

CS6800 Advanced Topics in AI Lecture 4 -1- ©2014 David M. Chelberg

Lecture 4 CS6800 Artificial Intelligence:
• Graph/Tree terminology
• A general graph-search procedure
• Uninformed graph-search procedures
• Depth-first search
• Breadth-first search

CS6800 Advanced Topics in AI Lecture 4 -2- ©2014 David M. Chelberg

Terminology cont.
• Often it is convenient to assign costs to arcs, to represent

the cost of applying the corresponding rule to a database.
 c(ni ,nj) denotes the cost of an arc directed from node ni

to node nj . For mathematical reasons, sometimes we
wish to guarantee that all c(ni ,nj) are bounded below
by some small positive constant e.

• The cost of a path between two nodes is the sum of the
costs of all the arcs connecting the nodes on the path.

CS6800 Advanced Topics in AI Lecture 4 -3- ©2014 David M. Chelberg

• The object of the graph-search method is to find a path
(perhaps having minimal cost) between a member of a
given set of start nodes {si}, representing the initial
databases, and a member of a set of nodes {ti} that
represent databases satisfying the termination condition.

• The set {ti} is called the goal set, and each node t in {ti}
is called a goal node.

• The set {si} is called the start set, and each node s in {si}
is called a start node.

CS6800 Advanced Topics in AI Lecture 4 -4- ©2014 David M. Chelberg

Implicit and Explicit Graphs
A graph may be specified explicitly, or implicitly. A control
strategy is supposed to make explicit a part of an implicitly
specified graph. The implicit specification is given by the
start node and the rules that alter databases.
Let us define a successor operator that when applied to a
node generates all its successors and the costs of the
associated arcs.
The process of applying the successor operator is called
expanding.

CS6800 Advanced Topics in AI Lecture 4 -5- ©2014 David M. Chelberg

A General Graph-Search Procedure
1. Create a search graph, G, consisting solely of the start

node, s. Put s on a list called OPEN.

2. Create a list called CLOSED that is initially empty.

3. LOOP: if OPEN is empty, exit with failure.

4. Select the first node on OPEN, remove it from OPEN, and
put it on CLOSED. Call this node n.

5. If n is a goal node, exit successfully. The solution is the
path along the pointers from n to s in G.

6. Expand node n, generating the set M, of its successors
and install them as successors of n in G.

CS6800 Advanced Topics in AI Lecture 4 -6- ©2014 David M. Chelberg

7. Establish a pointer to n from those members of M that
were not already in G. Add these members of M to
OPEN. For each member of M that was already in G,
decide whether or not to redirect its pointer to n. For
each member of M already on CLOSED, decide for each
of its descendents in G whether or not to redirect its
pointer.

8. Reorder the list OPEN.

9. Go LOOP.

CS6800 Advanced Topics in AI Lecture 4 -7- ©2014 David M. Chelberg

Example of 7.

CS6800 Advanced Topics in AI Lecture 4 -8- ©2014 David M. Chelberg

Example cont.

CS6800 Advanced Topics in AI Lecture 4 -9- ©2014 David M. Chelberg

Description of Algorithm
• We are simultaneously creating two things: the search

graph G, and a search tree, that we will denote by T.
• The search tree is specified by the pointers of step 7 in the

above algorithm.
• Every path to a node is saved in G, a unique path to any

node is stored on T.

CS6800 Advanced Topics in AI Lecture 4 -10- ©2014 David M. Chelberg

We will now detail step 7

CS6800 Advanced Topics in AI Lecture 4 -11- ©2014 David M. Chelberg

After expansion the graph becomes:

CS6800 Advanced Topics in AI Lecture 4 -12- ©2014 David M. Chelberg

Uninformed Graph-Search Procedures
In the above algorithm, where does information come into
the process?
Suppose we have no domain knowledge of the search
process. In this case we must make an arbitrary choice. The
resultant procedure is called uninformed. There are two very
well known types of uninformed search procedures:

•
•

CS6800 Advanced Topics in AI Lecture 4 -13- ©2014 David M. Chelberg

Depth-first Search
The nodes on OPEN in step 8 of our algorithm are ordered in
descending order of their depth in the search tree: the
deepest nodes are put first in the list, and nodes of equal
depth are ordered arbitrarily.
Lets look at an example:

CS6800 Advanced Topics in AI Lecture 4 -14- ©2014 David M. Chelberg

Example cont.

CS6800 Advanced Topics in AI Lecture 4 -15- ©2014 David M. Chelberg

Example cont.

CS6800 Advanced Topics in AI Lecture 4 -16- ©2014 David M. Chelberg

Depth Bound
Another important feature to incorporate in the above
procedure is a depth-bound. This would prevent the
solution from running away along some fruitless path
forever.
Note: if the depth-bound is too stringent, you may never
discover the solution.
Does this algorithm remind you of some other one we have
already studied?
Which one is generally better? Why?

CS6800 Advanced Topics in AI Lecture 4 -17- ©2014 David M. Chelberg

Breadth-first Search
We now look at the opposite ordering scheme, nodes in
breadth-first search are ordered in increasing order of their
depth in the search tree.

CS6800 Advanced Topics in AI Lecture 4 -18- ©2014 David M. Chelberg

Example cont.

CS6800 Advanced Topics in AI Lecture 4 -19- ©2014 David M. Chelberg

Example cont.

CS6800 Advanced Topics in AI Lecture 4 -20- ©2014 David M. Chelberg

Heuristic Search
We will next consider intelligent search procedures. These
procedures provide information to the search process in the
form of heuristics.

