
RICE UNIVERSITY

Electrical & Computer Engineering Department

YY AA CC SS II MM
Reference Manual

Version 2.1

March 1993

J. Robert Jump
ECE Dept., Rice University

P.O. Box 1892
Houston, TX 77251-1892

email: jrj@rice.edu
Phone: (713) 527-8101 ext. 3576

This manual describes a simulator that has not been thoroughly tested and may
contain bugs. Suggestions, criticisms, questions, or reports of any problems,
errors, or bugs with the manual or the simulator are welcome and encouraged.
Please send them to J. R. Jump at the above address.

ii

Copyright 1993 by Rice University
Houston, Texas

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any research purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation, and that the name of Rice University not be used in advertising
or in publicity pertaining to distribution of the software without specific,
written prior permission. The inclusion of this software or its documentation in
any commercial product without specific, written prior permission is
prohibited.

Rice University disclaims all warranties with regard to this software, including
all implied warranties of merchantability and fitness. In no event shall Rice
University be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from loss of use, data or profits, whether in an
action of contract, negligence or other tortious action, arising out of or in
connection with this use or performance of this software.

Credits

YACSIM is derived from XSIM, a C++ discrete event simulator written by J.
R. Jump. XSIM was influenced by, and is a significant enhancement of CSIM,
a discrete event simulator developed at Rice University by Richard Covington.
J. B. Sinclair wrote the YACSIM random number generator code and the
machine dependent code for context switching on the IBM RISC/SYSTEM
6000 and the SPARC architectures. J. R. Jump wrote the other YACSIM code.

iii

TABLE OF CONTENTS

Table of Contents iii

1. Introduction 1
1.1. Simulation Objects 1
1.2. Using Simulation Objects 2
1.3. The functions main() and UserMain() 3
1.4. Command Line Arguments 3
1.5. Compiling YACSIM Simulations 4

2. Activities 5
2.1. Operations Common to All Activities 5
2.2. Processes 10
2.3. Events 14

3. Queues 19
3.1. Semaphores 19
3.2. Barriers 21
3.3. Flags 22
3.4. Conditions and State Variables 24
3.5. Resources 28
3.6. Queue Statistics 32

4. Statistics Records & Random Numbers 33
4.1. Point and Interval Statistics Records 33
4.2. Random Number Generation 37

5. The Simulation Driver 39
5.1. The Driver 39
5.2. The Event List 40

6. Debugging 43
6.1. Warning Messages 43
6.2. Error Messages 45
6.3. Tracing 48

Appendix 1: Defined Symbols 50

Appendix 2: Summary of Operations 51

Appendix 3: Alphabetical Operation List 54

1

1. INTRODUCTION

YACSIM is a discrete-event simulation language based on the C programming language. It is
implemented as a collection of data structures and a library of C subroutines that can be linked
with any program written in C. Extending an existing language by adding discrete-event
simulation routines is a common approach. The main advantages of this over designing a
completely new language are that the user can write most of the code of a simulation in a well-
known and widely-used language, and a new compiler is not required. A user who knows the
base language only needs to learn how to use the simulation library routines in order to write
simulation programs.

There are at least two other simulation languages based on the C programming language, both
called CSIM. One was developed at Rice University as part of a parallel processing testbed,
and the other was developed at MCC in Austin, TX. YACSIM is Yet Another CSIM that has
features in common with both of these. It is more closely related to the Rice CSIM and was
developed to replace that language for the parallel processing performance work at Rice.

This manual describes the simulation routines in the YACSIM library. It does not give details
of their implementation except in a few cases where such knowledge would be helpful for
improving the efficiency or accuracy of a simulation. The presentation assumes that the reader
is familiar with the C programming language. It also assumes a familiarity with discrete-event
simulation including both event-driven and process-oriented techniques. The manual gives the
minimal amount of information needed to use the simulators. It is not a tutorial, since it has
very few examples and most of the descriptions are brief. On the other hand, it should provide
sufficient information for an experienced C programmer to write simulations in the YACSIM
language.

1.1. SIMULATION OBJECTS

The YACSIM extensions to C are organized as a set of objects, each with an underlying data
structure and a set of operations for manipulating that structure. These objects will be called
simulation objects in this manual. There are several types of simulation objects, and the user
can declare multiple instances of each.

We group the simulation objects into three categories: activities, queues, and statistics records.
Activities model the active components of a simulation. They account for the passage of time
and modify the state of a simulation. There are two types of queues, those used for
synchronization and those used to model resources. We use the term queue for this group of
objects because they all contain an internal queue to hold waiting activities. Statistics records
simplify the collection and presentation of information generated by a simulation.

There are two types of activities: events and processes. They are used to represent activity in a
simulated system. Some simulation languages only have events for this purpose, and the only
way a simulation can advance time is to schedule an event to occur at some time in the future.
These languages are called event-driven. Simulation languages that are based on processes are
said to be process-oriented. In process-oriented simulations, the processes can account for the
passage of time by delaying themselves for some time interval. In general, event-driven
simulators are more efficient than those that are process-oriented. On the other hand, process-
oriented simulators are usually thought to be easier and more natural to use. Since YACSIM
has both events and processes, the user can write either event-driven or process-oriented
simulations or can mix the two. Furthermore, YACSIM is implemented so that the extra
overhead of process-oriented simulation is not incurred unless processes are used.

Introduction 2

The queues used for synchronization are semaphores, barriers, flags, and conditions. They are
used to delay the progress of a process or the occurrence of an event until some conditions are
met. A process or event waits in the internal queues of these objects until this happens.
Semaphores, barriers, and flags are similar to synchronization objects found in many parallel
programming languages and operating systems. Conditions are a generalized form of these
other three. They use expressions involving simulation objects called state variables. There
are two types of state variables: integer state variables and floating point state variables.

Resources are included to simplify the simulation of queuing systems consisting of queues
and servers. In these systems, processes request service from a resource server. If all servers
are busy, the process waits in the resource's internal queue until one becomes free. The order
in which processes are removed from a resource queue is determined by rules called the
resource's queuing discipline. Several common queuing disciplines are implemented.

There is only one type of statistics record. It is a simulation object that can be used to collect
information about a simulated system. The statistics records in YACSIM work on sequences
of weighted values sent them during a simulation. They can be used to compute the mean,
variance, max, min, and histogram of such a sequence. Operations for displaying the
information collected by statistics records are provided. They can be used to generate a report
in a standard form, or to construct one in a user-defined format.

In addition to the procedures used to manipulate the simulation objects, there are a few other
procedures provided to control the simulation. The user uses these to initiate the execution of a
simulation, to reset the simulator for another run, and to interrupt the simulator during a
simulation.

1.2. USING SIMULATION OBJECTS

A simulation object consists of a data structure and operations that can be used to manipulate
that data structure. YACSIM has been implemented to encourage the user to perform all
manipulation of these data structures through the operations provided for that purpose. The
details of the data structures are hidden from the user and should not be needed to use the
simulation objects. This approach is a standard feature of object oriented systems and is
generally viewed as a desirable way to structure programs. Unfortunately, C does not have the
ability to hide global names from the user. Therefore, all internal YACSIM global names begin
with the characters "YS__". To avoid name conflicts, the user should avoid using any names
that start this way.

All of the simulation object operations access the simulation objects through pointers. For each
object there is an operation that creates a new instance of the object and returns a pointer to it.
Since these operations perform necessary initialization of the objects, the user should always
use them when a new object is needed.

For each simulation object, a new data type (implemented as a C typedef) is available to the
user. These new types are summarized in the following table. Although the IVAR and FVAR
objects do not contain queues, we have grouped them with the queue objects, since they are
only used with conditions that do contain queues. Since all access to the objects should be
through the operations provided by YACSIM, and they only work on pointers to the objects,
the user should only declare pointers to these new data types instead of declaring instances of
them. These pointers must then be initialized with the operation that creates and returns a
pointer to a new object of that type.

Introduction 3

Activities Queues Statistics Records

PROCESS SEMAPHORE STATREC
EVENT BARRIER

FLAG
CONDITION
 IVAR
 FVAR
RESOURCE

Table 1. Simulation Object Types

1.3. THE FUNCTIONS main() AND UserMain()

Unlike standard C programs, your program must not contain the function main(). In its place,
you must use a function called UserMain(). The function main() is in the simulation library.
As usual, it will be called to start the simulation. It will perform several initializations and then
call the function UserMain(). When UserMain() terminates, it will return to main() which will
also terminate. The usual way to get a simulation started is to create one or more events or
processes and schedule them from within UserMain(). Then transfer to the driver using the
DriverRun() operation (see Chapter 5).

1.4. COMMAND LINE ARGUMENTS

There are some pre-defined command line arguments that can be used to control certain aspects
of a simulation. They are stripped off by the simulator at the start of a simulation and used to
control the display of messages at the beginning and end of a simulation, the level of program
tracing, and the type of event list that will be used. If used, they must appear at the very
beginning of the list of command line arguments. The pre-defined command line arguments
are listed below:

+ti sets the level of trace output produced to i. Tracing is explained in Section 6.3.
The default level is 0, which turns off all tracing.

+bi Sets the number of bins for the event list's calendar queue to i. If i = 1, a
simple sequential search event list will be used instead of the calendar queue.
The calendar queue implementation of the event list is described in Section 5.2.
The default event list is a calendar queue with automatic bin sizing.

+wx Sets the bin size for the event list's calendar queue to x. The calendar queue
implementation of the event list is described in Section 5.2. The default event
list is a calendar queue with automatic bin sizing.

+l Selects the simple linear linked list implementation of the event list. Using this
argument has exactly the same effect as the +b1 argument.

-h Suppresses messages at the beginning and end of a simulation.

-i Suppresses the printing of all unique ID numbers in the trace output. The
number 0 is printed instead. The ability to do this is sometimes useful during
debugging for comparing two traces for similar simulations where the unique
ID is different for almost all objects, but there are few other differences.

Introduction 4

Once the pre-defined control arguments have been read and processed, all the remaining
command line arguments are passed to UserMain() unchanged. They are accessed using argc
and argv in the same way command line arguments are accessed in main().

1.5. COMPILING YACSIM SIMULATIONS

To compile a simulation program under the UNIX operating system, you need access to two
files, sim.h and yacsim.o. The file sim.h should be included in all the files that make up your
program. It contains useful pre-defined symbols, declarations of all the YACSIM operations
available to the user, and definitions of the simulation object types. The file yacsim.o is the
library of all YACSIM operations.

To compile a simulation program, use a command line of the form:

cc "your options for the compiler" "your files" yacsim.o

You may include any options you want for the C compiler such as -g, -o, etc. To use this
command, you must put sim.h and yacsim.o where the compiler can find them, for example in
the same directory as the source code for the simulation program, or use full path names for
them.

An alternative way to compile a simulation program is to use a command line of the form:

yacsim "your options for the compiler" "your files"

To use this form, both sim.h and yacsim.o, along with the command file yacsim, must all be in
the same directory, and that directory must have been passed to the command program yacsim
when it was compiled. The full name of this directory must be on your search path.

5

2. ACTIVITIES

There are two types of activities: processes and events. When you create a process or event,
you assign it a user-defined C procedure that specifies its action. We call this procedure the
body of the process or event.

The main difference between a process and an event is that the body of a process can
temporarily suspend execution, while the body of an event can not. That is, once the body of
an event starts executing, it must continue until it terminates. As a result, processes can have a
lifetime that extends over a period of simulation time, while an event occurs at one instant in
simulation time. Simulation time can advance during the lifetime of a process, but not while
the body of an event executes.

An important characteristic common to both types of activities is that you can schedule them to
"happen" in the future. You do this by specifying the conditions which must be met for the
activity to happen. Once scheduled, the activity is in limbo until these conditions are met. At
that time it starts executing its body.

This chapter describes the properties and uses of the two types of YACSIM activities.
Processes and events are scheduled in the same way. Therefore, we will describe the
scheduling operations and those other operations that are common to all activities in Section
2.1. Sections 2.2 and 2.3 describe those features that are unique to processes and events,
respectively.

2.1. OPERATIONS COMMON TO ALL ACTIVITIES

There are five different ways to specify the conditions that determine when an activity will
happen. You can schedule an activity to happen:

1. after a given time delay,
2. when a given semaphore value is positive,
3. when a given flag is set,
4. when a given condition holds, or
5. after a requested amount of service from a resource.

There is a separate scheduling operation for each of these five ways to schedule an activity.

The detailed operation of semaphores, flags, conditions, and resources is the subject of a later
chapter. For now, it is not necessary to know how to change semaphore values or to set flags
in order to discuss the scheduling of events. For the following discussion, it is also sufficient
to know that a condition is defined by an expression that is either true or false. If this
expression is true, we say that the condition holds. Resources contain a queue of activities
waiting for service and one or more servers. The order in which activities waiting in a
resource's queue receive service from its server(s) is determined by the resource's queuing
discipline.

You can schedule an activity at any point in a program that has access to the activity. In
particular, you can schedule it from within the body of a process or event as well as from
within code segments that are not part of any activity. If you schedule an activity from within a
process, this can have one of the following three effects on that process:

Activities 6

1. It can cause the scheduling process to suspend until the scheduled activity
terminates. In this case we say that the scheduling process is blocked
waiting for the activity to terminate.

2. It can link the scheduled activity with other activities scheduled by the same
process. We say that all such linked activities are forked by the process.
Later, the scheduling process can execute a "join" operation that will cause
it to suspend until all of its forked activities have terminated. The process
that performs a forking schedule is called the parent of the activities it
forks, and the forked activities are called children of the parent process.

3. Finally, the action of an activity scheduled by a process need not have any
effect on the process. In this case, we say that the scheduled activity and
the scheduling process are independent.

Processes terminate when their bodies terminate. The suspension of a process is not a
termination. Events normally terminate when their bodies terminate (i.e., the body routine
returns). However, an event can be designated as non-deleting, in which case it can be
scheduled multiple times before it terminates. These events are not viewed as terminated by a
forking or blocked parent process until they are converted to a deleting type event as explained
in Section 2.3.

It is frequently useful to pass an argument to an activity when it is scheduled. This is similar to
passing arguments to subroutines. YACSIM uses the operations ActivitySetArg(),
ActivityGetArg(), and ActivityArgSize() for this purpose.

Operations:

The following five scheduling operations all use the arguments aptr that points to the activity to
be scheduled and blkflg to specify the effect of a scheduled activity's termination on a
scheduling process as described above. A non-deleting event (defined in the section on events
below) may reschedule itself by calling the schedule operation from within its body with a
NULL aptr argument. The pre-defined symbol ME can also be used for aptr in this case.
Otherwise, aptr must point to some activity or the simulator will generate an error message and
terminate. The allowable values for blkflg are INDEPENDENT, BLOCK, and FORK.
Scheduling a forked or blocking activity (i.e., blkflg = BLOCK or FORK) other than from
within the body of a process will generate an error message and terminate the simulation.

void ActivitySchedTime(aptr, timeinc, blkflg)
ACTIVITY *aptr;
double timeinc;
int blkflg;

This operation schedules the activity pointed to by aptr to happen in timeinc units of
time. If timeinc is 0.0, the activity happens at the current simulation time. If it is less
than 0.0, an error termination will occur.

void ActivitySchedSema(aptr, semptr, blkflg)
ACTIVITY *aptr;
SEMAPHORE *semptr;
int blkflg;

This operation schedules the activity pointed to by aptr on the semaphore pointed to by
semptr. If that semaphore is positive at the time the activity is scheduled, then the
activity is initiated immediately and the semaphore value decremented. If the

Activities 7

semaphore's value is less than or equal to zero, the initiation of the activity is delayed
until the semaphore becomes positive. See the section on semaphores below for a
description of what happens when several activities are waiting at a semaphore when it
becomes positive.

void ActivitySchedFlag(aptr, flgptr, blkflg)
ACTIVITY *aptr;
FLAG *flgptr;
int blkflg;

This operation schedules the activity pointed to by aptr on the flag pointed to by flgptr.
If that flag is in the set state at the time the activity is scheduled, then the activity is
initiated immediately and the flag is cleared. If the flag is in the cleared state when the
activity is scheduled, the initiation of the activity is delayed until a FlagSet() or
FlagRelease() operation is performed on the flag. At that time all activities waiting on
that flag are initiated.

void ActivitySchedCond(aptr, condptr, blkflg)
ACTIVITY *aptr;
CONDITION *condptr;
int blkflg;

This operation schedules the activity pointed to by aptr on the condition pointed to by
condptr. If that condition holds (i.e., has value TRUE) at the time the activity is
scheduled, then the activity is initiated immediately. If the condition does not hold
(i.e., has value FALSE) when the activity is scheduled, the initiation of the activity is
delayed until the condition does hold. At that time all activities waiting on that
condition are initiated.

void ActivitySchedRes(aptr, rptr, timeinc, blkflg)
ACTIVITY *aptr;
RESOURCE *rptr;
double timeinc;
int blkflg;

This operation schedules the activity pointed to by aptr for timeinc units of service from
the resource pointed to by rptr. The activity will wait in the resource's queue for its
turn to use one of the resource's servers.

The following operations are used to set and access the arguments of an activity. The argument
aptr points to that activity. If a process or event uses any of these operations with aptr equal to
NULL or ME, it sets or accesses its own argument. Otherwise, aptr must point to an activity
or the simulation will terminate with an error message.

void ActivitySetArg(aptr, argptr, argsize)
ACTIVITY *aptr;
char *argptr;
int argsize;

The variable argptr can point to an arbitrary structure and argsize is the size of that
structure in bytes. Execution of this operation passes this pointer to the activity pointed
to by aptr. Note that this operation only passes a pointer to the process, not a value.
Therefore, when the process accesses the argument pointed to by this pointer, it will get
the value of the argument at the time it is accessed, and this may not be the same as its
value when the argument was set.

Activities 8

char *ActivityGetArg(aptr)
ACTIVITY *aptr;

This operation returns a pointer to the arguments of the activity pointed to by aptr. It is
usually executed within the body of a process or event (with aptr = NULL or ME), and
is the way these activities access their arguments. The activity must know what is
pointed to by this pointer and use a cast to change the pointer from a character pointer.
Moreover, this operation will return the value of the argument at the time the operation
is executed, and this may not be the same as its value when the argument pointer was
set.

int ActivityArgSize(aptr)
ACTIVITY *aptr;

This operation returns the size of the argument of the activity pointed to by aptr. A
return value of -1 means the size is unknown.

The following two operations provide an activity with a way to get a pointer to itself and to its
parent, if it has one.

ACTIVITY *ActivityGetMyPtr()

This operation returns a pointer to the currently active activity. It must be called from
within the body of a process or an event, and it returns a pointer to that process or
event.

ACTIVITY *ActivityGetParPtr()

This operation returns a pointer to the parent of the currently active activity. It must be
called from within the body of a process or an event. If that process or event has been
scheduled with its block flag set to FORK (i.e., if the activity is the child of some
parent process), the operation returns a pointer to the parent process. Otherwise it
returns a NULL pointer.

Statistics can be collected on the states of an activity over its lifetime. The following operations
are used to activate this feature and to access the collected statistics. As with other operations
on activities, these operations can be called from within the body of a process or an event by
setting the pointer aptr to NULL or ME. Note that when an activity terminates its associated
statistics record is deleted.

void ActivityCollectStats(aptr)
ACTIVITY *aptr;

This operation activates statistics collection for the activity pointed to by aptr. It does
this by creating a statistics record (see Chapter 4) that records the time the activity
spends in each state. The possible states are:

Processes and Events:

LIMBO - The activity has just been created.
READY - The activity is ready to execute its body, but has not yet started.
RUNNING - The activity is executing its body.
DELAYED - The activity is scheduled for activation in the future.
WAIT_SEMAPHORE - The activity is waiting for a semaphore to go positive.
WAIT_FLAG - The activity is waiting for a flag to be set.
WAIT_CONDITION - The activity is waiting for a condition to hold.

Activities 9

WAIT_RESOURCE - The process is in a resource queue.
USING_RESOURCE - The process is being served by a resource.

Processes only:

BLOCKED - The process is waiting for an activity it scheduled to occur.
WAIT_JOIN - The process is waiting for its forked activities to finish.
WAIT_BARRIER - The process is waiting at a barrier.
WAIT_MESSAGE - The process is blocked waiting for a message.

void ActivityStatRept(aptr)
ACTIVITY *aptr;

This operation prints a report on the statistics of the activity pointed to by aptr. This
report will give the time and the percentage of the total time that the activity spends in
each state.

STATREC *ActivityStatPtr(aptr)
ACTIVITY *aptr;

This operation returns a pointer to the statistics record associated with the activity
pointed to by aptr. Chapter 4 describes the various operations that can be performed on
a statistics record once you have a pointer to it.

Examples:

ActivitySchedTime(procptr, 0.0, INDEPENDENT);

Schedule the independent process pointed to by procptr to start immediately.

ActivitySchedTime(procptr, 4.5, INDEPENDENT);

Schedule the independent process pointed to by procptr to start in 4.5 time units.

ActivitySchedSema(procptr, semptr, BLOCK);

Schedule the process pointed to by procptr to start when the semaphore pointed to by
semptr is positive, and then suspend the calling process until the scheduled process
terminates. This blocking form of ActivitySchedSema() can only be invoked by a
process.

ActivitySchedCond(procptr, condptr, FORK);

Fork the process pointed to by procptr to start when the condition pointed to by
condptr holds. This forking form of ActivitySchedCond() can only be invoked by a
process.

ActivitySchedFlag(evptr, flgptr, INDEPENDENT);

Schedule the independent event pointed to by evptr to occur when the flag pointed to
by flgptr is set.

ActivitySchedTime(ME, 18.4, INDEPENDENT);

If this operation is executed from within a non-deleting event's body, then that event
will be rescheduled to occur in 18.4 time units. Execution from any place other than
from within a non-deleting event body is an error.

Activities 1 0

ActivitySchedTime(evptr, 0.0, BLOCK);

Schedule the event pointed to by evptr to occur immediately and then suspend the
calling process until the event occurs.

float x = 5.4;
ActivitySetArg(procptr, &x, sizeof(float));

A pointer to a floating point argument with value 5.4 is passed to the process
pointed to by procptr.

float y = *((float*)ActivityGetArg(ME));

If this statement is executed from within the body of the process pointed to by
procptr in the previous example, it will set y to the value 5.4. The cast is necessary
to prevent a C compile time warning message.

Comments:

Although the scheduling operations work for both types of activities, not all possibilities of
scheduling activities make sense. For example, you can not fork or schedule a blocking
process from any place except within the body of a process, since processes are the only
objects that can suspend.

Once you have scheduled a process, you can not schedule it again. However, under certain
conditions, you can schedule an event any number of times. For example, you can reschedule
a non-deleting event once it occurs. Attempts to schedule a process more than once or an event
that has not yet occurred will generate error messages. Section 2.3 discusses the conditions for
rescheduling events in more detail.

It would probably be preferable to pass arguments to processes and events on a stack in the
same way they are passed to subroutines. While we could do this for processes, events do not
have a stack until they occur, and there is no other convenient place to put their arguments. In
order to treat both processes and events as uniformly as possible, we have chosen this
somewhat more cumbersome way of passing arguments using ActivitySetArg(),
ActivityGetArg(), and ActivityArgSize().

If you only need one integer argument, the best way to pass it is to set the argument pointer to
NULL and the argument size to the value of the argument to be passed. The process can then
access this argument with the ActivityArgSize() operation. This is similar to passing the
argument on a stack, since a value is passed instead of a pointer to a value. A situation where
this is very useful is when you want to create several processes with the same body by using a
loop. In this case it is difficult to give each process a different name or to pass a different
argument value to each one using argument pointers. If you need some way of distinguishing
between the different processes, passing a single integer that is incremented for each process
created is a simple way to do this.

2.2. PROCESSES

Process-oriented simulators use processes to model the components of a simulated system.
The usual approach to writing such a simulation is to identify the main components of the
system to be simulated, and then, for each one, design a process to simulate its behavior. An
important characteristic of processes is that they can model the behavior of components that
operate concurrently. The simulator coordinates the advancement of simulation time as the
processes execute in a way that accounts for this concurrent behavior.

Activities 1 1

Another important characteristic of processes is that their execution can be suspended and then
resumed at a later simulation time. This is one way that the passing of time is modeled during a
simulation. For example, a process can delay itself for a given time increment by executing a
"delay" operation. This halts the execution of the process and puts it on a list of delayed
processes. When simulation time advances by the amount of the time increment, the process is
removed from this list and its execution restarted at the point of interruption. Processes can
also delay their execution until some other process performs some specified action. The main
mechanisms for this second type of delay are the synchronization and resource objects
described in Chapter 3.

For each YACSIM process the user must specify a procedure that defines its behavior. We call
this procedure the body of the process. It can be any C procedure that returns void (i.e., does
not return a value) and has no arguments. You must specify its body when you create a
process, and you can not change it after that. You can create several processes that use the
same procedure as their bodies.

Operations:

PROCESS *NewProcess(pname, bodyname, stksz)
char *pname
func bodyname;
int stksz;

This operation creates a new process and returns a pointer to it. The argument pname is
a user-specified name for the process that is used in debugging traces. Func is a
typedef specifying a pointer to a function that returns void and has no arguments.
Bodyname is any pointer to such a function (i.e., the name of the function). Each
process has its own private stack, and the argument stksz specifies the size of this stack
in bytes. If stksz is 0 or the pre-defined symbol DEFAULTSTK, a default stack size
will be used.

void ProcessSetStkSz(stksz)
int stksz;

The simulator has a built in default stack size that should be satisfactory for most
simulations. This operation allows the user to change that default value to stksz. The
operation must be executed at the very beginning of a simulation, before the operation
NewProcess() is called for the first time. Otherwise, it will print a warning message
and leave the default stack size unchanged.

void ProcessDelay(timeinc)
double timeinc;

You can only invoke this operation from within the body of a process. Its execution
causes the suspension of the process for timeinc units of simulation time. If the
argument is 0.0, the process execution is halted and other processes scheduled for
execution at the same time are allowed to continue. If there are no other such
processes, the process continues immediately. This option gives the programmer a
little control over the order that processes scheduled for the same time will actually
execute on a uniprocessor. A negative time increment is not allowed.

void ProcessSleep()

You can only invoke this operation from within the body of a process. Its execution
causes the suspension of that process for an indefinite amount of simulation time. The

Activities 1 2

only way to wake up a sleeping process is to schedule it using one of the activity
scheduling operations.

void ProcessJoin()

This is an operation used for synchronization with forked activities. You can only
invoke it from within the body of a process. Once executed it will suspend the calling
process until all activities forked by that process are finished. That is, all forked
processes must have terminated and all forked events must have occurred. Once this
happens, the suspended process continues with the next instruction in its body. If there
are no outstanding forked activities when ProcessJoin() is executed, the process
continues without interruption.

void ProcessSetPriority(procptr, p)
PROCESS *procptr;
double p;

This operation sets the priority of the process pointed to by procptr to p. Priorities are
only used when a process requests service from a resource. Resources are explained in
Section 3.5. If ProcessSetPriority() is called from within the body of a process with
procptr = NULL or ME, that process sets its own priority.

Activities can send messages to processes. These messages are similar to the messages found
in many message-based operating systems. Activities use the operation ProcessSendMsg() to
deliver messages to a process. Once a message has been delivered, it waits in a queue with
other messages delivered to the same process. A process must explicitly receive each delivered
message (taking it out of the queue) with a separate invocation of ProcessReceiveMsg().

void ProcessSendMsg(dest, buf, bytes, blkflg, type)
PROCESS *dest;
char *buf;
int bytes;
int blkflg;
int type;

This operation can only be called from within the body of an activity. It creates a
message consisting of bytes characters taken from the buffer pointed to by buf and
delivers it to the process pointed to by dest. It also assigns the message a type equal to
the argument type. This must be an integer greater than or equal to 0 or an error
termination of the simulation will occur. The allowable values for blkflg are BLOCK
and NOBLOCK. If blkflg equals BLOCK, this operation will not return until the
message has been delivered to, and received by, the destination process. Setting blkflg
to NOBLOCK will allow the operation to return as soon as the message has been
delivered to the destination process. If buf is NULL or bytes is 0, a null message (i.e.,
one with no contents) is sent. Null messages are only used for synchronization, not to
send information.

int ProcessReceiveMsg(buf, bytes, blkflg, type, sender)
char *buf;
int bytes;
int blkflg;
int type;
PROCESS *sender;

A process uses this operation to receive delivered messages. Since only processes can
receive messages, you can only invoke the operation from within the body of a

Activities 1 3

process. The operation receives a message by moving the message contents into a
buffer pointed to by buf. If the size of the message is less than or equal to the argument
bytes, all the characters in the message are copied into the buffer, and the operation
returns the number of characters received. If the message is larger than bytes, only its
first bytes characters will be moved, and the operation will return the value -2. The
remaining characters of the message can be obtained with subsequent calls to
ProcessReceiveMsg(). If the operation returns 0, then a null message was received. A
blocking sender will not be released until the entire message it sent has been received.
The arguments type and sender can be used to restrict the type and origin of the
message that will be received. Type must match the type of the message as set by the
sender, and sender must match a pointer to the sending process, before a message will
be received. The operation will search the entire queue of delivered messages, in the
order of their delivery, looking for the first one that matches these arguments. The pre-
defined symbols ANYTYPE and ANYSENDER may be used to accept messages of
any type and from any sending process. If the value of blkflg is BLOCK, and there no
messages available that match the type and sender arguments, then the calling process
will suspend until one is delivered. If blkflg is NOBLOCK and no such message has
been delivered, then ProcessReceiveMsg() will return the value -1.

int *ProcessCheckMsg(type, sender)
int type;
PROCESS *sender;

A process can use this operation to check whether or not it has a message of type type
from the process pointed to by sender in its queue of delivered messages. It can only
be used from within the body of a process. It returns -1 if there are no delivered
messages of the indicated type and sender waiting to be received. If there is such a
message, the operation returns the size of the message.

Examples:

procptr1 = NewProcess("SW1", switch, DEFAULTSTK);

This statement creates a new process with the default stack size and with the function
switch as its body and the character string "SW1" as its name. The variable procptr1
must have been previously declared as a pointer to PROCESS, and switch must be
the name of a function with no arguments and no return value.

procptr2 = NewProcess("SW2", switch, 1000);

This statement creates a second process with the same body function as the previous
one, but with a 1000 byte stack.

ProcessDelay(10.3);

This statement delays the calling process for 10.3 units of time. Note that this must
be called only from within a process.

ProcessJoin();

The calling process waits for all forked activities to terminate.

ProcessSendMsg(prptr, sndbuf, 20, NOBLOCK, 0);

Twenty characters from the buffer pointed to by sndbuf will be sent to the process
pointed to by prptr. The operation will return as soon as the message has been
delivered, but before it has been received. The type of the message is set to 0.

Activities 1 4

ProcessSendMsg(pp, sb, 100, BLOCK, 3);

This instance of the ProcessSendMsg() operation will send a message of type 3
consisting of 100 characters from the buffer pointed to by sb to the process pointed
to by pp. It is a blocking send so that the calling process will suspend until all of
the message has been received.

i = ProcessReceiveMsg(rbuf, 1000, BLOCK, ANYTYPE, ANYSENDER);

The calling process tries to receive a message from any sender and of any type. If
there is such a message and its size is less than or equal to 1000 characters, the whole
message is copied to the buffer pointed to by rbuf, and i is set to the number of
characters in the message. if there are more than 1000 characters in the message, the
operation only copies 1000 characters to the buffer and then sets i to -2. The
remaining characters can be read by another call to Process ReceiveMsg(). If there are
no messages available, the operation will suspend until one is delivered.

i = ProcessReceiveMsg(rbuf, 250, NOBLOCK, 4, rptr);

This operation attempts to receive a message of type 4 from the process pointed to
by rptr. If none is available, it will set i to -1 and return. If there is such a message
and its size is less than or equal to 250, the whole message is copied to the buffer
pointed to by rebuf, and i is set to the number of characters in the message. if there
are more than 250 characters in the message, the operation only copies 250 characters
to the buffer and then sets i to -2. The remaining characters can be read by another
call to Process ReceiveMsg().

Comments:

It is possible to overflow a process' stack during a simulation. This usually results in the
simulation crashing for no apparent reason. It can also crash at different points if the
simulation code is changed (e.g., by putting in printf statements to find out what is happening).
A good rule to follow is to try increasing the stack size of suspect processes if there is no other
obvious reason for a crash. On some implementations the maximum size of the stack used by a
process is printed out in the debugging trace when that process terminates. Unfortunately, this
is very machine dependent and may not be implemented on some machines.

2.3. EVENTS

Events are similar to processes. When you create an event, you must assign it a body in the
same way you assign a process body. When an event occurs, the body is executed. The
significant difference is that the body of an event can not suspend execution. This means that
once an event body has started execution, it will continue until it reaches a return point. More
importantly, if the same event is activated again, it will start executing its body at the same
entry point as before. It can not remember where it stopped and restart at that point the way a
process can. To put it another way, execution of an event body is the same as a subroutine
call, where processes use coroutine linkage to implement suspensions.

The conditions for the body function of an event are the same as for a process. It must be a C
function that returns void and has no arguments. Like processes, several events can use the
same body function. When you create an event, you can designate it to be a deleting or a non-
deleting event. Just as processes are automatically deleted when they finish executing, a
deleting event is automatically deleted after it occurs. A non-deleting event, on the other hand,
is not deleted after it occurs and can be used again. Another useful feature of non-deleting
events is that they can reschedule themselves. That is, any of the activity scheduling operations
for an event can appear in the body of that event.

Activities 1 5

You can also assign a type to an event. An event's type is an arbitrary integer value that you
can assign at the time of creation or later with the event operation EventSetType(). Event types
are not currently used by the simulator; they are provided for users to use anyway they want.
For example, a user could collect statistics on event types to count the number of event
occurrences of a given type.

Operations:

EVENT *NewEvent(ename, bodyname, delflg, etype)
char *ename;
func bodyname;
int delflg;
int etype;

This operation creates a new event and returns a pointer to it. The argument bodyname
specifies the body function and ename names the object. The third argument
determines whether the event will be deleting or non-deleting. The only two possible
values for this argument are DELETE and NODELETE. The last argument is the
event's type. The event's state, used for rescheduling (see event rescheduling
operations below), is set to 0.

void EventSetType(eptr, etype)
EVENT *eptr;
int etype;

Execution of this operation sets the type of the event pointed to by eptr to etype. You
can use it to change the type of a non-deleting event before reusing it. You can invoke
it within the body of an event with eptr = NULL or ME, enabling an event to change its
own type. This probably only makes sense for non-deleting events that reschedule
themselves.

int EventGetType(eptr)
EVENT *eptr;

This is a function that returns the type of the event pointed to by eptr. You can also
invoke it from within the body of an event with eptr = NULL or ME, which allows
events to know their types.

int EventGetDelFlag(eptr)
EVENT *eptr;

This function allows the programmer to determine whether or not the event pointed to
by eptr is a deleting event by returning the value of its delete flag. You can also invoke
it from within the body of an event with eptr = NULL or ME.

The following operations allow a deleting event to reschedule itself and save its state for use
during the next occurrence of that event. The state was set to 0 when the event was created.
The saved state can be used to give an event a limited capability to suspend and resume
operation in a way similar to processes. This is illustrated in the last example below. All of
these operations are similar to the corresponding activity scheduling operations with their
activity pointer argument set to ME. The only difference is that they also save a state value and
can only be called from within a non-deleting event body.

Activities 1 6

void EventReschedTime(timeinc, stval)
double timeinc;
int stval;

If this operation is executed from within the body of a non-deleting event, it will
reschedule the event to occur again in timeinc time units and save the value stval for use
during the next occurrence. Executing the operation from anywhere other than the
body of a non-deleting event is an error.

void EventReschedSema(semptr, stval)
SEMAPHORE *semptr;
int stval;

This operation reschedules an event on a semaphore and saves the value stval for use
during the next occurrence of the event. It can only be used within the body of a non-
deleting event.

void EventReschedFlag(flgptr, stval)
FLAG *flgptr;
int stval;

This operation reschedules an event on a flag and saves the value stval for use during
the next occurrence of the event. It can only be used within the body of a non-deleting
event.

void EventReschedCond(condptr, stval)
CONDITION *condptr;
int stval;

This operation reschedules an event on a condition and saves the value stval for use
during the next occurrence of the event. It can only be used within the body of a non-
deleting event.

void EventReschedRes(resptr, timeinc, stval)
CONDITION *condptr;
double timeinc;
int stval;

This operation reschedules an event to use timeinc units of service from a resource and
saves the value stval for use during the next occurrence of the event. It can only be
used within the body of a non-deleting event.

int EventSetState(stvat)
int stval;

This operation must be executed from within the body of an event. It sets the state of
that event to stval.

int EventGetState()

This operation returns the state value saved by a previously executed event rescheduling
operation. It must be executed from within the body of an event.

void EventSetDelFlag()

This operation can only be called from within the body of an active event. If the event
is non-deleting, this operation changes it to a deleting event. It has no effect on a
deleting event. Once a non-deleting event's delete flag is set, it will terminate and be

Activities 1 7

deleted the next time it returns as a subroutine. If there were blocked parent processes
waiting for this event to terminate, they will then be released.

Examples:

evptr1 = NewEvent("PK1", packet, DELETE, 0);

This creates a new event with the function packet as its body and "PK1" as it name.
Here evptr1 is a pointer to type EVENT. The event will be a deleting event of type
0.

evptr2 = NewEvent("PK2", packet, DELETE, 0);

This creates a deleting event with the same body function as the previous one.

evp = NewEvent("SP", sndpck, NODELETE, 3);

This statement declares a non-deleting event with function sndpck as its body and 3
as its type.

EventSetType(evptr1, 6);

This sets the type of the event pointed to by evptr1 to 6.

EventSetType(ME, 1);

This is the form of the operation if it is executed within the body of the event itself.
In this way it is possible for an event to change its type and then reschedule itself.

i = EventDeleteFlag(evptr);

This sets the integer i to the value of the delete flag of the event pointed to by evptr.

j = EventGetType(evptr);

This sets the integer j to the type of the event pointed to by evptr.

eventbody() {

switch (EventGetState()) {
Case 0:

statement1
EventReschedTime(3.0, 1)
return;

Case 1;
statement2
EventReschedSema(sptr, 2)
return;

Case 2:
statement3
EventSetDelFlag()
return;

}
}

An event using this function as its body would be similar to a process that
1. executes statement1,
2. delays for 3.0 time units,
3. resumes and executes statement2,
4. waits at the semaphore pointed to by sptr,
5. resumes and executes statement3,
6. terminates.

Activities 1 8

The event must be created as a non-deleting event. The EventSetDelFlag() operation
causes the event to be deleted when it terminates the next time.

Comments:

Although there are a number of differences between processes and events, probably the most
important one is that events can be implemented more efficiently than processes. This is
because every process must have its own private stack, which must exist during the lifetime of
the process. This can severely limit the size of a simulation.

The reason for including the event rescheduling operations is to give an event some of the
appearances of a process. While it is not nearly as powerful as a process, it does not need a
separate stack. The biggest limitation of this approach to using events is that they can not
easily resume operation at a point within a subroutine called from the event's body. A process
can suspend anywhere and then easily resume execution at that point. Another limitation is that
the local variables of an event's body are not saved when the body returns, and static variables
can not be used, since different events may use the same body.

1 9

3. QUEUES

Queues are used for two purposes, to synchronize activities and to model the use of resources
by processes. There are four types of queues used for synchronization: semaphores, barriers,
flags, and conditions. They all contain a simple queue in which an activity can wait until some
synchronization condition holds. You can use them to synchronize processes and events.
Resources model the behavior of an activity when it requests service from a resource. If the
resource is busy when an activity requests service, that activity waits in the resource's queue.

3.1. SEMAPHORES

Each semaphore has a value and two special operations SemaphoreWait() and
SemaphoreSignal(). When a process executes SemaphoreWait() on a semaphore, there are two
possible results. First, if the value of the semaphore is greater than zero, that value is
decremented and the process continues. On the other hand, if the semaphore value is equal to
zero, the process suspends and enters the semaphore's internal queue at its tail. In this case,
the value of the semaphore does not change. You can only execute SemaphoreWait() within
the body of a process, because processes are the only activities that can suspend.

You can signal a semaphore from anywhere within the code of a simulation. The operation
SemaphoreSignal() first checks to see if there are any processes in the semaphore's queue. If
there are, it then removes the one at the head of the queue and restarts it at the point where it
suspended, but does not change the value of the semaphore. If there are no waiting processes,
the only effect of SemaphoreSignal() is to increment the value of the semaphore. Since
processes are removed from the head of a semaphore's queue and entered at its tail, the queue
uses a FIFO queuing discipline.

You can use the operation ActivitySchedSema() to place an activity at the tail of a semaphore's
queue. Since ActivitySchedSema() is an operation defined for all activities, its use for this
purpose was explained in Section 2.1.

Operations:

SEMAPHORE *NewSemaphore(sname, i)
char *sname;
int i;

This operation creates and returns a pointer to a new semaphore with name sname and
initial value i.

int SemaphoreInit(sptr, i)
SEMAPHORE *sptr;
int i;

This operation sets the value of the semaphore pointed to by sptr to i, if the
semaphore's queue is empty. Otherwise, it does not affect the status of the semaphore
in any way. It returns the number of activities in the semaphore's queue. Therefore,
the operation is successful if and only if it returns 0.

void SemaphoreSignal(sptr)
SEMAPHORE *sptr;

This operation removes the activity at the head of the queue of the semaphore pointed to
by sptr, if the queue is not empty. If that activity is an event, it starts executing at the

Queues 2 0

beginning of its body. If the removed activity is a suspended process it continues
executing its body at the instruction after the instance of SemaphoreWait() where it
suspended. If it is a process that entered the queue due to an invocation of
ActivitySchedSema(), it starts executing at the beginning of the process' body. If there
are no activities in the queue, this operation increments the value of the semaphore.

void SemaphoreSet(sptr)
SEMAPHORE *sptr;

This operation is similar to SemaphoreSignal() in that it removes the activity at the head
of the queue of the semaphore pointed to by sptr and treats it the same way as
SemeaphoreSignal(), if the queue is not empty. However, instead of incrementing the
semaphore value if the queue is empty, this operation sets it to 1. If its value was 1
before, it remains 1. Therefore, this operation can be used to implement binary-valued
semaphores, since its value will be either 0 or 1.

void SemaphoreWait(sptr)
SEMAPHORE *sptr;

You can only use this operation within the body of a process. If the value of the
semaphore pointed to by sptr is zero, this operation will suspend the calling process. If
the value of the semaphore is greater than zero, this operation will decrement the
semaphore's value and the process will continue executing.

int SemaphoreDecr(sptr)
SEMAPHORE *sptr;

If the value of the semaphore pointed to by sptr is greater than 0, it is decremented. If
the value is equal to 0, it is left unchanged. The operation returns the new value of the
semaphore.

int SemaphoreValue(sptr)
SEMAPHORE *sptr;

This operation returns the value of the semaphore pointed to by sptr.

int SemaphoreWaiting(sptr)
SEMAPHORE *sptr;

This operation returns the number of activities in the queue of the semaphore pointed to
by sptr.

Examples:

semptr = NewSemaphore("sem.2", 4);

This statement sets semptr to point to a new semaphore named "sem.2" with initial
value 4.

SemaphoreSignal(semptr);

This statement signals the semaphore pointed to by semptr. If there are any
activities in its queue, the one at the head is released. If not, the semaphore value is
incremented.

Queues 2 1

SemaphoreWait(semptr);

This statement can only appear in the body of a process. If the semaphore's value is
greater than zero, this operation decrements the value, and the process continues.
Otherwise, the process suspends and waits in the semaphore's queue.

Comments:

SemaphoreWait() and SemaphoreSignal() are sometimes called P and V. We have chosen not
to use these names since they are not as descriptive of the actions they perform as
SemaphoreSignal() and SemaphoreWait().

3.2. BARRIERS

Barriers implement the barrier synchronization operation found in many parallel programming
languages and operating systems. You can only use barriers to synchronize processes; you can
not use them in any way with events. Like semaphores, barriers have a value that determines
whether a process that synchronizes on it will suspend or continue. If the value of a barrier is
k, then k processes must perform a synchronization operation on the barrier before any of them
can proceed. It is used to guarantee that k concurrently executing processes all reach a
synchronization point in their code before any one of them can progress further.

Operations:

BARRIER *NewBarrier(bname, i)
char *bname;
int i;

This operation creates and returns a pointer to a new barrier. It sets the name of the
newly created barrier to bname and its value to i.

int BarrierInit(bptr, i)
BARRIER *bptr;
int i;

This operation sets the value of the barrier pointed to by bptr to i, if its queue is empty.
Otherwise, it does not affect the status of the barrier in any way. It returns the number
of processes in the barrier's queue. Therefore, the operation is successful if and only if
it returns 0.

void BarrierSync(bptr)
BARRIER *bptr;

You can only use this operation within the body of a process. It puts the calling
process in the queue of the barrier pointed to by bptr and checks to see if the number of
processes in the queue is now equal to the barrier's value. If it is, all processes waiting
in the queue, including the calling process, are removed and restarted. If not, the
calling process suspends.

int BarrierNeeded(bptr)
BARRIER *bptr;

This function returns the number of additional of processes that must perform a
BarrierSync() operation on the barrier pointed to by bptr before the barrier will release
all waiting processes. The value of the barrier pointed to by bp t r is
BarrierNeeded(bptr) + BarrierWaiting(bptr).

Queues 2 2

int BarrierWaiting(bptr)
BARRIER *bptr;

This is a function that returns the number of processes waiting at the barrier pointed to
by bptr. The value of the barrier pointed to by bptr is BarrierNeeded(bptr) +
BarrierWaiting(bptr).

Examples:

barptr = NewBarrier ("syncpt",4);

This creates a barrier named "syncpt" that can be used to synchronize four processes
and sets barptr to point to it.

i = BarrierInit(barptr, 3);

This changes the number of processes that can synchronize on the barrier pointed to
by barptr to 3, if the barrier's queue is empty. It has no effect on the barrier if its
queue is not empty. The return value i is set to the number of processes in the
barrier's queue.

BarrierSync(barptr);

This must be executed from within the body of a process. That process will suspend
unless it is the k-th process to synchronize on the barrier, where k is the value of the
barrier. If it is, all waiting processes are released.

Comments:

There is a form of non-determinism inherent in the BarrierSync() operation. To see this,
assume that the barrier needs i more processes to execute a Sync() operation before all waiting
processes are released. If more than i processes execute the Sync() at the same simulation
time, then the order in which the simulator actually executes these operations determines which
processes will be released. While there does not appear to be any obvious way to avoid this
situation, the system could check for it and issue a warning message. However, this is not
done in the current version.

Synchronization similar to barrier synchronization is possible by forking processes and waiting
for them to terminate with the operation ProcessJoin(). In one sense, this is more restrictive,
since the processes must terminate before they can synchronize. Using barriers, the processes
can synchronize any number of times before they terminate. You can also use barriers to
synchronize non-terminating processes. However you can use the fork-join synchronization
with events as well as processes, while you can only use barrier synchronization with
processes.

3.3. FLAGS

Flags are similar to barriers in that they provide a way to make several processes wait at a
synchronization point until something happens. In a barrier, all waiting processes are released
when the number of waiting processes equals the barrier value. In a flag, all waiting processes
are released by explicit operations on the flag. There are two such operations, FlagSet() and
FlagRelease(). These operations also control the state of the flag as explained in the following
section on operations. There are two possible states, set and cleared.

You can also use the operations ActivitySchedFlag() and EventReschedFlag() to place an
activity at the tail of a flag's queue. Since ActivitySchedFlag() is an operation defined for all
activities, its use for this purpose was explained in Section 2.1.

Queues 2 3

Operations:

FLAG *NewFlag(fname)
char *fname;

This operation creates and returns a pointer to a new flag. It sets the name of the flag to
fname and its state to cleared.

void FlagWait(fptr)
FLAG *fptr;

You can only invoke this operation within the body of a process. If the flag pointed to
by fptr is in the cleared state when this operation is executed, then the calling process
suspends and enters the tail of the flag's queue, and the flag remains in the cleared
state. If the flag is in the set state, then the calling process continues and the flag is
cleared.

int FlagSet(fptr)
FLAG *fptr;

This operation sets the flag pointed to by fptr. Then, if there are any activities waiting
in the flag's queue, they are removed from the queue and scheduled for execution, and
the flag is cleared. If there are no waiting activities, the flag remains set. The return
value is the number of activities released.

int FlagRelease(fptr)
FLAG *fptr;

This operation is similar to FlagSet(). Its execution releases any waiting activities and
clears the flag. However, if there are no waiting activities, FlagRelease() clears the
flag, while FlagSet() sets it. The return value is the number of activities released.

int FlagWaiting(fptr)
FLAG *fptr;

This operation returns the number of activities in the queue of the flag pointed to by
fptr.

Examples:

flagptr = NewFlag("F1");

This creates a new flag with name "F1" and sets flagptr to point to it.

FlagWait(flagptr);

This statement is only valid within the body of a process. It suspends the process if
the flag pointed to by flagptr is in the cleared state. If that flag is in the set state, the
process continues, and flag is put in the cleared state.

FlagSet(flagptr);

This operation sets the flag pointed to by flagptr. Then, if there are any activities
waiting at that flag, they are released and the flag is cleared. If there are no waiting
activities, the flag remains set.

Queues 2 4

FlagRelease(flagptr);

This operation clears the flag pointed to by flagptr. If there are any activities waiting
at the flag, they are released. Note that the state of the flag is always clear after this
operation is performed.

Comments:

Some simulators and parallel programming languages use the term "event" instead of "flag"
and the term "post" for the operation FlagSet(). Then, to say that "a process waits until an
event is posted" is the same as saying that "a process waits until a flag is set." Since the
activity we call an event is a central YACSIM concept, we have chosen to use the less
conventional term "flag" to describe the synchronization primitive.

The operations FlagSet() and FlagRelease() have similar effects on a flag; either one will
release processes that are waiting at the flag when it is applied. The difference occurs when
you apply them to a flag with no waiting processes. In this case, FlagSet() is remembered,
while FlagRelease() is not. Consider the application of FlagSet() to a flag with no waiting
processes. If a process then invokes FlagWait() on that flag, it will not suspend, since it finds
the flag set. If you apply FlagRelease() instead of FlagSet(), a following FlagWait() will
suspend its calling process, since FlagRelease() does not set the flag.

When the simulator runs on a uniprocessor host and several flag operations are scheduled at the
same time, non-deterministic behavior is possible. Since FlagSet() and FlagRelease() take
effect at the point they are actually executed, a process that waits on a flag at the same
simulation time the flag is released would depend on the order that the host actually executed
the operations. The process will suspend if FlagWait() is executed after FlagRelease() and will
not suspend if they are executed in the opposite order. We observe a similar effect if both
FlagSet() and FlagRelease() execute at the same simulation time. Whether or not the flag is set
will depend on the order of execution of the two operations.

3.4. CONDITIONS AND STATE VARIABLES

Conditions offer another way to synchronize the execution of processes and schedule activities.
You assign a logical expression to each condition when it is created. When you later schedule
an activity on a condition, the value of its associated expression determines when the activity
takes place. If the expression is true, we say that the condition holds, and the activity takes
place at the current simulation time. If the value of the expression is false, the activity is
delayed in the condition's queue until the expression becomes true. Similarly, when a process
waits on a condition, it continues if the condition holds and suspends otherwise. When a
condition changes value from false to true, all waiting activities are released.

We call the variables used in a condition's logical expression state variables. They are special
in that whenever one changes value, all conditions that use it are reevaluated. If an expression
evaluates true and there are activities waiting, they are released.

3.4.1. State Variables

There are two types of state variables, those with integer values and those with floating point
values. You must use the special operations provided below to access and change the values of
state variables. The statements that change the value of a state variable have a side effect of
causing all conditions that depend on that state variable to be reevaluated.

Queues 2 5

There is one pre-defined floating point state variable that always equals the current simulation
time. SIMTIME is defined as a pointer that points to this state variable and is always available
to the user. The state variable pointed to by SIMTIME is updated automatically whenever
simulation time is advanced.

Operations:

IVAR *NewIvar(ivname, i)
char *ivname;
int i;

This operation creates and returns a pointer to a new integer state variable. It assigns
the state variable the name ivname and the initial value i.

FVAR *NewFvar(fvname, x)
char *fvname;
double x;

This operation creates and returns a pointer to a new floating point state variable. It
assigns the state variable the name fvname and the initial value x.

void Iset(ivptr, i)
IVAR *ivptr;
int i;

This operation sets the value of the integer state variable pointed to by ivptr to i.

void Fset(fvptr, x)
FVAR *fvptr;
double x;

This operation sets the value of the floating point state variable pointed to by fvptr to x.
The user should not attempt to set the special state variable SIMTIME with this
command.

int Ival(ivptr)
IVAR *ivptr;

This operation returns the value of the integer state variable pointed to by ivptr.

double Fval(fvptr)
FVAR *fvptr;

This operation returns the value of the floating point state variable pointed to by fvptr.

Examples:

iv = NewIvar("iv1", 0);

Creates a new integer state variable and sets its value to 0.

fv = NewFvar("fv1", 0.0);

Creates a new floating point state variable and sets its value to 0.0.

Fset(fv, 4.5);

Sets the floating point state variable pointed to by fv to 4.5.

Queues 2 6

Iset(iv, Ival(iv)+3);

Increments the integer state variable pointed to by iv by 3.

3.4.2. Conditions

You must use two statements to define a condition, one to define its expression, and one to
name it and link it to its expression. The expression is specified as a C function that returns a
logical value (actually an integer in C) and has the following form:

int exname(argptr, argsize)
char *argptr;
int argsize;
{ statements; return (expr); };

where exname is an arbitrary name you assign to the expression. Expr can be any expression
that evaluates to true or false. The arguments argptr and argsize are optional. They are set
when the condition is created or by the operation ConditionSetArg(). They are intended to be
used for passing arguments to the condition's expression is much the same way as arguments
are passed to the body of a process or an event.

Operations:

CONDITION *NewCondition(cname, exname, sv1, ..., svn, NULL, argptr, argsize)
char *cname;
cond exname;
STVAR *sv1;

. . .

STVAR *svn
char argptr;
int argsize;

This operation creates and returns a pointer to a new condition. The first argument
cname names the condition. The second argument exname links the condition to its
expression. Cond is a typedef for the expression function described above. That is, it
is the name of an integer valued function that returns the value of an expression
involving state variables. The arguments following the first two are pointers to the state
variables used in the expression exname. The list of state variables must be terminated
with a null pointer. You must list pointers to all state variables that are used in the
expression as arguments to CONDITION, and you must end with the argument NULL.
This is required so that the condition can establish links with its state variables. The
last two arguments are passed to the expression that defines the condition every time
that expression is reevaluated. For an expression named exname on n state variables
and a condition named condname, this operation would be called in the following way:

NewCondition(condname, exname, sv1, sv2, ... , svn, NULL, aptr, asize)

where sv1, sv2, ... , svn are pointers to the state variables used in the expression
exname. Note that the state variable names and the expression name must be visible to
this operation. The easiest way to guarantee this is to declare them as global variables.
Also, all state variables referenced in the NewCondition() operation must be created
prior to the execution of this operation.

Queues 2 7

void ConditionWait(cptr)
CONDITION *cptr;

If the condition pointed to by cptr holds when this operation is executed, the calling
process continues. If it does not hold, then the calling process suspends and enters the
tail of the condition's queue. You can only invoke this operation within the body of a
process.

int ConditionState(cptr)
CONDITION *cptr;

This operation returns the status of the condition pointed to by cptr. There are two
possible values: FALSE (i.e., 0) and TRUE (i.e., 1).

int ConditionWaiting(cptr)
CONDITION *cptr;

This operation returns the number of activities in the queue of the condition pointed to
by cptr.

void ConditionSetArg(cptr, aptr, asize)
CONDITION *cptr;
char *aptr;
int asize;

This saves the pointer aptr and the integer asize in the descriptor of the condition
pointed to by cptr. They are passed to the condition's expression every time it is
evaluated. These arguments can also be set when the NewCondition() is called.
ConditionSetArg() provides a way of changing the arguments after the condition has
been created. Note that this operation only passes a pointer to the condition, not a
value. Therefore, when the condition's expression accesses the argument pointed to by
this pointer, it will get the value of the argument at the time it is accessed, and this may
not be the same as its value when the argument was set.

Examples:

int contest(nullptr, i)
char *nullptr;
int i;
{ return (Ival(ivptr[i]) != 0); };
cptr1 = NewCondition("con", contest, ivptr, NULL, NULL, 4);

The condition con will hold if and only if the state variable pointed to by ivptr[i] is
not equal to zero. The first argument to contest is not used, but the second is used to
select one state variable from an array of state variables.

int expr1(){ return ((Fval(x) > Fval(y)) && (Fval(y) != 2.43)); };
cptr2 = NewCondition("C1", expr1, x, y, NULL, NULL, 0);

The condition C1 will hold if and only if the state variable pointed to by x is greater
than the state variable pointed to by y, and the state variable pointed to by y is not
equal to 2.43. A NULL argptr and arsize of 0 are passed to NewCondition(), but not
used by contest().

Queues 2 8

Iset(ivptr, 1);
ConditionWait(cptr1)

If ivptr and cptr1 are as defined above, then the process invoking ConditionWait()
will not suspend because the condition holds. If we had set the state variable pointed
to by ivptr to 0, the process would suspend when it invoked ConditionWait().

i = CondStatus(condptr);

This statement sets the integer i to the status of the condition pointed to by condptr.

Comments:

The reason for declaring the expression separately from the condition is to avoid a
preprocessing step that would be needed to parse the expression. Implementing it this way, the
C compiler does the parsing.

The last two arguments to the operation NewCondition() can probably to omitted if they are not
used within the condition's expression. NewCondition() will look for them on the stack, save
whatever it finds there in its descriptor, and pass them to the condition's expression every time
the condition is evaluated. If they are omitted, NewCondition will load garbage in the
descriptor and pass it to the expression. However, if the expression does not use or even
declare its arguments, no harm is done. This would mean that the arguments passed to
NewCondition do not match its declared arguments, and there is some chance that an attempt to
access them would result in a segmentation fault. Probably the safest thing to do is to always
pass the last two arguments to NewCondition whether they are used by the expression or not.

Conditions are reevaluated each time one of their state variables changes value. This introduces
a form of non-deterministic behavior. Indeed, if several statements executing at the same
simulation time can alter the state of a condition, the behavior of the simulation could depend
on the order that the simulator actually executes the statements. This situation can only happen
if a state variable experiences several changes at the same simulation time, and simulations that
do this are probably inherently non-deterministic. Therefore, the simulator should probably
issue a warning message when this happens, since it is likely to be a mistake in the simulation
program. This is not yet implemented in the current version of YACSIM.

3.5. RESOURCES

A resource consists of a queue and a set of servers. The only thing that an activity can do with
a resource is to request service time. When an activity makes a request, the resource assigns it
to a free server, if one is available, and puts it in the queue otherwise. A resource makes no
distinction among its different servers and simply picks the first free one it can find to satisfy a
request for service. The activity is in a suspended state when it requests service and does not
wake up until its request has been fulfilled. When a server finishes serving an activity, it looks
for another activity in the queue to serve. If there are none it returns to a pool of free servers
and waits for another activity to serve. The set of rules used to decide how the resource puts
activities in its queue and takes them out for service is called the queuing discipline for the
resource. Most of the standard queuing disciplines have been implemented. They are
described later in this section.

Queues 2 9

Operations:

RESOURCE *NewResource(rname, qdisc, nserv, slice)
char *rname;
int qdisc;
int nserv;
double slice;

The operation creates and returns a pointer to a resource. The argument qname is the
name assigned to the resource. The argument qdisc is a integer that specifies the
queuing discipline for the resource to use. The choices for this argument are described
in the following section. Nserv is the number of servers for the resource. The last
argument slice is only used with the "round robin" and "round robin preemptive resume
with priority" queuing disciplines and is ignored for all others. It is explained in the
following section on queuing disciplines.

void ResourceUse(rptr, timeinc)
RESOURCE *rptr;
double timeinc;

This is the operation a process uses to request service from the resource pointed to by
rptr. The argument timeinc is the amount of service time requested. The operation can
only be invoked from within a process body.

int ResourceWaiting(rptr)
RESOURCE *rptr;

This operation returns the number of activities in the queue of the resource pointed to
by rptr.

int ResourceServicing(rptr)
RESOURCE *rptr;

This operation returns the number of activities that are currently receiving service from
the resource pointed to by rptr.

Queuing Disciplines:

Ten different queuing disciplines are implemented. Currently, there is no way for the user to
add new ones, although that capability may be added later. The user specifies the queuing
discipline for a resource by passing an integer code to the operation NewResource().
Abbreviated names have been defined for all the implemented disciplines, and these can be
used in place of the integer code to improve readability. These abbreviated names are listed in
bold after the full names of the disciplines in the following descriptions.

First Come First Served - FCFS

The resource inserts processes into its queue at the tail and removes them from the
head. Once the resource assigns a process to a server, that process receives all of its
requested service without interruption.

Last Come First Served - LCFS

The resource inserts processes into its queue at the head and removes them from the
head. Once the resource assigns a process to a server, that process receives all of its
requested service without interruption.

Queues 3 0

Last Come First Served Preemptive Resume - LCFSPR

This discipline will only use one server no matter how many are specified. When the
resource receives a request and its server is busy, it preempts the process receiving
service and lowers its requested time by the amount of service time already received.
The resource then puts the preempted process at the head of its queue and assigns the
new requesting process to the server. When the server finishes with one process it
takes the process from the head of the queue, if any, and proceeds to complete its
service time.

First Come First Served Preemptive Resume With Priorities - FCFSPRWP

This discipline will only use one server no matter how many are specified. Users can
assign priorities to processes using ProcessSetPriority(). This discipline uses a
process' priority to determine where it should be inserted in the queue. When a
resource receives a request and its server is busy, it reacts in the following way:

• If the priority of the process being served is greater than or equal to the priority
of the new process requesting service, the resource inserts the new process into
the queue in the order of its priority and behind all other processes that have the
same priority.

• If the process being served has lower priority, the resource preempts it and
lowers its requested time by the amount of service time already received. The
resource then inserts the preempted process in the queue in the order of its
priority and in front of all other processes that have the same priority. Finally,
the resource assigns the new requesting process to the server.

When the server finishes with one process it takes the process from the head of the
queue, if any, and proceeds to complete its service time.

Last Come First Served Preemptive Resume With Priorities - LCFSPRWP

This discipline is the same as the FCFSPRWP discipline described above, except that a
process requesting service is inserted in the queue in the order of its priority, in front of
all processes with the same priority instead of behind them.

Processor Sharing - PROCSHAR

This discipline uses as many servers as it needs to service all request without delay.
That is, all processes start receiving service as soon as they request it and they are never
delayed in a queue. However, when there are k processes receiving service the
remaining service time for each is increased by a factor of k. As processes arrive at and
leave the resource, the requested service time of each of the remaining processes is
altered to account for the new value of k.

Round Robin - RR

This queuing discipline is one of the two that use the slice argument. Processes
requesting service are put at the tail of the queue. Whenever there is a free server, the
resource takes the process from the head of the queue and assigns it to that server for a
service time equal to the slice time. When a server completes a time slice the resource
reduces the process' requested service time by the slice amount and puts it back at the
tail of its queue. If the process taken from the head of the queue has a remaining
service request less than the slice time, the resource only assigns it to a server for its
remaining requested time.

Queues 3 1

Random - RAND

The resource inserts processes requesting service randomly into its queue. When a
server is free, it starts serving the process at the head of the queue.

Shortest Job Next - SJN

This discipline will only use one server no matter how many are specified. Whenever a
job finishes service, the shortest job (i.e., the one with the smallest service time
request) will be selected next to receive service from the resource.

Round Robin Preemptive Resume With Priority - RRPRWP

This discipline will only use one server no matter how many are specified. It uses the
round robin queuing discipline to service processes in its queue until a service request
is received. It uses the slice argument in the same way as the round robin queuing
discipline. When a process requests service from the resource, its priority is compared
to the priority of the process currently receiving service. If the new processes' priority
is higher, it preempts the one receiving service. Otherwise it enters the resource's
queue in the order of its priority, behind all other processes that have the same priority.

Examples

rsptr1 = NewResource("Res 2", FCFS, 3, 0.0)

This statement sets the pointer rsptr1 to a new resource named "Res 2"
that has three servers and uses the First Come First Served queuing
discipline. The slice time is ignored.

rsptr2 = NewResource("Res 1", LCFSPRWP, 1, 0.0)

This declaration creates a resource, names it "Res 1", and sets its
queuing discipline to Last Come First Served Preemptive Resume With
Priority.

resptr3 = NewResource("RRrsc", RR, 9, 20.0)

This resource uses the Round Robin queuing discipline, has 9 servers, a
service slice of 20 time units, and is named "RRrsc."

resptr4 = NewResource("PR", LCFSPR, 3, 5.0);

This statement creates a resource named "PR" that uses the Last Come
First Served Preemptive Resume queuing discipline. Note that even
though the declaration specifies 3 servers and a time slice of 5.0, these
arguments will be ignored, because this discipline will only use one
server and does not need a time slice.

ResourceUse(rptr, 25.0);

This statement requests 25.0 time units of service from the resource
pointed to by rptr. The statement can only be executed from within the
body of a process.

Comments

The effect of the operation ResourceUse() on a uniprocessor host is delayed until all activities
scheduled at the same time have been initiated. This means that, for the preemptive disciplines,

Queues 3 2

if ResourceUse() is invoked more than once at the same simulation time, it will be the process
with highest priority that calls ResourceUse() most recently in real time that gets service.

3.6. QUEUE STATISTICS

Statistics can be automatically collected on queues. The following operations are used to
activate this feature and to access the collected statistics. Note that when a queue is deleted its
associated statistics record is also deleted.

 Operations:

void QueueCollectStats(qptr, type, meanflg, histflg, nbin, low, high)
RESOURCE *qptr;
int type;
int meanflg;
int histflg;
int nbin;
double low;
double high;

This operation activates statistics collection for the queue pointed to by qptr. It does
this by creating a statistics record (see Chapter 4) that is updated automatically
whenever the queue's status is changed. Statistics can be collected on the following
three parameters: queue length, time in the queue, and server utilization (for resources
only). The argument type specifies which of the three to activate and must have one of
the following three values: LENGTH, TIME, or UTIL. The length of a queue is the
number of activities in it, including those being served if the queue is a resource. The
time in the queue statistic is a measure of how long an activity spends in the queue,
including time in the server for resource queues. Utilization statistics can only be
collected on resources. They measure how many of the servers are busy over time.
Statistics records of type LENGTH and UTIL are interval statistics records, and ones
of type TIME are point statistics records. The last five arguments characterize the
statistics record and are the same as for all statistics records. These arguments and the
difference between point and interval statistics records are explained in the chapter on
statistics records.

void QueueResetStats(qptr)
RESOURCE *qptr;

This operation resets all of the statistics records associated with the queue pointed to by
qptr that have been previously activated. This reset operation should be used instead of
StatrecReset(), or the initial sample point for the statistics records will missed.

STATREC *QueueStatPtr(qptr, type)
RESOURCE *qptr;
int type;

This operation returns a pointer to a statistics record associated with the queue pointed
to by qptr. Chapter 4 describes the various operations (e.g., printing a report) that can
be performed on a statistics record once you have a pointer to it. Type must be either
LENGTH, TIME, or UTIL (for resources only) to select one of the three statistics
records associated with the queue.

3 3

4. STATISTICS RECORDS & RANDOM NUMBERS

Statistics records are the simulation objects used to collect and process data produced by a
simulation. They operate on sequences of weighted numbers called samples. Several statistics
plus histograms can be computed on these sequences.

Implementation of the Unix random number generators vary from system to system, so that a
simulation driven by a random number generator can give different results on different
systems. To avoid this, YACSIM provides a random number generator that generates the
same sequences, given the same seed, for all systems on which YACSIM has been ported.

4.1. POINT AND INTERVAL STATISTICS RECORDS

There are two types of statistics records: point statistics records and interval statistics records.
They have the same set of operations and features. The only difference between them is in the
way they define weights. Samples for a point statistics record are ordered pairs (x,y) where x
is a value and y is the weight. Samples for interval statistics records are ordered pairs (x,y)
where x is the value and y is used to define the weight in the following way. The weight for
value xi is defined as wi = (yi+1 - yi) where (xi,yi) denotes the i-th sample in the sequence. In
the remaining discussion of statistics records, we will not make a distinction between point and
interval statistics records. We will describe their action on pairs of the form (v,w) where v is a
value and w is a weight. For point statistics records, w is the second element of the sample
pair. For interval statistics records, the weight w of a sample is obtained from intervals as
described above.

For a sequence of weighted values (v0,w0), (v1,w1), ... , (vn-1,wn-1), statistics records can
calculate the following statistics:

Samples The number of samples.

Samples = n

Max The maximum unweighted value in the sequence of samples.

Max = max{ vi | 0 ≤ i <n }

Min The minimum unweighted value in the sequence of samples.

Min = min{ vi | 0 ≤ i <n }

Interval The sampling interval. See the description of operations EndInterval()
and Interval() below for a definition of this interval.

Rate The average sampling rate.

Rate = Samples/Interval

Mean The weighted mean.

Statistics Records 3 4

Mean =
vi × wi

i=0

n−1

∑
Samples

StdDev The weighted standard deviation.

StdDev =
wi (vi − v)2

i=0

n−1

∑

wi
i=0

n−1

∑⎛
⎝⎜

⎞
⎠⎟

−1

A statistics record can also accumulate a histogram of its input sequence. The user specifies a
number of bins n and low and high values. The histogram will have n bins of equal size
between the low and high values. It will have two additional bins, one for all values less than
the low value and the other for all values greater than or equal to the high value. For each
sample (v,w), the bin that corresponds to v is incremented by w.

Operations:

STATREC *NewStatrec(sname, type, meanflg, histflg, nbins, lowbin, highbin)
int type;
char *sname;
int meanflg;
int histflg;
int nbins;
double lowbin;
double highbin;

This operation creates a statistics record with name sname. Type is either POINT or
INTERVAL to specify whether the statistics record will be a point or an interval
statistics record. It will always compute the statistics Samples , Max , Min ,
Interval, and Rate. Meanflg indicates whether or not this statistics record will
compute the mean and standard deviation. There are two possible values. MEANS
indicates that the mean and standard deviation are computed, and NOMEANS
suppresses their computation. Histflg indicates whether or not histograms will be
computed. Its two possible values are NOHIST and HIST. NOHIST turns off the
collection of histogram data. HIST activates the collection of a full histogram with nbin
bins between lowbin and highbin, plus two overflow bins as described above.

void StatrecSetHistSz(sz)
int sz;

When a new statistics record is created with histogram collection activated, a block of
memory is allocated to accumulate the histogram data. The size of this block must be
big enough to hold all of the bins of the histogram. To minimize calls to malloc(),
YACSIM maintains a pool of histogram memory blocks and does its own allocation
whenever possible. There is a fixed default size for these blocks which is used
whenever a histogram of that size or less is needed. If a histogram larger than the
default size is required, malloc() is called to allocate its memory. The operation
StatrecSetHistSz() can be used to change the default histogram size to sz. It must be
used before the first call to NewStatrec(). Otherwise, the default size is left unchanged
and a warning message is generated.

Statistics Records 3 5

void StatrecReset(srptr)
STATREC srptr;

This operation resets the statistics record pointed to by srptr to the state it was in when
it was created. It also sets the start of the sampling interval to the value of simulation
time when it is executed. This operation should not be used to reset any of the three
statistics records associated with queues. Use QueueResetStats() instead.

void StatrecUpdate(srptr, x, y)
STATREC *srptr;
double x;
double y;

This is the operation used to add another sample to the statistics record pointed to by
srptr. X is the value of the sample. If the record is a point statistics record, y is the
weight of the sample. If it is an interval statistics record, y is used to define an interval
weight as explained above.

void StatrecReport(srptr)
STATREC *srptr;

This operation prints all of the statistics computed by the statistics record pointed to by
srptr in a standard format. It also prints a graphical representation of the histogram on
the user's display, if one was computed by the statistics record.

int StatrecBins(srptr)
STATREC *srptr;

double StatrecLowBin(srptr)
STATREC *srptr;

double StatrecHighBin(srptr)
STATREC *srptr;

double StatrecBinSize(srptr)
STATREC *srptr;

double StatrecHist(srptr, i)
STATREC *srptr;
int i;

These five functions access the histogram data of the statistics record pointed to by
srptr. StatrecBins() returns the number of bins, not counting the two overflow bins.
StatrecLowBin() returns the low limit of the bin immediately above the low overflow
bin. StatrecHighBin() returns the low limit of the high overflow bin. StatrecBinSize()
returns the bin size. StatrecHist(srptr,i) returns the value of the i-th bin of the
histogram pointed to by srptr.

Statistics Records 3 6

int StatrecSamples(srptr)
STATREC *srptr;

double StatrecMinVal(srptr)
STATREC *srptr;

double StatrecMaxVal(srptr)
STATREC *srptr;

double StatrecMean(srptr)
STATREC *srptr;

double StatrecSdv(srptr)
STATREC *srptr;

These five operations return statistics computed by the statistics record.
StatrecSamples() returns the statistic Samples. StatrecMinVal() and StatrecMaxVal()
return the statistics Min and Max. StatrecMean() returns Mean and StatrecSdv()
returns StdDev.

void StatrecEndInterval(srptr)
STATREC *srptr;

double StatrecInterval(srptr)
STATREC *srptr;

double StatrecRate(srptr)
STATREC *srptr;

Creating a new statistics record sets the beginning time of the sampling interval to the
value of simulation time when it is created. If you want to start the sampling interval at
a later time, you can use the operation StatrecReset() described previously. The ending
time of the sampling interval is initially the same as the starting time and is reset to the
current simulation time each time a new sample is entered. This defines the sampling
interval to be the period from the time the statistics record is created, or the last time it
was reset, to the time of the last sample. The operation StatrecEndInterval() sets the
ending time of the interval to the value of simulation time when it is executed. This
enables the user to end the sampling interval at someplace other than a sampling point.
StatrecInterval() returns the statistic Interval and StatrecRate() returns the statistic
Rate.

Examples

srptr1 = NewStatrec("Stat1", POINT, NOMEANS, NOHIST, 0, 0.0, 0.0);

This creates a point statistics record named "Stat1" that will only compute the
statistics Samples, Max, Min, Interval, and Rate. The last three arguments are
ignored.

srptr2 = NewStatrec("Stat2", INTERVAL, MEANS, NOHIST, 0, 0.0, 0.0);

This creates an interval statistics record named "Stat2." It will compute all seven
statistics, but no histogram. The last three arguments are ignored.

Statistics Records 3 7

srptr3 = NewStatrec("Stat3", POINT, MEANS, HIST, 5, 1.0, 11.0);

The point statistics record created here will compute all seven statistics plus a
histogram with five equally spaced bins between 1.0 and 11.0 and two overflow bins.
The bin size will be 2.0.

StatrecUpdate(srptr1, 3.5, 1.0);

Since srptr1 points to a point statistics record, this statement will add a sample with
value 3.5 and weight 1.0.

StatrecUpdate(srptr3, 4.0, 25.6)

This adds a sample with value 4 and weight 25.6 to the point statistics record pointed
to by srptr3.

StatrecUpdate(srptr2, 2.0, 1.0);
StatrecUpdate(srptr2, 3.0, 3.0);
StatrecUpdate(srptr2, 3.0, 4.5);
StatrecUpdate(srptr2, 1.5, 5.0);

This sequence of updates on the statistics record pointed to by srptr2 will result in a
sample with value 2.0 and weight 3.0 - 1.0 = 2.0, a sample with value 3.0 and
weight 1.5, and a sample with value 3.0 and weight 0.5.

StatrecReset(srptr3); (executed at time t1)
StatrecEndInterval(srptr3); (executed at time t2)

These two operations will define the sampling interval to be from t1 to t2.

Comments:

If you invoke one of the operations that returns a statistic or histogram value and that statistic or
histogram is not computed by the statistics record, then the simulator will print a warning
message. If histograms are computed, but the values are all zero, StatrecReport() will print a
warning message instead of the histogram graph. If a negative weight is computed for an
interval statistic due to a later value having an earlier time, StatrecReport() will compute and
print the statistics and the histogram, but will print the warning message Invalid statistics;
interval error.

4.2. RANDOM NUMBER GENERATION

There is an internal YACSIM random number generator is called YacRand. It uses a
multiplicative congruential random number generator suggested by Shedler in Lavenberg's
"Computer Performance Modeling Handbook." It is the same generator used in the IBM
System/360 (save for the difference in 360 and IEEE 754 floating point arithmetic). The
generator is specified as

Xn+1 = aXn mod m,

where a = 16807 (= 75) and m = 2147483647 (= 231 - 1)

A call to YacRand actually produces a uniformly distributed random number x, such that 0 ≤ x
< 1, by dividing the (integer) Xn+1 by the modulus m and returning this value.

Statistics Records 3 8

Operations:

double YacRand()

This operation is used to access the YACSIM random number generator. It generates
and returns the next random number in the sequence.

void YacSeed(seed)
double seed;

This operation seeds the random number generator, which otherwise uses a seed of
0.5. In order to maintain a correspondence between YacRand and drand48, the seed
value, which is a double, should be greater than 0 and less than 1. It is multiplied
inside YacSeed by the modulus to produce an integer seed between 1 and the modulus.
Calling YacSeed() with a seed of 0 causes it to use the default value of 0.5.

3 9

5. THE SIMULATION DRIVER

5.1. THE DRIVER

The driver is that part of a simulator that controls the sequencing of activities. It usually does
this by means of a linked list called an event list. When a user schedules an activity to take
place in the future, the driver inserts that activity into the event list. The driver also keeps the
list ordered by inserting new activities in such a way that all activities scheduled to occur before
the new activity are ahead of it, and all activities scheduled to occur after the new activity are
behind it in the list. In other words, the event list is kept ordered by the scheduled times of its
activities. The driver initiates activities in the order they appear in the list by always taking the
activity at the head of the list to initiate next. Each time the driver removes an activity that has a
scheduled time greater than the current simulation time, it increases simulation time to the time
of that activity.

Operations:

void DriverReset()

This operation resets simulation time to 0.0, clears the event list, clears all simulation
queues, and destroys all existing simulation objects. That is, it takes the simulator back
to the state it was in when it first started execution and before any objects (queues,
activities, and statistics records) were created. You must recreate all objects after
executing DriverReset() before you can run another simulation.

int DriverRun(timeinc)
double timeinc;

This operation starts or restarts a simulation. Once the user invokes this operation, the
simulator will run for timeinc units of simulation time, until its event list is empty, or
until it is interrupted, and then return control to the user. The user can continue a
simulation by invoking DriverRun() again with a new time increment t. The simulator
will pick up where it left off and run for t more units of time. Invoking DriverReset()
before another run will start the simulation over at time 0.0. If DriverRun() is invoked
with timeinc less than or equal to 0.0, the simulator will run until the event list is empty
or the simulation is interrupted. The return value is 0 if the simulation runs the full
timeinc units of time or exhausts its event list. Due to the operation DriverInterrupt()
described below, it is possible for the simulation to terminate before that time. In that
case, DriverRun() will return a non-zero value as explained for the DriverInterrupt()
operation.

void DriverInterrupt(retval)
int retval;

This operation suspends a simulation run before the requested simulation time
increment is completed. The user can invoke it from within an event or a process, and
it will cause the interruption to occur when that activity terminates or suspends. The
argument retval is the value returned by DriverRun(). A retval of 0 will generate an
error termination of the simulation as that value is reserved to signify a simulation that
has run to completion.

The Simulation Driver 4 0

double GetSimTime()

This operation returns the current simulation time. You can invoke it from anywhere in
the simulation code.

Examples:

DriverRun(10.0);

This statement transfers control to the driver for 10.0 units of simulation time.

DriverRun(0.0);

This statement also transfers control to the driver, but it will not return until the
event queue is empty or an interrupt occurs.

i = DriverRun(100.0);

This statement transfers control to the driver for 100 units of simulation time. The
return value i will be 0 if the simulation runs for the full 100 time steps or the event
list is exhausted, and will be non-zero if it is interrupted.

DriverRun(5.5);
DriverRun(5.0);
DriverReset();
DriverRun(10.5);

The first statement will run the simulator for 5.5. units of simulation time. The
second statement will then execute 5.0 more units of simulation time. The third
statement resets the simulator and the fourth initiates a simulation run of 10.5 time
units. The effect of this sequence is to perform two simulations of 10.5 units of
simulation time each.

DriverInterrupt(5);

This interrupts the simulator and returns the value 5 to the user.

5.2. THE EVENT LIST

Recall that the activities on the event list are ordered by their scheduled time of occurrence.
Each time a new activity is added to the event list, it is inserted in the proper order. If the event
list is large, the insertion of activities can account for a significant amount of the time to
perform a simulation. Therefore, several techniques for reducing the insertion time of event list
have been developed. YACSIM uses one called a calendar queue.

Calendar queues break up the event list into bins in such a way that the proper bin for an
activity can be quickly determined. The details of this approach can be found in the paper
"Calendar Queues: A Fast O(1) Priority Queue Implementation for the Simulation Event Set
Problem," Communications of the ACM, Vol. 31, No. 10, Oct. 1988, pp. 1220-1227. The
calendar queue insertion algorithm includes a method of resizing the number and size of the
bins as the queue grows and shrinks in order to optimize its performance. While this technique
works well for most distributions of times if the queue is large, its performance can deteriorate
for certain distributions and for simulations with small event lists. Therefore a method for the
user to control the number of bins and their size has been implemented.

The parameters of the calendar queue bins can be specified with command line arguments to the
simulation. If a simulation is invoked with the argument +bi, where i ≥ 1, the simulator will
use a calendar queue with exactly i bins. A simulation invoked with the argument +wj, where j

The Simulation Driver 4 1

is a floating point number, will use a calendar queue with all bins of size j. In both these cases
the automatic resizing of the bins will be turned off. The argument +l or the special case +b1
will cause the simulator to use a simple sequential search for insertion of new activities. This is
a much simpler implementation than the calendar queue, and it can be faster if the event list
never grows very large during a simulation. The +bi,+wj and +l arguments must precede any
arguments that are to be passed to UserMain() as explained in Section 1.3. The operation
EventListSelect() described below provides another way to specify the type and parameters of
the event list.

Unfortunately, there does not appear to be any good way to predict in advance the optimal size
for the bins, or whether or not fixed or variable bins will perform better. Several statistics
described in the following section can be collected on the event list's behavior and may be
helpful in choosing optimal bin parameters.

The default event list implementation is the calendar queue with automatic bin sizing activated.

Operations:

void EventListSelect(type, bins, bwidth)
int type;
int bins;
double bwidth;

This operations provides the user with a means of selecting which type of event list
implementation will be used. It has the same effect as the command line arguments
+bi, +wi, and +l, but it can be called from with the user's program. Type is either
CALQUE to specify the calendar queue implementation or LINQUE to specify the
linear linked list implementation. If the type is CALQUE, then bins specifies a fixed
number of bins and bwidth a fixed bin width. If bins is less than 2 and bwidth less
than or equal to 0.0, the automatic bin sizing algorithm is used. CAUTION: This
operation must be called in UserMain() at the very beginning of a
simulation and before any other simulation operations are called. No
warning is generated if it is called later.

int EventListSize()

This operation returns the number of activities currently in the event list.

void EventListCollectStats(type, meanflg, histflg, nbin, low, high)
int type;
int meanflg;
int histflg;
int nbin;
double low;
double high;

Calling this operation activates statistics collection for the event list. It does this by
creating statistics records (see Chapter 5) that are updated automatically whenever there
is any change in the event list. The following four different statistics can be collected as
specified by the argument type .

type Statistic Record Update Value

LENGTH The size of the list (i.e., the number of activities in the list).

BINS The number of bins in a calendar queue (ignored for the linear list)

The Simulation Driver 4 2

BINWIDTH The size of a calendar queue's bins (ignored for the linear list)

EMPTYBINS The number of empty calendar queue bins (ignored for the linear
list)

The last five arguments characterize the statistics record and are the same as for all
statistics records (see Chapter 5). All four of the statistics records associated with the
event list are point statistics records that are updated with a weight of 1.0 every time an
activity is added to or deleted from the event list.

void EventListResetStats()

This operation resets all of the statistics records associated with the event list that have
been previously activated. This reset operation should be used instead of
StatrecReset().

STATREC *EventListStatPtr(type)
int type;

This operation returns a pointer to one of the statistics records associated with the event
list. Chapter 4 describes the various operations, such as printing a summary report,
that can be performed on a statistics records through its pointer. Type must be one of
LENGTH, BINS, BINWIDTH, or EMPTYBINS to select one of the four statistics
record types. If the selected type has not been activated, a NULL pointer is returned.

Examples:

EventListSelect(LINQUE, 0, 0.0);

This statement selects the linear linked list implementation of the event list. The
last two arguments are ignored.

EventListSelect(CALQUE, 0, 0.0);

This statement selects the calendar queue implementation of the event list with
automatic bin sizing.

EventListSelect(CALQUE, 4, 2.05);

This statement selects the calendar queue implementation of the event list with four
bins of width 2.5.

EventListCollectStats(BINWIDTH, MEANS, HIST, 10, 0.0, 10.0);

This statement activates the collection of statistics on the bin widths and specifies
that both means and histograms will be collected.

4 3

6. DEBUGGING

In addition to the standard C debugging tools, the YACSIM simulator provides a tracing
capability and numerous error and warning messages. Although we have attempted to make
the error and warning messages self-explanatory, it is difficult to provide much detail in a
single line of text. Therefore, the next two sections list all of these messages and provide
additional information on their causes. The difference between warning and error messages is
that conditions that generate error messages will also terminated the simulation, while
conditions that generate warning messages will not. The third section explains the tracing
capability built into the simulators.

6.1. WARNING MESSAGES

All histogram entries = 0:

The statistics record operation StatrecReport() generates this warning when it attempts
to print a histogram graph and finds all of the bin entries zero. It prints this warning
instead of the graph.

Can only set the default histogram size before calling NewStatrec:

The operation StatrecSetHistSz() was called after one or more statistics records have
been created. In this case, the default size for histograms is not changed.

Can only set the default stack size before calling NewProcess:

The operation ProcessSetStkSz() was called after one or more processes have been
created. In this case, the default size for process stacks is not changed.

Invalid event list statistics type; statistics not collected:

EventListCollectStat() has been called with an invalid type argument. It must be either
LENGTH, BINS, BINWIDTH, or EMPTYBINS. Statistics collection is not activated.

Invalid statistics; interval error:

The operation StatrecReport() of an interval statistics record generates this warning if it
encounters a negative interval due to two samples where the later one has an earlier time
value than the first one. Since this is usually an error, a warning is generated, but the
report is still printed in case it is not.

Invalid statistic type for queues, can't collect:

QueueCollectStat() has been called with an invalid type argument. It must be either
LENGTH, TIME, or UTIL. Statistics collection is not activated.

Invalid statistic type for queue:

QueueStatPtr() has been called with an invalid type argument. It must be either
LENGTH, TIME, or UTIL. The operation returns the null pointer instead of a valid
statistics record pointer.

Debugging 4 4

Not all message bytes received:

The operation ProcessReceiveMsg() does not receive all of the characters in a message
if the bytes argument is less than the message size. The remaining characters can be
obtained with additional calls to ProcessReceiveMsg().

Preemptive Resume resources will only use one server:

The operation that creates resources generates this warning when a value different from
1 is entered for the number of servers and the queuing discipline is one of the
preemptive resume disciplines. The resource will be created with only one server no
matter how many are requested.

Process statistics collection already set:

This message is generated when the operation ProcessCollectStat() is applied to the
same process more than once.

Processor sharing resources will only use one serer:

The operation that creates resources generates this warning when a value different from
1 is entered for the number of servers and the queuing discipline is processor sharing.
The resource will be created with only one server no matter how many are requested.

Queue length statistics collection already set:

This message is generated when the operation ResourceCollectStat() activating the
collection of queue length statisics is applied to the same resource more than once.

Queue time statistics collection already set:

This message is generated when the operation ResourceCollectStat() activating the
collection of queue time statisics is applied to the same resource more than once.

Queue utilization statistics collection already set:

This message is generated when the operation ResourceCollectStat() activating the
collection of queue utilization statistics is applied to the same resource more than once.

Setting a set flag:

The flag operation FlagSet() generates this warning when it is applied to a flag that is
already set. A warning is given because two or more successive applications of
FlagSet() are redundant.

Setting a set semaphore:

The semaphore operation SemaphoreSet() generates this warning when it is applied to a
semaphore that is already set. A warning is given because two or more successive
applications of SemaphoreSet() are redundant.

Setting an IVAR that is not linked to a condition :

This usually means that a condition has been created before one of the state variables it
depends on has been created.

Debugging 4 5

Setting an FVAR that is not linked to a condition:

This usually means that a condition has been created before one of the state variables it
depends on has been created.

Statistics not collected; cannot print report:

The operation ActivityStatRept() was called for some activity in order to print a report
of that activity's statistics, but the collection of statistics had not been previously
activated.

Time slice only used with round robin queue discipline:

The operation that creates a new resource generates this warning when a time slice
value other than the default value is entered for any resource other than Round Robin or
Round Robin Preemptive Resume With Priorities.

Trying to receive a negative number of bytes:

The operation ProcessReceiveMsg() was called with a negative "bytes" argument. In
this case the operation will not receive any of the messages bytes, but they are retained
by the system and can be read by a subsequent call to ProcessReceiveMsg().

YacRand seed out of range; default seed used

The argument to YacSeed() must be > 0.0 and < 1.0. Otherwise the argument is
ignored and the default seed value is used.

6.2. ERROR MESSAGES

ActivityGetParPtr() must be called from within an activity:

Since only activities can have a parent, ActivityGetParPtr() can only be called from
within an activity's body.

Can not call DriverReset() from within a process or an event:

The driver can only be reset after returning from DriverRun(), that is, while the
simulation is not active.

Can not delay for a negative time:

The operation ProcessDelay() generates this error message if it is called with a negative
time increment.

Can not request negative service time from a resource:

An attempt to schedule (or reschedule) an activity for a negative amount of service time
from a resource generates this message.

Can not reschedule a deleting event:

Since a deleting event will always be destroyed after it occurs, it makes no sense for it
to reschedule itself.

Debugging 4 6

Can not reschedule a pending event:

A pending event is one that has been scheduled, but has not yet occurred. An attempt
to schedule such an event is an error.

Can not schedule an activity to occur in the past:

This error results from an attempt to schedule an activity to happen at a time prior to the
current simulation time.

Changing Delete Flag of a scheduled event:

Once an event has been scheduled, you can not change its delete flag until after it
occurs.

EventGetState() must be called from within an active event:

The state of an event can only be accessed by the user from within the body of that
event.

EventReschedule() can only be invoked from within an event body:

EventReschedule() is provided only for an event to reschedule itself.

Events can not be scheduled in the past:

An attempt to schedule an event with a negative time increment generates this message.

EventSetDelFlag() not called from within an event:

The delete flag of an event can only be set from within the body of that event.

EventSetState() has NULL pointer, but not called from an event:

This operation must be called from within an event's body or the argurment must point
to an event.

Fset only works with FVAR's:

Trying to apply the operation Fset() to an integer state variable will generate this
message.

Histograms not calculated for this statistics record:

This error results when there is an attempt to access the histogram information in a
statistics record that does not compute histograms.

Invalid statistics record type, use POINT or INTERVAL:

The type argument to the NewStatrec() operations must be either POINT or
INTERVAL.

Invalid histogram flag, use HIST or NOHIST:

The histflg argument to the NewStatrec() operations must be either HIST or NOHIST.

Debugging 4 7

Invalid statistics type passed to EventListStatPtr():

The type passed must be LENGTH, BINS, BINWIDTH, or EMPTYBINS.

Iset only works with IVAR's:

Trying to apply the operation Iset() to a floating point state variable will generate this
message.

Malloc fails in ... :

This error message indicates that the dynamic memory allocation function has run out
of memory.

Means not calculated for this statistics record:

The statistics record operation StatrecMean() generates this error if it is applied to a
statistics record that was created with argument meanflg = NOMEANS.

Null Activity Referenced:

A null pointer has been passed to an operation that expects a pointer to an activity.

Null queue element pointer passed to ... :

A null pointer to a queue element has been passed to an operation.

Null queue pointer passed to ... :

A null pointer to a queue has been passed to an operation.

Only processes can perform forking or blocking schedules:

An attempt to execute one of the activity forking operations from any place except the
body of a process generates this error.

Only processes can send blocking messages:

ProcessSendMsg() can only be called from within the body of a process it the blkflg
argument is BLOCK.

Only processes can wait at barriers:

The operation BarrierSync() has been called from some place other than from within the
body of a process.

Processes can only be scheduled once:

You can not schedule a process once it has been scheduled. You can create multiple
processes with the same body and even the same name, but each of them can only be
scheduled once.

ProcessCheckMsg() can not be invoked from within a process body:

An attempt to execute the operation ProcessCheckMsg() from someplace other than the
body of a process generates this error.

Debugging 4 8

ProcessDelay() can only be invoked from within a process body:

An attempt to execute the operation ProcessDelay() from any place except the body of a
process generates this error.

ProcessJoin() can only be invoked from within a process body:

An attempt to execute the operation ProcessJoin() from any place except the body of a
process generates this error.

ProcessReceiveMsg() can only be invoked from within a process body:

Calling the operation ProcessReceiveMsg() from anyplace but within the body of a
process will generate this error message.

ProcessReceiveMsg() has a null receive buffer:

The operation ProcessReceiveMsg() was called with its "buf" argument NULL, but the
message was not empty.

ProcessSendMsg() must be called from within an activity:

Only processes and events can call ProcessSendMsg().

ProcessSleep() can only be invoked from within a process body:

An attempt to execute the operation ProcessSleep() from any place except the body of a
process generates this error.

ResourceUse() must be called from a processess' body:

Only Processes can call ResourceUse().

Returning unallocated object to pool:

There has been an attempt to return something to a pool that was not obtained from a
pool.

Simulator interrupted with 0 stopflag:

This error occurs when the user invokes DriverInterrupt(i) with i = 0. Since i becomes
the return value for DriverRun() and a return value of 0 indicates a normal termination,
not an interrupt, the argument i must be non-zero.

Std. Dev. not calculated for this statistics record:

The statistics record operation StatrecSdv() generates this error if it is applied to a
statistics record that was created with the argument meanflg = NOMEANS.

Unimplemented queuing discipline:

The first argument to NewResource() specifies the type of queuing discipline the
resource will use. If that does not match with one of the implemented disciplines, this
error is generated.

Debugging 4 9

6.3. TRACING

YACSIM has extensive tracing capability. The user can turn it on and off from any place
within a simulation and can set it to one of six levels to generate different amounts of trace data.
The global variable TraceLevel controls the trace output. Setting TraceLevel to 0 turns all
tracing off. Setting it to 1, 2, 3, 4, or 5 sets the tracing level to that value. Tracing level i
contains all the information of level j, for j < i. Level 1 tracing only prints warning messages
and the final simulation time at the end of the simulation. Level 2 gives a coarse trace of when
the simulation program calls and returns from the driver and when it switches processes. Level
3 tracing gives much more information about the invocation of all simulation operations
available to the user. Level 4 adds information about the status of each queue every time it
changes. Level 5 tracing give very low level traces including event list operations.

In addition to altering the variable TraceLevel, the user can set the trace level at the beginning
of a simulation with a command line argument of the form +ti, where 0 ≤ i ≤ 5. This sets the
trace level to i. In this way the trace level can be changed without recompiling the simulation
program. The +ti argument must precede any command line arguments that are to be passed to
UserMain(), as explained in Section 1.3.

Most of the trace output should be self-explanatory. Every time a simulation object is
mentioned in the trace output, it is referred to by its name. This is the name the user assigns to
a simulation object when it is created. This name is arbitrary and need not be unique. Each
object in the trace is also referenced by a unique ID number assigned it automatically when it is
created. The form of the reference is name[ID] where name is the object's name and ID is its
unique ID number. This form can be changed with the global variable TraceIDs. If it is set
to 0, all the ID numbers in the trace are forced to 0. passeing the command line argument -i has
the same effect.

5 0

APPENDIX 1: DEFINED SYMBOLS

This appendix list the symbols defined in the file sim.h. They are used extensively as
arguments to many of the YACSIM operations. They are described in the discussions of the
operations that use them and are only listed here.

Types of Activity Scheduling:

INDEPENDENT 0
BLOCK 1
FORK 2

Event Characteristics:

DELETE 1
NODELETE 0

Message Parameters:

ANYTYPE -1
ANYSENDER 0
NOBLOCK 0
BLOCK 1

Statistics Record Characteristics:

NOMEANS 0
MEANS 1
HIST 2
NOHIST 3
POINT 4
INTERVAL 5

Argument and Buffer Size:

UNKNOWN -1
DEFAULTSTK 0

Types of Queue Disciplines:

FCFS 1
FCFSPRWP 2
LCFSPR 3
PROCSHAR 4
RR 5
RAND 6
LCFSPRWP 7
SJN 8
RRPRWP 9
LCFS 10

Queue Statistics:

TIME 1
UTIL 2
LENGTH 3
BINS 4
BINWIDTH 5
EMPTYBINS 6

Event List Types:

CALQUE 0
LINQUE 1

Miscellaneous

ME 0

5 1

APPENDIX 2: SUMMARY OF OPERATIONS

ACTIVITY Operations

ActivityArgSize(aptr) /* Returns the size of an argument */
ActivityCollectStats(aptr) /* Activates statistics collection for an activity */
ActivityGetArg(aptr) /* Returns the argument pointer of an activity */
ActivityGetMyPtr() /* Returns a pointer to the active activity */
ActivityGetParPtr() /* Returns a pointer to the active activity's parent */
ActivitySchedCond(aptr, condptr, blkflg) /* Schedules an activity to wait for a condition */
ActivitySchedFlag(aptr, flgptr, blkflg) /* Schedules an activity to wait for a flag */
ActivitySchedRes(aptr, rptr, timeinc, blkflg) /* Schedules an activity to wait use a resource */
ActivitySchedSema(aptr, semptr, blkflg) /* Schedules an activity to wait for a semaphore */
ActivitySchedTime(aptr, timeinc, blkflg) /* Schedules an activity to start in the future */
ActivitySetArg(aptr,argptr,argsize) /* Sets the argument pointer of an activity */
ActivityStatPtr(aptr) /* Returns a pointer to an activity's stat record */
ActivityStatRept(aptr) /* Prints a report of an activity's statistics */

PROCESS Operations

NewProcess(pname, bodyname, stksz) /* Creates & return a pointer to a new sim. process */
ProcessCheckMsg(type, sender) /* Checks for a message of a given type and sender */
ProcessDelay(timeinc) /* Suspends the current process for a time period */
ProcessJoin() /* Suspend until all forked child activities terminate */
ProcessReceiveMsg(buf, bytes, blkflg, type, sender) /* Copies received data into buf and returns its size */
ProcessSendMsg(dest, buf, bytes, blkflg, type) /* Sends a message to a process */
ProcessSetPriority(procptr, p) /* Sets the priority of a process */
ProcessSetStkSz(stksz) /* Set the default stack size */
ProcessSleep() /* Suspends the current process for an indefinite time */

EVENT Operations

NewEvent(ename, bodyname, delflg, etype) /* Creates and returns a pointer to a new event */
EventGetDelFlag(eptr) /* Returns DELETE (1) or NODELETE (0) */
EventGetState() /* Returns the state of an event */
EventGetType(eptr) /* Returns the events type */
EventReschedCond(condptr, stval) /* Reschedules an event to wait for a condition */
EventReschedFlag(flgptr, stval) /* Reschedules an event to wait for a flag */
EventReschedRes(resptr, timeinc, stval) /* Reschedules an event to use a resource */
EventReschedSema(semptr, stval) /* Reschedules an event to wait for a semaphore */
EventReschedTime(timeinc, stval) /* Reschedules an event to occur in the future */
EventSetDelFlag() /* Makes an event deleting */
EventSetState(stvat) /* Sets state used to designate a return point */
EventSetType(eptr, etype) /* Sets the event's type */

QUEUE Operations

QueueCollectStats(qptr, type, meanflg, histflg, nbin, low, high)
/* Initiates statistics collection for a queue */

QueueResetStats(qptr) /* Resets statistics collectin for a queue */
QueueStatPtr(qptr, type) /* Returns a pointer to a queue's statistics */

SEMAPHORE Operations

NewSemaphore(sname, i) /* Creates & returns a pointer to a new semaphore */
SemaphoreDecr(sptr) /* Decrement the sem. value & return the new value */

Appendix 2 5 2

SemaphoreInit(sptr, i) /* If queue is empty its value is set to i */
SemaphoreSet(sptr) /* Set sem. to 1 if empty, or release an activity */
SemaphoreSignal(sptr) /* Signals the semaphore */
SemaphoreValue(sptr) /* Returns the value of the semaphore */
SemaphoreWait(sptr) /* Wait on a semaphore */
SemaphoreWaiting(sptr) /* Returns the # of activities in the queue */

BARRIER Operations

NewBarrier(bname, i) /* Creates and returns a pointer to a new barrier */
BarrierInit(bptr, i) /* If a barrier's queue is empty, sets its value to i */
BarrierNeeded(bptr) /* Returns # of additional syncs needed to free barrier */
BarrierSync(bptr) /* Waits at a barrier synchronization point */
BarrierWaiting(bptr) /* Returns the # of processes waiting at the barrier */

FLAG Operations

NewFlag(fname) /* Creates and returns a pointer to a new flag */
FlagRelease(fptr) /* Releases activities waiting at a flag */
FlagSet(fptr) /* Sets a flag */
FlagWait(fptr) /* Waits for a flag to be set or released */
FlagWaiting(fptr) /* Returns the # of activities in the queue */

STVAR Operations

NewFvar(fvname, x) /* Creates and returns a pointer to a new Fvar */
NewIvar(ivname, i) /* Creates and returns a pointer to a new Ivar */
Fset(fvptr, x) /* Sets the value of an Fvar */
Fval(fvptr) /* Returns th value of an Fvar */
Iset(ivptr, i) /* Sets the value of an Ivar */
Ival(ivptr) /* Returns the value of an Ivar */

CONDITION Operations

NewCondition(cname, exname, sv1, ..., svn, NULL, argptr, argsize)
/* Creates and returns a pointer to a new condition */

ConditionSetArg(cptr, aptr, asize) /* Sets the argument pointer of a condition */
ConditionState(cptr) /* Returns the state of a condition */
ConditionWait(cptr) /* Waits until a condition holds */
ConditionWaiting(cptr) /* Returns the # of activities in the queue */

RESOURCE Operations

NewResource(rname, qdisc, nserv, slice) /* Creates and returns a pointer to a new resource */
ResourceServicing(rptr) /* Returns the # of activities getting service */
ResourceUse(rptr, timeinc) /* Requests service from a resource */
ResourceWaiting(rptr) /* Returns the # of processes in the queue */

STATREC Operations

NewStatrec(sname, type, meanflg, histflg, nbins, lowbin, highbin)
/* Creates and returns a pointer to a new statrec */

StatrecBins(srptr) /* Returns the number of bins */
StatrecBinSize(srptr) /* Returns the bin size */
StatrecEndInterval(srptr) /* Terminates a sampling interval */
StatrecHighBin(srptr) /* Returns the high bin lower bound */
StatrecHist(srptr, i) /* Returns the value of the ith histogram element */
StatrecInterval(srptr) /* Returns the sampling interval */
StatrecLowBin(srptr) /* Returns the low bin upper bound */
StatrecMaxVal(srptr) /* Returns the maximum sample value */
StatrecMean(srptr) /* Returns the mean */

Appendix 2 5 3

StatrecMinVal(srptr) /* Returns the minimum sample value */
StatrecRate(srptr) /* Returns the sampling rate */
StatrecReport(srptr) /* Generates and displays a statrec report */
StatrecReset(srptr) /* Resets the statrec */
StatrecSamples(srptr) /* Returns the number of samples */
StatrecSdv(srptr) /* Returns the standard deviation */
StatrecSetHistSz(sz) /* Set the default histogram size */
StatrecUpdate(srptr, x, y) /* Updates the statrec */
YacRand() /* Random number generator */
YacSeed(seed) /* Set the seed for yacrand */

DRIVER Operations

DriverInterrupt(retval) /* Interrupts the driver and returns retval to the user */
DriverReset() /* Resets the driver (Sets YS__Simtime to 0) */
DriverRun(timeinc) /* Activates the simulation driver returns a value */
EventListCollectStats(type, meanflg, histflg, nbin, low, high) /* Activates automatic stats collection */
EventListResetStats() /* Resest a statistics record of a queue */
EventListSelect(type, bins, bwidth) /* Selects the type of event list to use */
EventListSize() /* Returns the event list size */
EventListStatPtr(type) /* Returns ptr to evlst's statrec */
GetSimTime() /* Returns the current simulation time */

5 4

APPENDIX 3: ALPHABETICAL OPERATION LIST

ActivityArgSize(aptr) 8
ActivityCollectStats(aptr) 8
ActivityGetArg(aptr) 8
ActivityGetMyPtr() 8
ActivityGetParPtr() 8
ActivitySchedCond(aptr, condptr, blkflg) 7
ActivitySchedFlag(aptr, flgptr, blkflg) 7
ActivitySchedRes(aptr, rptr, timeinc, blkflg) 7
ActivitySchedSema(aptr, semptr, blkflg) 6
ActivitySchedTime(aptr, timeinc, blkflg) 6
ActivitySetArg(aptr, argptr, argsize) 7
ActivityStatPtr(aptr) 9
ActivityStatRept(aptr) 9
BarrierInit(bptr, i) 21
BarrierNeeded(bptr) 21
BarrierSync(bptr) 21
BarrierWaiting(bptr) 22
ConditionSetArg(cptr, aptr, asize) 27
ConditionState(cptr) 27
ConditionWait(cptr) 27
ConditionWaiting(cptr) 27
DriverInterrupt(retval) 39
DriverReset() 39
DriverRun(timeinc) 39
EventGetDelFlag(eptr) 15
EventGetState() 16
EventGetType(eptr) 15
EventListCollectStats(type, meanflg, histflg, nbin, low, high) 41
EventListResetStats() 42
EventListSelect(type, bins, bwidth) 41
EventListSize() 41
EventListStatPtr(type) 42
EventReschedCond(condptr, stval) 16
EventReschedFlag(flgptr, stval) 16
EventReschedRes(resptr, timeinc, stval) 16
EventReschedSema(semptr, stval) 16
EventReschedTime(timeinc, stval) 16
EventSetDelFlag() 16
EventSetState(stvat) 16
EventSetType(eptr, etype) 15
FlagRelease(fptr) 23
FlagSet(fptr) 23
FlagWait(fptr) 23
FlagWaiting(fptr) 23
Fset(fvptr, x) 25
Fval(fvptr) 25
GetSimTime() 40
Iset(ivptr, i) 25
Ival(ivptr) 25
NewBarrier(bname, i) 21
NewCondition(cname, exname, sv1, ..., svn, NULL, argptr, argsize) 26
NewEvent(ename, bodyname, delflg, etype) 15
NewFlag(fname) 23
NewFvar(fvname, x) 25
NewIvar(ivname, i) 25

Appendix 3 5 5

NewProcess(pname, bodyname, stksz) 11
NewResource(rname, qdisc, nserv, slice) 29
NewSemaphore(sname, i) 19
NewStatrec(sname, type, meanflg, histflg, nbins, lowbin, highbin) 34
ProcessCheckMsg(type, sender) 13
ProcessDelay(timeinc) 11
ProcessJoin() 12
ProcessReceiveMsg(buf, bytes, blkflg, type, sender) 12
ProcessSendMsg(dest, buf, bytes, blkflg, type) 12
ProcessSetPriority(procptr, p) 12
ProcessSetStkSz(stksz) 11
ProcessSleep() 11
QueueCollectStats(qptr, type, meanflg, histflg, nbin, low, high) 32
QueueResetStats(qptr) 32
QueueStatPtr(qptr, type) 32
ResourceServicing(rptr) 29
ResourceUse(rptr, timeinc) 29
ResourceWaiting(rptr) 29
SemaphoreDecr(sptr) 20
SemaphoreInit(sptr, i) 19
SemaphoreSet(sptr) 20
SemaphoreSignal(sptr) 19
SemaphoreValue(sptr) 20
SemaphoreWait(sptr) 20
SemaphoreWaiting(sptr) 20
StatrecBins(srptr) 35
StatrecBinSize(srptr) 35
StatrecEndInterval(srptr) 36
StatrecHighBin(srptr) 35
StatrecHist(srptr, i) 35
StatrecInterval(srptr) 36
StatrecLowBin(srptr) 35
StatrecMaxVal(srptr) 36
StatrecMean(srptr) 36
StatrecMinVal(srptr) 36
StatrecRate(srptr) 36
StatrecReport(srptr) 35
StatrecReset(srptr) 35
StatrecSamples(srptr) 36
StatrecSdv(srptr) 36
StatrecSetHistSz(sz) 34
StatrecUpdate(srptr, x, y) 35
YacRand() 38
YacSeed(seed) 38

