f that would produce a
depth-first search?

CS6800 Advanced Topics in AI Lecture 5 -9- ©2014 David M. Chelberg

Admissibility
We will now show that procedures of type A* are
guaranteed to find a minimal cost path to a goal node,
assuming a path exists.
An algorithm is admissible if, for any graph, it always
terminates in an optimal path s to a goal node whenever
such a path exists.
We must first show that an algorithm terminates whenever a
goal node is accessible from the start node.
RESULT 1: GRAPHSEARCH always terminates for finite
graphs.

CS6800 Advanced Topics in AI Lecture 5 -10- ©2014 David M. Chelberg

Termination for infinite graphs
If a path to a goal node exists, we will now show that A*
will terminate even in infinite graphs.
Termination may be prevented only if new nodes are forever
added to OPEN. If this were the case, however, the f values
of the nodes would grow in an unbounded manner.

CS6800 Advanced Topics in AI Lecture 5 -11- ©2014 David M. Chelberg

Infinite Graph Example

CS6800 Advanced Topics in AI Lecture 5 -12- ©2014 David M. Chelberg

Another Example

CS6800 Advanced Topics in AI Lecture 5 -13- ©2014 David M. Chelberg

We can express what we have learned from the above
graphs more formally as follows. Let d*(n) be the length of
the shortest path in the implicit graph being searched from s
to any node n in the search tree produced by A*.
We now make use of the assumption that the cost of every
arc is greater than some small number e. In particular:

 g*(n) ≥ d*(n)e,
 g(n) ≥ g*(n), therefore

 g(n) ≥ d*(n)e,
Also, we know f(n) ≥ g(n) (Why?)

 Therefore, f(n) ≥ d*(n)e

CS6800 Advanced Topics in AI Lecture 5 -14- ©2014 David M. Chelberg

What does this say about nodes?
For each node n on OPEN, the corresponding value of f is at
least as large as d*(n)e. For an infinite subgraph, the
associated f values will become arbitrarily large.
Now we must show that there are nodes whose costs do not
become arbitrarily large. We must show that there are
always nodes, leading to a solution, that have bounded costs.

CS6800 Advanced Topics in AI Lecture 5 -15- ©2014 David M. Chelberg

More formally, before the termination of A*, there is always
a node n on OPEN which belongs to the solution path, and
for which f(n) ≤ f*(s).

Let the ordered sequence s = n0 ,n1,…,nk(), where nk is the
goal node, be an optimal path from s to a goal node.

Let n’ be the first node from the sequence that is on OPEN.
One such node must be on OPEN. Why?

CS6800 Advanced Topics in AI Lecture 5 -16- ©2014 David M. Chelberg

For this node n’ we have:

 f(n’) = g(n’) + h(n’)
Now we also know that:

 g(n’) = g*(n’)
Why?
Therefore,

 f(n’) = g*(n’) + h(n’)
Now since we are assuming the restriction on h, that for all
n, h(n) ≤ h*(n),

 f(n’) ≤ g*(n’) + h*(n’)

CS6800 Advanced Topics in AI Lecture 5 -17- ©2014 David M. Chelberg

But this implies:

 f(n’) ≤ f*(n’)
But we know n’ is on the solution path, so:

 f*(n’) = f*(s)
Thus we have derived:

 f(n’) ≤ f*(s)
Why does this matter? How can we make use of this result?

CS6800 Advanced Topics in AI Lecture 5 -18- ©2014 David M. Chelberg

Final result about termination on infinite graphs
The unboundedness of the f values for nodes corresponding
to the infinite subgraph and the boundedness of the f values
for nodes that lie on the solution path proves that A* will
terminate.
Along the way we have established the following two
important results:

CS6800 Advanced Topics in AI Lecture 5 -19- ©2014 David M. Chelberg

RESULT 2: At any time before A* terminates, there exists in
OPEN a node n’ that is on an optimum path from s to a goal
node, with:

 f(n’) ≤ f*(s)
RESULT 3: If there is a path from s to a goal node, then A*
terminates.
In particular we have shown that if there is such a path that
A* will terminate by finding that path! What we still need
to show is the path found by A* is an optimal path.

CS6800 Advanced Topics in AI Lecture 5 -20- ©2014 David M. Chelberg

Optimality of Path by A*
Suppose that A* were to terminate at some goal node t
without finding an optimal path, that is:

 f(t) = g(t) > f*(s)
By RESULT 2, there existed just before termination a node n’
on OPEN, and on an optimal path with:

 f(n’) ≤ f*(s) < f(t)
Why is this a contradiction?

CS6800 Advanced Topics in AI Lecture 5 -21- ©2014 David M. Chelberg

Optimality of Path by A*
Finally we get:

RESULT 4: Algorithm A* is admissible.

That is, if there is a path from s to a goal node, A* terminates
by finding an optimal path.

