

CS6800 Advanced Topics in AI Lecture 3 -1- ©2014 David M. Chelberg

Lecture 3 CS6800 Artificial Intelligence:
• Search Strategies for Production Systems
• Backtracking Strategies
• Cycle Avoiding Backtracking Strategies
• Graph-Search Strategies

CS6800 Advanced Topics in AI Lecture 3 -2- ©2014 David M. Chelberg

Search Strategies
Tentative control strategies are also called search strategies
because at any instant we do not know precisely which rule
we should apply to the database. For the next few days we
will look at different varieties of search strategies, and their
properties.

CS6800 Advanced Topics in AI Lecture 3 -3- ©2014 David M. Chelberg

Backtracking Strategies
We start with an empirical observation:
For problems requiring only a small amount of search,
backtracking control strategies are often perfectly adequate
and efficient.
We will now consider a recursive procedure that captures
the essence of the operation of a production system under
backtracking control.

CS6800 Advanced Topics in AI Lecture 3 -4- ©2014 David M. Chelberg

A Backtracking Procedure
The procedure BACKTRACK takes one argument, DATA,
the initial global database.
Upon successful termination, the procedure returns a list of
rules that if applied in sequence to the initial database,
produces a database satisfying the termination condition.

CS6800 Advanced Topics in AI Lecture 3 -5- ©2014 David M. Chelberg

Recursive procedure BACKTRACK(DATA)
1. If TERM(DATA), return NIL;
2. If DEADEND(DATA), return FAIL;
3. RULES ← APPRULES(DATA);
4. LOOP: if NULL(RULES), return FAIL;
5. R ← FIRST(RULES);
6. RULES ← TAIL(RULES);
7. RDATA ← R(DATA);
8. PATH ← BACKTRACK(RDATA);
9. if PATH = FAIL, go LOOP;
10. return CONS(R, PATH);

CS6800 Advanced Topics in AI Lecture 3 -6- ©2014 David M. Chelberg

Backtracking and the 4 Queens!
We will now apply this procedure to the 4-queens problem.
We must therefore specify the TERM and DEADEND
predicates, and the APPRULES function.
The procedure BACKTRACK specifies the control strategy,
we must also specify the production rules and termination
condition.
The 4-queens problem is akin to the 8-queens problem. It
consists of placing a queen in each row of a 4x4 chessboard
so that none can capture any other.

CS6800 Advanced Topics in AI Lecture 3 -7- ©2014 David M. Chelberg

The 4-Queens Problem

Consider the following board:
The initial database will consist of an empty board.
To satisfy the termination condition, we must have modified
the database with four queens such that none can capture
any other.

CS6800 Advanced Topics in AI Lecture 3 -8- ©2014 David M. Chelberg

The production rules:
For 1! i, j ! 4 :

Ri, j :
 Precondition:
 i = 1: There are no queens in the array
 1< i ! 4: There is a queen in row i !1
 Effect:
 Puts a queen in row i, column j.

CS6800 Advanced Topics in AI Lecture 3 -9- ©2014 David M. Chelberg

DEADEND, APPRULES
We will define the predicate DEADEND so that it is
satisfied for databases with queen marks in mutually
capturing positions.
We will at this time, specify the APPRULES by saying that
the Ri, j comes before Ri,k if j < k

 To start we must begin with the top row. Why?
So we order the rules for the first row. R1,1, R1,2 , R1,3, R1,4

So we choose R1,1 to get:

CS6800 Advanced Topics in AI Lecture 3 -10- ©2014 David M. Chelberg

This brings us to step 8 in our algorithm.
Now what rules are applicable?
Which rule will be chosen?
What is the resultant state?

What will happen next?

CS6800 Advanced Topics in AI Lecture 3 -11- ©2014 David M. Chelberg

Graphically:

CS6800 Advanced Topics in AI Lecture 3 -12- ©2014 David M. Chelberg

Efficiency of Uninformed Backtracking
How efficient do you think this method is?
How often will backtracking occur?
It occurs 22 times before a solution is found.
Backtracking must go all the way back to the start node, and
change the first rule to R1,2 .

Why does this backtracking occur?

CS6800 Advanced Topics in AI Lecture 3 -13- ©2014 David M. Chelberg

Heuristics
Is there a better way of ordering the rules to be considered?
What might make a good heuristic?
Well, first lets consider what caused the problems in the first
case.

CS6800 Advanced Topics in AI Lecture 3 -14- ©2014 David M. Chelberg

A good heuristic
We can associate with any rule Ri, j a constant di, j that is the
length of the longest diagonal passing through the cell (i, j).
What does this quantity measure?
We will order the rules according to:
 A rule Ri, j will be applied before another rule Ri,k if:

 di, j < di,k
 Lets now look at the power of this heuristic.

CS6800 Advanced Topics in AI Lecture 3 -15- ©2014 David M. Chelberg

Heuristic Search

CS6800 Advanced Topics in AI Lecture 3 -16- ©2014 David M. Chelberg

Cycle-avoiding backtracking algorithm
Remember the 8-puzzle. One condition for backtracking
was our creating a state that was previously occurring on the
solution path.
The procedure BACKTRACK is not capable of detecting the
occurrence of such cycles in the database. To avoid cycles, a
backtracking procedure must check the current database
with all databases on the solution path. To accomplish this,
the entire chain of databases must be an argument to the
procedure. The following procedure also incorporates a
depth bound.

CS6800 Advanced Topics in AI Lecture 3 -17- ©2014 David M. Chelberg

Procedure BACKTRACK1(DATALIST)
1. DATA ← FIRST(DATALIST);
2. if MEMBER(DATA, TAIL(DATALIST)), return FAIL;
3. If TERM(DATA), return NIL;
4. If DEADEND(DATA), return FAIL;
5. if LENGTH(DATALIST) > BOUND, return FAIL;
6. RULES ← APPRULES(DATA);
7. LOOP: if NULL(RULES), return FAIL;
8. R ← FIRST(RULES);
9. RULES ← TAIL(RULES);
10. RDATA ← R(DATA);
11. RDATALIST ← CONS(RDATA, DATALIST);
12. PATH ← BACKTRACK1(RDATALIST);
13. if PATH = FAIL, go LOOP;
14. return CONS(R, PATH);

CS6800 Advanced Topics in AI Lecture 3 -18- ©2014 David M. Chelberg

Graph-Search Strategies
In backtracking control, the system effectively forgets any
trial paths that end in failures. Only the path currently being
extended is stored explicitly.
A more flexible procedure would involve the explicit storage
of all trial paths so that any of them could be candidates for
further extension.
Consider the following case:

CS6800 Advanced Topics in AI Lecture 3 -19- ©2014 David M. Chelberg

Graph-Search
In order to achieve this kind of flexibility, a control system
must keep explicit track of a graph of databases linked by
rule applications. Control schemes that use this approach
are called graph-search strategies.
We can think of a graph-search control strategy as a means
of finding a path in a graph from a node representing the
initial database to one representing a database that satisfies
the termination condition of the production system.

CS6800 Advanced Topics in AI Lecture 3 -20- ©2014 David M. Chelberg

Graph Notation
• A graph consists of a set of nodes.
• Certain pairs of nodes are connected by arcs.
• In a directed graph, these arcs are directed from one

member of a pair to another.

CS6800 Advanced Topics in AI Lecture 3 -21- ©2014 David M. Chelberg

Terminology cont.
• If an arc directed from node ni to node nj, then node ni is

said to be a parent of node nj and node nj is said to be a
successor of ni.

• A tree is a special case of a graph in which each node has
at most one parent.

• A node in the tree having no parent is the root node.
• A node in the tree having no successors is called a tip

node or terminal node.
• The root node is defined to be at depth zero.
• The depth of any other node in the tree is defined to be

the depth of its parent plus 1.

CS6800 Advanced Topics in AI Lecture 3 -22- ©2014 David M. Chelberg

Graph node terminology
• A sequence of nodes ni1,ni2 ,…,nik(), with nij a

successor of ni, j!1 for j = 2,…,k , is called a path of
length k !1 from node ni1 to node nik .

• If a path exists from node ni to node nj , then node nj is

said to be accessible from node ni .

CS6800 Advanced Topics in AI Lecture 3 -23- ©2014 David M. Chelberg

Graph terminology cont.
• If nj is accessible from node ni , then node nj is a

descendent of node ni , and node ni is an ancestor of node
nj .

• For our purposes, nodes correspond to databases, and
arcs to rules. The problem of finding a sequence of rules
transforming one database into another is equivalent to
finding a path in the graph.

