
RICE UNIVERSITY

Electrical & Computer Engineering Department

NN EE TT SS II MM
Reference Manual

Version 1.0

May 1993

J. Robert Jump
ECE Dept., Rice University

P.O. Box 1892
Houston, TX 77251-1892

email: jrj@rice.edu
Phone: (713) 527-8101 ext. 3576

This manual describes a simulator that has not been thoroughly tested and may contain
bugs. Suggestions, criticisms, questions, or reports of any problems, errors, or bugs
with the manual or the simulator are welcome and encouraged. Please send them to J. R.
Jump at the above address.

ii

Copyright 1993 by Rice University
Houston, Texas

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation
for any research purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of Rice
University not be used in advertising or in publicity pertaining to distribution of the
software without specific, written prior permission. The inclusion of this software or
its documentation in any commercial product without specific, written prior
permission is prohibited.

Rice University disclaims all warranties with regard to this software, including all
implied warranties of merchantability and fitness. In no event shall Rice University be
liable for any special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an action of contract, negligence
or other tortious action, arising out of or in connection with this use or performance of
this software.

Credits

The NETSIM code was written by J. R. Jump and Sridhar Lakshmanamurthy.

iii

TABLE OF CONTENTS

Table of Contents iii

1. Introduction 1
1.2. Interconnection Networks 1
1.2. NETSIM, YACSIM, and PARCSIM 3
1.3. NETSIM Modules 3
1.4. NETSIM Packets 4
1.5. Compiling NETSIM Simulations 5

2. NETSIM Operations 6
2.1. Network Construction Operations 6
2.2. Network Delays 7
2.3. Network Thresholds 8
2.4. Packet Operations 9
2.5. Packet Synchronization Operations 10
2.6. Network Statistics 11

3. Example Network Simulations 13
3.1. Switch #1 13
3.2. Switch #2 16

Appendix 1: Defined Symbols 18

Appendix 2: Summary of Operations 19

Appendix 3: Alphabetical Operation List 20

1

1. INTRODUCTION

This manual describes a general-purpose interconnection network simulator called NETSIM. It can be
used to construct and simulate a wide range of network models, including both direct and indirect
networks. A distinctive characteristics of NETSIM is that it is modular, allowing the user to specify
virtually any network structure by connecting together a number of network building blocks. It is
designed to simulate large networks that use modern routing techniques, such as worm-hole and
virtual-cut-through routing, but can also simulate networks that use store-and-forward routing. It can
be used as a component of a simulation testbed capable of simulating a full parallel system that is
driven by the execution of real programs. Alternatively, it can be used in a stand alone mode where
packets are generated randomly and sent through the network. In this last case the goal is usually to
characterize the network statistically.

1.2. INTERCONNECTION NETWORKS

This sections provides a brief review of interconnection networks. It describes the basic concepts of
interconnection networks including switch structure, network structure, and routing techniques.

The purpose of an interconnection network is to provide communication paths between the modules of
a parallel system. The simplest example is a bus, which provides a single path that all modules must
share. It is usually the most inexpensive type of network, but also one of the slowest, since only one
module can send data at a time. At the other extreme is the crossbar network that provides a direct
connection between every pair of modules in the system. While it can provide more communication
bandwidth than most other types of networks, it is also the most expensive, since it requires on the
order of N2 links to connect N modules. In between these two extremes are many other network
structures that provide a wide range of tradeoffs between performance and cost. They provide multiple
parallel communication paths but require some sharing of links, and paths in these networks may use
more than one link.

Interconnection networks are usually constructed from switches and links. A switch is a device with
one or more input terminals and one or more output terminals that can route data selectively from input
terminals to output terminals. Links are communication channels used to connect switch output
terminals to the input terminals of other switches.

A common choice for the internal organization of a switch is a crossbar. This type of switch can pass
data through several terminals at the same time as long as none of them are sending to the same output
terminal. The choice of which output terminal to use is made by a local controller inside the switch that
uses information from the incoming data to make the selection. In the event that data at two input
terminals are routed to the same output terminal at the same time, the switch must make a choice to
transfer the data from one of the terminals and block the other. This is a source of contention or
conflict in the network and can be a major restriction on its performance.

It is also common for networks to contain buffers for temporarily holding data that is blocked waiting
for a free output terminal. These buffers can be inserted in various ways into the switches or in the
links. Networks with buffers can hold blocked data at the switch where a conflict occurred. If buffers
are not used and there is a conflict for an output terminal of a switch, the transfer from the input
terminal that is not chosen is usually aborted, and the source module that initiated the transfer tries
again.

There are two major categories of interconnection networks, direct networks and indirect networks.
Direct networks have one switch associated with each module to be connected. Each switch has one
terminal and link used to connect it to the module and one or more terminals with links to connect it

Introduction 2

directly to other switches in the network. The network used to interconnect the processors of a
hypercube multicomputer is an example of a direct network. Fig. 1. illustrates an 8-node hypercube
organization. Note that the number of links that must be used to pass data from one processor to
another is different for different pairs of processors. Some pairs are adjacent in the network (i.e.,
share a link), and can communicate by passing data through only one link. Other pairs can only
communicate through paths of several links.

Switch

Processor

Link

Fig. 1. 8-Node Direct Network (Hypercube).

In an indirect network, some switches are connected to modules, but some are not. That is, in addition
to the switches that connect to both modules and other switches, there are also switches that only
connect to other switches. Usually the switches in an indirect network are connected into stages as
shown in Fig. 2. This type of network is called a multistage interconnection network. Data enters the
network by moving from a module into a switch in stage 1. Then it proceeds to move from switches
in one stage to switches in the next stage until it reaches the other side of the network. In networks
with a regular structure, such as the one shown in Fig. 2, all data must pass through every stage, so
that all packets pass through the same number of switches before reaching their destinations.

Stage 1 Stage 2 Stage 3

Switch

Processor

Link

Fig. 2. 8-Node Indirect Network (Perfect Shuffle).

A routing protocol is a mechanism for controlling the movement of data through the switches and links
of a network In most routing protocols, data is organized into packets consisting of several smaller
units of data called flits. A flit is the smallest unit of data that can be transferred between two switches
in a single cycle. It has a fixed size determined by the number of wires in the link. The first flit, called
the head flit, of a packet contains routing information used by the switches to select output terminals.
When a packet moves through a network, its head flit goes first and establishes a path by selecting
output terminals of the switches it passes through. The flits that follow the head flit do not contain
routing information and must follow the path established by the head. The last flit of a packet is called
the tail of the packet, and it tears down the path by freeing each switch output terminal it passes
through.

Introduction 3

Since only one flit can pass through a link at a time, the flits of a packet can become distributed over
several buffers. There are two common routing protocols distinguished by the way the flits of a packet
can be spread over buffers in the network. The first routing protocol is called store-and-forward
routing, because it moves all of the flits into a buffer before it moves any flits of the packet out of the
buffer. In store-and-forward routing the flits of a packet are spread over at most two buffers. The
second routing protocol is characterized by the property that the head and following flits can leave a
buffer as soon as they have a free output terminal and space available in the next buffer; the head does
not need to wait until its tail flit catches up before it moves to the next buffer. The flits of a packet can
become spread out over several buffers in the network. This type of routing has been characterized in
two ways. If each switch has enough buffer space to hold an entire packet and a head flit does not
start to move into a new buffer until there is enough free space in that buffer to hold an entire packet,
the routing protocol is called virtual-cut-through routing. If the head flit can start moving as soon as
there is at least one free flit position in the next buffer, the protocol is called worm-hole routing. In
some definitions of worm-hole routing the amount of buffer space is assumed to be small, frequently
one or two flits.

1.2. NETSIM, YACSIM, AND PARCSIM

NETSIM is an extension of the discrete event simulator YACSIM. Therefore, the user must be
familiar with YACSIM in order to use NETSIM. This manual only discusses the NETSIM
extensions. The user should consult the YACSIM Reference Manual for a description of YACSIM
objects and operations.

NETSIM and YACSIM are implemented by providing a set of data structures and subroutines in the C
programming language. Therefore, to write a NETSIM simulation, one writes a C program that
declares NETSIM and YACSIM objects and calls the subroutines provided to manipulate these objects.
The instructions for running a NETSIM simulation are exactly the same as for a YACSIM simulation
and are given in the YACSIM Reference Manual.

NETSIM is an integral part of a parallel architecture simulator called PARCSIM, although the full
structure of PARCSIM need not be used to simulate networks. PARCSIM adds processor and
memory modules, as well as the NETSIM capability, to YACSIM. This allows the user to specify a
complete parallel system with processors, memory modules, and an interconnection network.
PARCSIM along with a number of profilers constitute the Rice Parallel Processing Testbed (RPPT).
The profilers are used to instrument a parallel program whose execution on a parallel system can then
be simulated with PARCSIM. In this way, interconnection networks can be studied with packets
generated by the execution of real programs. Alternatively, NETSIM alone can simulate
interconnection networks with the packets generated by a random process as has been done in many
previous studies.

1 . 3 . NETSIM MODULES

While an m×n switch was seen as a basic building block in Section 1.1, there are several ways to
implement switches, and different implementation choices can have a significant effect on the
performance of a network. Therefore, the choice of switch implementation is an important design
parameter and one we might want to investigate using NETSIM. To avoid providing a large number
switch types as basic NETSIM modules, and because we can not predict all types of switches that
might be useful, NETSIM provides modules that are more primitive than switches and from which a
large variety of switches can be constructed. NETSIM provides two such modules, multiplexers and
demultiplexers, that along with buffers are sufficient to construct most switch and networks of interest.

Introduction 4

The basic NETSIM modules are described below:

Multiplexers: These are multi-input, single-output modules used to merge data. A multiplexer
is the module that resolves conflict when two of its input terminals have data to transfer to its
output terminal at the same time. This arbitration is currently implemented as a semaphore with a
FIFO queuing discipline.

Demultiplexers: These are single-input, multi-output modules used to route data along one of
several paths. This module is the one that implements the routing mechanism of a network. It
uses data in the head flit of a packet at its input terminal to select which one of its output terminals
the packet will pass through. The user can specify the routing algorithm used to make this choice.

Buffers: These are modules used to provide temporary storage for flits as they move through a
network. They are currently implemented as finite FIFO queues. The user can specify the
maximum number of flits a buffer can hold.

Network Ports: These are single-input, single-output modules used as interface units between a
network and its external environment. There are two types of network ports. Input ports
provide an interface through which packets are passed into the network, and packets are removed
from the network through output ports.

Symbols that can be used to represent these modules in a network diagram are shown in Fig. 3.

Buffer

...

Multiplexer

...

Demultiplexer

Output PortInput Port

Fig. 3. Basic Network Module Symbols.

To build a simulation model for a network, the user creates the modules by calling NETSIM routines
that allocate descriptors for the modules and return pointers to those descriptors. To connect two
modules, the user calls a connection routine with pointers to the modules' descriptors as arguments.
An output terminal of any of the modules except an output port can be connected to an input terminal of
any module except an input port.

1.4. NETSIM PACKETS

Data is sent through a network in the form of packets consisting of several flits. Each packet contains
routing information used by the network's demultiplexers to route it through the network. There are
NETSIM operations for creating packets, putting them into a network through an input port, and
removing them from the network through an output port. The simulator automatically measures the
time each packet spends in the network.

In PARCSIM simulations, packets may be part of a larger data unit called a message. To facilitate the
simulation of messages, each packet provides a link back to the message to which it belongs. This,
along with sequence numbers that can be assigned to packets, can be used by routines external to
NETSIM to decompose messages into packets before transmission through a network and to
reassemble received packets into messages.

Introduction 5

Each packet is implemented by two YACSIM events, one for the front end or head of the packet and
one for the rear end or tail of the packet. The event for the head of the packet establishes a path
through the network using the routing functions of the demultiplexers and routing information in the
packet. The event for the tail of the packet manages the distribution of flits between a packet's head
and tail, and follows the path established by the head event. The creation and scheduling of these
events is done automatically when a packet is sent into the network. They terminate when the packet's
flits reach their destination port.

1.5. COMPILING NETSIM SIMULATIONS

To compile a simulation program under the UNIX operating system, you need access to two files,
sim.h and netsim.o. The file sim.h should be included in all the files that make up your program. It
contains useful pre-defined symbols, declarations of all the YACSIM and NETSIM operations
available to the user, and definitions of the simulation object types. The file netsim.o is the library of
all YACSIM and NETSIM operations.

To compile a simulation program, use a command line of the form:

cc "your options for the compiler" "your files" netsim.o

You may include any options you want for the C compiler such as -g, -o, etc. To use this command,
you must put sim.h and netsim.o where the compiler can find them, for example in the same directory
as the source code for the simulation program, or use full path names for them.

An alternative way to compile a simulation program is to use a command line of the form:

netsim "your options for the compiler" "your files"

To use this form, both sim.h and netsim.o, along with the command file netsim, must all be in the
same directory, and that directory must have been passed to the command program netsim when it was
compiled. The full name of this directory must be on your search path.

6

2. NETSIM OPERATIONS

This section describes of NETSIM's user operations. Since NETSIM is an extension of YACSIM all
of these operations must be called from within YACSIM programs.

2.1. NETWORK CONSTRUCTION OPERATIONS

These are the operations used to create and interconnect network modules. For each of the five types
of modules, there is an operation for constructing an instance of that module. There is also a general
operation for connecting an output terminal of one module to an input terminal of another.

BUFFER *NewBuffer(id, size)
int id;
int size;

This operation creates and returns a pointer to a new network buffer. It assigns the buffer the
number id used to identify the buffer in trace statements. Size designates the maximum number
of flits that can be stored in the buffer.

MUX *NewMux(id, fanin)
int id;
int fanin;

This operation creates and returns a pointer to a new multiplexer with fanin input terminals and
identifier id.

DEMUX *NewDemux(id, fanout, routingfcn)
int id;
int fanout;
rtfunc routingfcn;

This operation creates and returns a pointer to a new demultiplexer with fanout output terminals
and identifier id. It also assigns the function routingfcn to be used by the demultiplexer in
routing packets to one of its output terminals. The type rtfunc is a pointer to a function with
three arguments that returns an integer. The routing function is called with the following
arguments each time a packet enters a demultiplexer:

src - a pointer to an integer whose value is the id of the source processor sending the
packet

dest - a pointer to an integer whose value is the id of the destination processor receiving the
packet

demuxid - an integer whose value is the id of the demultiplexer.

The user must provide a function that can compute the demultiplexer output terminal from these
parameters. The first two arguments point to fields in a packet descriptor. They are passed as
pointers so that the routing function can modify the values as the packet moves from node to
node in the network. For example, one way to implement the classical bit-directed routing
algorithm for perfect shuffle networks is use the least significant bit of the destination at each
stage to determine which switch output to use. That bit is then discarded and the destination
bits shifted so that the next stage will find the next most significant bit in the least significant bit
position.

Operations 7

IPORT *NewIPort(id, size)
int id;
int size;

This operation creates and returns a pointer to a new network input port with identifier id and
the capacity to buffer up to size packets.

OPORT *NewOPort(id, size)
int id;
int size;

This operation creates and returns a pointer to a new network output port with identifier id and
the capacity to buffer up to size packets.

void NetworkConnect(src, dest, src_index, dest_index)
MODULE *src;
MODULE *dest;
int src_index;
int dest_index;

This operation is used to construct an interconnection network by interconnecting the basic
modules (i.e., buffers, multiplexers, demultiplexers, and ports). It connects an output terminal
of the module pointed to by src to an input terminal of the module pointed to by dest. If the
source is a demultiplexer, then src_index specifies which output terminal is used. Since all
other types of modules have only one output terminal, this parameter is ignored for them. The
parameter dest_index designates an input terminal for the destination module if it is a
multiplexer. It is ignored for all other types of modules.

2.2. NETWORK DELAYS

The operations described here are used to specify the various delays that affect the movement of flits
through the network. All delays are an integral multiple of a basic cycle time. This cycle time can be
viewed as the period of a system clock used to synchronize the operation of the network.

The head flit experiences a delay at every module it passes through. The flits that follow the head only
experience a delay, called a flit delay, in moving from one buffer to another. It is assumed that the flit
delay parameter is long enough to allow a flit to move between two buffers and any multiplexers or
demultiplexers between them. The extra delay experienced by the head flit as it moves through
multiplexers and demultiplexers is overhead due to the work required to perform routing and
arbitration.

void NetworkSetCycleTime(x)
double x;

Execution of this operation sets the network cycle time to x. All other delays are integer
multiples of the cycle time. The default cycle time is 1.0. This value is used if
NetworkSetCycleTime() is never called. It must only be called once and before the first call to
DriverRun() that starts the simulation.

void NetworkSetFlitDelay(d)
int d;

Execution of this operation sets the time required to move a flit from one buffer or port to
another buffer or port to d times the network cycle time. This value is used for all buffers and
ports in the simulated network. The default value is 1, and it will be used if the user does not
explicitly change it. If the user does set the flit delay, this must be done before the first call to
DriverRun().

Operations 8

void NetworkSetMuxDelay(d)
int d;

Execution of this operation sets the time required to move the head flit through a multiplexer to
d times the cycle time. The default value is 0. This operation must be called before the first
call to DriverRun().

void NetworkSetArbDelay(d)
int d;

Execution of this operation sets the time for a multiplexer to arbitrate between competing flits to
d times the flit delay. The default value is 0. This operation must be called before the first
call to DriverRun().

void NetworkSetDemuxDelay(d)
int d;

Execution of this operation sets the time required to execute the routing function and then move
a flit through a demultiplexer to d times the flit delay. The default value is 0. This operation
must be called before the first call to DriverRun().

void NetworkSetPktDelay(d)
int d;

This operations determines the time to move a packet into an input port or out of an output port.
That time is dependent on the number of flits in the packet and is given by

d × (number of flits in the packet) × (network cycle time).

The default value is 0. This operation must be called before the first call to DriverRun().

2.3. NETWORK THRESHOLDS

There are two parameters that determine the flow control technique that will be used to move flits
through a simulated network. The first of these is the number of flit positions in a buffer that must be
free before a new packet can start to enter that buffer. The second is a flag that specifies whether or
not a packet's tail flit must be in the same buffer as its head flit before the head flit can move out of the
buffer. These parameters can be used to specify the routing mode used by the network. For example,
the three most common routing modes are specified in the following way:

Store-and-Forward: Threshold = Packet Size; Head waits for its tail

Virtual Cut Through: Threshold = Packet Size; Head doesn't wait for its tail

Worm Hole: Threshold < Packet Size (usually 1); Head doesn't wait for its tail

void NetworkSetThresh(t)
int t;

The threshold of a buffer is the number of flit positions that must be free before another packet
can start to enter the buffer. This operation sets the threshold for all buffers to t. The default
value is 1. This operation must be called before the first call to DriverRun().

void NetworkSetWFT(i)
int i;

This operations determines whether or not the head flit of a packet will wait in a buffer until its
tail flit is also in that buffer before attempting to leave the buffer. The argument i has two

Operations 9

possible values: WAIT if heads are to wait for their tails, and NOWAIT if not. The default
value is NOWAIT. This operation must be called before the first call to DriverRun().

2.4. PACKET OPERATIONS

These operations are used to create and initialize packets, to send them into a network through an input
port, and to remove them from a network through an output port.

PACKET *NewPacket(seqno, msgptr, size, src, dest)
int seqno;
MESSAGE *msgptr;
int size;
int src;
int dest;

This operation creates and returns a pointer to a new packet and assigns it values given by the
arguments. Seqno can be used to order the packets of a message. Msgptr is a pointer to the
packet's message, and size is the number of flits in the packet. Src and dest are identifiers of
the sending and receiving processors for the packet. They are used by the demultiplexer
routing functions to move the packet through the network.

double PacketSend(pkt, port)
PACKET *pkt;
IPORT *port;

This operation attempts to send the packet pointed to by pkt into a network through the network
input port pointed to by port. If the operation fails (because the port's queue is full), it returns
-1.0; otherwise, it returns the time the network needed to move the packet into the port. Note
that this operation returns at the same simulation time it was called and before the packet is
actually moved into the network. The activity that called PacketSend() can use its return value
to delay for the send time, or it can continue and overlap its future operation with the movement
of the packet into the port (for example, to simulate DMA).

PACKET *PacketReceive(port)
OPORT *port;

This operation attempts to remove a packet from a network through the port pointed to by port.
If there are no packets available at this port, it returns the NULL pointer.

PKTDATA*PacketGetData(pkt)
PACKET *pkt;

This operation is used to access the data in a packet. It returns a pointer to a structure of type
PKTDATA that contains the packet's data. This structures is defined as follows:

struct PKTDATA {
 int seqno; /* User supplied ID for sequencing a message's packets */
 MESSAGE *mesgptr; /* A pointer to the message that this packet belongs to */
 int pktsize; /* Number of flits in the packet */
 int srccpu; /* The ID of the CPU sending the packet */
 int destcpu; /* The ID of the CPU receiving the packet */
 double recvtime; /* Time to remove the packet from an output port */
 double createtime; /* Time the packet was created */
 double nettime; /* Time the packet spent in the network */
 double blktime; /* Time the packet was blocked in the network */
 double oporttime; /* Time the packet spent waiting in an output port */
};

Operations 1 0

The first five of these fields are set when the packet is created with NewPacket(). The value of
the recvtime field is the time required to move the packet out of the output port.
PacketReceive() returns a packet pointer at the same simulation time that it is called and before
the packet is actually removed from the port. Recvtime can be added to the current simulation
time to find the earliest time at which the data is really available. The activity that called
PacketReceive() can use this value to delay for the receive time, or it can continue and overlap
its future operation with the movement of the packet out of the port (for example, to simulate
DMA).

The last four fields are variables used to measure the time a packet spends in various states as it
moves through the network. They are defined in the section on network statistics below.

void PacketFree(pkt)
PACKET *pkt;

This operation returns the packet pointed to by pkt to a pool of free packets. It also updates
those network statistics records that have been activated (Section 2.6).

2.5. PACKET SYNCHRONIZATION OPERATIONS

The operations described here provide the user with a means to synchronize the movement of packets
into and out of a network. They can be used to test the status of a port, and they provide access to
semaphores within the ports that can be used to synchronize sending and receiving processes.

SEMAPHORE *IPortSemaphore(port)
IPORT *port;

This operation returns a pointer to a semaphore within the input port pointed to by port. If the
port is full and can not accept new packets, a sending activity can wait on this semaphore.
When space becomes available, the port will signal the semaphore and release the activity.

int IportSpace(port)
IPORT *port;

This operation returns the number of packets that can be sent to the input port pointed to by
port before its queue becomes full.

int IportGetId(port)
IPORT *port;

 This operation returns the user assigned id of the port pointed to by port.

SEMAPHORE *OPortSemaphore(port)
OPORT *port;

This operation returns a pointer to a semaphore within the port pointed to by port. If the port is
empty, a sending activity can wait on this semaphore. When a packet arrives in the port, it will
signal the semaphore and release the waiting activity.

int OportPackets(port)
OPORT *port;

This operation returns the number of packets that are currently queued at the network output
port pointed to by port.

Operations 1 1

int OportGetIdport)
OPORT *port;

 This operation returns the user assigned id of the port pointed to by port.

2.6. NETWORK STATISTICS

NETSIM can generate several useful statistics during a simulation. They are implemented with
YACSIM statistics records, so they are capable of automatically calculating means and histograms for
each of the statistics that are collected. Statistics can be collected on the following variables:

NETTIME: The time a packet spends in the network, defined as the difference between the
time the head flit of the packet enters an input port and the time the tail flit of that
packet leaves an output port. The variable is also called the packet latency.

BLKTIME: The total time a packet is blocked while in the network. This includes time the
head flit of the packet waits for a multiplexer, for free buffer space, and for
packets ahead of it in a buffer to move out of that buffer. It is a measure of the
congestion in the network.

OPORTTIME: The time a packet spends in an output port waiting for an activity to take it out by
executing a PacketReceive() operation. It is measured from the time the packet's
tail enters the port until its head starts to leave the port.

MOVETIME: The time a packet is making progress through the network. It is defined as

NETTIME - BLKTIME - OPORTTIME

This variable represents an ideal latency. That is, it is a measure of how much
time the packet would spend in the network if it were never blocked, and if it
were removed from the network as soon as it arrived at an output port.

CREATETIME: This is the time at which it the packet was created by NewPacket(). Subtracting
this from the current simulation time just before freeing the packet with
PacketFree() will give the life time of the packet.

Each of the first four variables above is said to be active if the packet is currently accumulating time for
that variable. Otherwise the variable is said to be idle. These variables are updated for every packet as
it switches from active and idle. The variable CREATETIME is active the whole time the packet
exists.

All five variables can be accessed after a packet has been received. They are available as fields in a
structure of type PKTDATA associated with each packet. This structure is obtained with the operation
PacketGetData() as described in Section 2.4.

There are five YACSIM statistics records built into NETSIM and used to collect statistics on the
variables defined above. They are updated automatically with the total time the associated variable was
active whenever the packet is freed by calling PacketFree(). Note that these statistics records
are not updated until the packet is freed, and are not updated at all if it is never
freed.

The following operations are used to activate and access the automatic statistics collection features of
NETSIM. Statistics records and their operations are defined in the YACSIM Reference Manual.

Operations 1 2

void NetworkCollectStats(type,histflg,nbin,lowbin,highbin)
int type;
int histflg
int nbin;
double lowbin;
double highbin;

This operation activates the automatic collection of network statistics. Five different statistics
records exist and are specified by the first parameter type, which can have any one of the
following five values:

NETTIME Activate collection of "total time in the network" statistics
BLKTIME Activate collection of "time blocked in the network" statistics
OPORTTIME Activate collection of "time waiting in an output port" statistics
MOVETIME Activate collection of "time packet moving" statistics
LIFETIME Activate collection of "time packet is alive" statistics

All of the five are point statistics records with the calculation of means enabled. Histograms
can be enabled or not by setting the parameter histflg to HIST or NOHIST. If histograms are
enabled, the number of bins will be nbins+2 with nbins equal-sized bins between lowbin and
highbin and an overflow bin on each end.

void NetworkResetStats()

This operation resets all five statistics records.

void NetworkStatPtr(type)
int type;

This operation returns a pointer to the network statistics record specified by the type parameter.
The five possible values for type are the same as for the NetworkCollectStats() operation. The
chapter on statistics records in the YACSIM Reference Manual describes the various operations
that can be performed on a statistics record once you have a pointer to it.

void NetworkStatRept()

Although standard or customized reports can be generated for any statistics record, this
operation generates a simplified presentation of the statistics automatically collected by
NETSIM during a simulation. It prints the following values:

Network throughput: The total number of packet passed through the network divided
by the total time of the simulation. This measure is also available as the rate of the "total
time in the network" statistics record.

Average packet latency: The mean of the NETIME variable.

Ideal latency: The mean of the MOVETIME variable.

Normalized latency: The ratio of ideal latency to average latency.

Average time packets blocked in the network: The mean of the BLKTIME
variable.

Average time packets wait to be received: The mean of the OPORTTIME variable.

Average packet lifetime: The mean of the lifetimes of all packets generated during a
simulation.

1 3

3. EXAMPLE NETWORK SIMULATIONS

This section provides two examples of NETSIM simulations. Although they are for very simple
networks containing only a few modules, they illustrate the use of most of the NETSIM modules and
operations.

3.1. SWITCH #1

This network is a 2 by 2 switch with buffers on the output terminals. It is realized by connecting a 2-
input multiplexer to a 2-output demultiplexer as shown in Fig. 4. This is essentially a bus where the
connection between the multiplexer and demultiplexer must be used in all transfers. Therefore only
one transfer can take place at a time.

Fig. 4. 2×2 Switch Realized as a Bus.

Program Listing:

#include "sim.h"

IPORT *inport0;
IPORT *inport1;
OPORT *outport0;
OPORT *outport1;

int npkt = 6;
int pktsz = 2;
int bufsz = 2;
double send_delay = 1.25;
double recv_delay = 1.75;

int router(src,dest,id)
int *src;
int *dest;
int id;
{
 return *dest; /* Trivial router, uses destination directly */
}

void UserProcessS()
/* There is one of these processes at each input port of the network. It simply */
/* generates packets and sends them into the network. If the input port is */
/* full, the process waits in the port's semaphore until space is available. */
/* After sending a packet, the process delays for the amount of time it would */
/* take to move the packet into the input port plus a user specified delay. */
{
 PACKET *pkt;
 IPORT *inport;
 int i, s, k=0;
 double senddelay;

 if ((i = ActivityArgSize(ME)) == 1) { /* If attached to port 1 */
 s = i; /* Remember the source module id */
 inport = inport1; /* Remember the port id */

Examples 1 4

 i = 100; /* Number port 1 packets from 100 */
 }
 else { /* Else attached to port 0 */
 s = 0; /* Remember the source module id */
 inport = inport0; /* Remember the port id */
 i = 200; /* Number port 0 packets from 200 */
 }
 while (npkt > 0) { /* Send npkt packets into the net */
 pkt = NewPacket(i+k,NULL,pktsz); /* Get a new packet */
 senddelay = PacketSend(pkt,inport,s,k%2); /* Try to send it into the net */
 if (senddelay >= 0.0) { /* If the send was succussful */
 npkt--; /* One fewer packet to send */
 ProcessDelay(senddelay); /* Delay for the packet move time */
 printf("Packet %d delivered to net at time %g\n",i+k,GetSimTime());
 k++; /* Used to generate packet numbers */
 }
 else SemaphoreWait(IPortSemaphore(inport)); /* Otherwise wait in the semaphore */
 ProcessDelay(send_delay); /* Delay for extra time */
 }
}

void UserProcessR()
/* There is one of these processes at each output port of the network. It waits */
/* until a packet arrives at the port and then removes it from the network. */
{
 PACKET *pkt;
 OPORT *outport;
 PKTDATA *pktdata;
 int i,j,k=0;

 if ((i = ActivityArgSize(ME)) == 1) { /* If attached to port 1 */
 outport = outport1; /* Remember the port id */
 }
 else { /* Else attached to port 0 */
 outport = outport0; /* Remember the port id */
 }
 while (1) {
 if (OPortPackets(outport)) { /* If there is a packet in the port */
 pkt = PacketReceive(outport); /* Take it out of the network */
 pktdata = PacketGetData(pkt); /* Get a pointer to its data */
 printf("Receiving packet %d at time %g\n",pktdata->seqno,GetSimTime());
 printf(" Life time = %g; Total time in the net = %g\n",
 GetSimTime()-pktdata->createtime, pktdata->nettime);
 printf(" Time blocked in the net = %g, Time in an output port = %g\n",
 pktdata->blktime, pktdata->oporttime);
 PacketFree(pkt); /* Release the packet */
 }
 else SemaphoreWait(OPortSemaphore(outport));/* Otherwise wait in th semaphore */
 ProcessDelay(recv_delay); /* Delay for extra time */
 }
}

UserMain(argc, argv)
int argc;
char** argv;
{
 PROCESS* process;
 BUFFER *buf0, *buf1;
 MUX *mux;
 DEMUX *demux;

 if (argc > 1) /* 1st argument is the number of packets */
 npkt = atoi(argv[1]);
 if (argc > 2) /* 2nd argument is the packet size */
 pktsz = atoi(argv[2]);

Examples 1 5

 if (argc > 3) /* 3rd argument is the buffer size */
 bufsz = atoi(argv[3]);
 if (argc > 4) /* 4th argument is the extra send delay */
 send_delay = (double)atoi(argv[4]);
 if (argc > 5) /* 5th argument is the extra receive delay */
 recv_delay = (double)atoi(argv[5]);

 NetworkSetFlitDelay(1); /* All delays set to 1 times cycle time */
 NetworkSetMuxDelay(1);
 NetworkSetArbDelay(1);
 NetworkSetDemuxDelay(1);
 NetworkSetPktDelay(1);

 inport0 = NewIPort(10, 2); /* Create input ports */
 inport1 = NewIPort(11, 2);
 mux = NewMux(20, 2); /* Create multipolexer */
 demux = NewDemux(30, 2, router); /* Create demultiplexer */
 buf0 = NewBuffer(40, bufsz); /* Create buffers */
 buf1 = NewBuffer(41, bufsz);
 outport0 = NewOPort(50, 2); /* Create ouput ports */
 outport1 = NewOPort(51, 2);

 /* Connect modules to make the network: */
 /* This network is a 2 x 2 switch realized as a bus with buffers on its outputs */
 /* It consists of a 2-input MUX followed by a 2-ouput demux */

 NetworkConnect(inport0,mux,0,0); /* Input port 0 connected to terminal 0 of mux */
 NetworkConnect(inport1,mux,0,1); /* Input port 1 connected to terminal 1 of mux */

 NetworkConnect(mux,demux,0,0); /* Mux output connected to demux input */

 NetworkConnect(demux,buf0,0,0); /* Demux terminal 0 connected to buffer 0 */
 NetworkConnect(demux,buf1,1,0); /* Demux terminal 1 connected to buffer 1 */

 NetworkConnect(buf0,outport0,0,0); /* Buffer 0 connected to output port 0 */
 NetworkConnect(buf1,outport1,0,0); /* Buffer 1 connected to output port 1 */

 process = NewProcess("UserSend0",UserProcessS,0); /* Create sender process 0 */
 ActivitySetArg(process,NULL,0); /* Pass process its id */
 ActivitySchedTime(process, 0.0, INDEPENDENT); /* Schedule process */

 process = NewProcess("UserSend1",UserProcessS,0); /* Create sender process 1 */
 ActivitySetArg(process,NULL,1); /* Pass process its id */
 ActivitySchedTime(process, 0.0, INDEPENDENT); /* Schedule process */

 process = NewProcess("UserRecv0",UserProcessR,0); /* Create receiver process 0 */
 ActivitySetArg(process,NULL,0); /* Pass process its id */
 ActivitySchedTime(process, 0.0, INDEPENDENT); /* Schedule process */

 process = NewProcess("UserRecv1",UserProcessR,0); /* Create receiver process 1 */
 ActivitySetArg(process,NULL,1); /* Pass process its id */
 ActivitySchedTime(process, 0.0, INDEPENDENT); /* Schedule process */

 NetworkCollectStats(NETTIME,NOHIST,0.0,0.0); /* Collect Statistics */
 NetworkCollectStats(BLKTIME,NOHIST,0.0,0.0);
 NetworkCollectStats(OPORTTIME,NOHIST,0.0,0.0);
 NetworkCollectStats(MOVETIME,NOHIST,0.0,0.0);
 NetworkCollectStats(LIFETIME,NOHIST,0.0,0.0);

 DriverRun(0.0); /* Start the simulation */

 NetworkStatRept(); /* Print statistics */
}

Examples 1 6

3.2. SWITCH #2

This network is also a 2 by 2 switch, but it is realized as a crossbar with buffers on its input terminals
as show in Fig. 5. It uses two multiplexers with their outputs connected to the inputs of two
demultiplexers providing four possible paths from input ports to output ports. Therefore, two packets
could be transmitted through the switch at the same time if they are directed to different output
terminals.

Fig. 5. 2×2 Switch Realized as a Crossbar.

Program Listing:

The only differences between this program and the one for Switch #1 are in the routine UserMain
listed below.

UserMain(argc, argv)
int argc;
char** argv;
{
 PROCESS* process;
 BUFFER *buf0, *buf1;
 MUX *mux0, *mux1;
 DEMUX *demux0, *demux1;

 if (argc > 1) /* 1st argument is the number of packets */
 npkt = atoi(argv[1]);
 if (argc > 2) /* 2nd argument is the packet size */
 pktsz = atoi(argv[2]);
 if (argc > 3) /* 3rd argument is the buffer size */
 bufsz = atoi(argv[3]);
 if (argc > 4) /* 4th argument is the extra send delay */
 send_delay = (double)atoi(argv[4]);
 if (argc > 5) /* 5th argument is the extra receive delay */
 recv_delay = (double)atoi(argv[5]);

 NetworkSetFlitDelay(1); /* All delays set to 1 times cycle time */
 NetworkSetMuxDelay(1);
 NetworkSetArbDelay(1);
 NetworkSetDemuxDelay(1);
 NetworkSetPktDelay(1);
 NetworkSetWFT(NOWAIT);

 inport0 = NewIPort(10, 2); /* Create input ports */
 inport1 = NewIPort(11, 2);
 buf0 = NewBuffer(20, bufsz,1); /* Create buffers */
 buf1 = NewBuffer(21, bufsz,1);
 demux0 = NewDemux(30, 2, router); /* Create demultiplexers */
 demux1 = NewDemux(31, 2, router);
 mux0 = NewMux(40, 2); /* Create multiplexers */
 mux1 = NewMux(41, 2);
 outport0 = NewOPort(50, 2); /* Create ouput ports */
 outport1 = NewOPort(51, 2);

 /* Connect modules to make the network: */

Examples 1 7

 /* This network is a 2 x 2 switch realized as a crossbar with buffers on its */
 /* outputs. It consists of two 2-output demultiplexers followed by two 2-input */
 /* multiplexers */

 NetworkConnect(inport0,buf0,0,0); /* Input port 0 connected to buffer 0 */
 NetworkConnect(inport1,buf1,0,0); /* Input port 1 connected to buffer 1 */

 NetworkConnect(buf0,demux0,0,0); /* Buffer 0 connected to demux 0 */
 NetworkConnect(buf1,demux1,0,0); /* Buffer 1 connected to demux 1 */

 NetworkConnect(demux0,mux0,0,0); /* Demux 0, term 0 connected to mux 0, term 0 */
 NetworkConnect(demux0,mux1,1,0); /* Demux 0, term 1 connected to mux 1, term 0 */
 NetworkConnect(demux1,mux0,0,1); /* Demux 1, term 0 connected to mux 0, term 1 */
 NetworkConnect(demux1,mux1,1,1); /* Demux 1, term 1 connected to mux 1, term 1 */

 NetworkConnect(mux0,outport0,0,0); /* Mux 0 connected to output port 0 */
 NetworkConnect(mux1,outport1,0,0); /* Mux 1 connected to output port 1 */

 process = NewProcess("UserSend0",UserProcessS,0); /* Create sender process 0 */
 ActivitySetArg(process,NULL,0); /* Pass process its id */
 ActivitySchedTime(process, 0.0, INDEPENDENT); /* Schedule process */

 process = NewProcess("UserSend1",UserProcessS,0); /* Create sender process 1 */
 ActivitySetArg(process,NULL,1); /* Pass process its id */
 ActivitySchedTime(process, 0.0, INDEPENDENT); /* Schedule process */

 process = NewProcess("UserRecv0",UserProcessR,0); /* Create receiver process 0 */
 ActivitySetArg(process,NULL,0); /* Pass process its id */
 ActivitySchedTime(process, 0.0, INDEPENDENT); /* Schedule process */

 process = NewProcess("UserRecv1",UserProcessR,0); /* Create receiver process 1 */
 ActivitySetArg(process,NULL,1); /* Pass process its id */
 ActivitySchedTime(process, 0.0, INDEPENDENT); /* Schedule process */

 NetworkCollectStats(NETTIME,NOHIST,0.0,0.0); /* Collect Statistics */
 NetworkCollectStats(BLKTIME,NOHIST,0.0,0.0);
 NetworkCollectStats(OPORTTIME,NOHIST,0.0,0.0);
 NetworkCollectStats(MOVETIME,NOHIST,0.0,0.0);
 NetworkCollectStats(LIFETIME,NOHIST,0.0,0.0);

 DriverRun(0.0); /* Start the simulation */

 NetworkStatRept(); /* Print statistics */
}

1 8

APPENDIX 1: DEFINED SYMBOLS

This appendix list symbols defined in the file sim.h that are used as arguments to NETSIM operations.
They are described in the discussions of the operations that use them and are only listed here.

Routing Modes:

NOWAIT 0
WAIT 1

Statistics Constants:

NETTIME 1
BLKTIME 2
OPORTTIME 3
MOVETIME 4
LIFETIME 5

HIST 2 (Also used in YACSIM)
NOHIST 3 (Also used in YACSIM)

1 9

APPENDIX 2: SUMMARY OF OPERATIONS

Network Construction Operations

BUFFER *NewBuffer(id,sz) /* Creates & returns a pointer to a new network buffer */
MUX *NewMux(id,fanin) /* Creates & returns a pointer to a new multiplexer */
DEMUX *NewDemux(id,fanout,routingfcn) /* Creates & returns a pointer to a new demux */
IPORT *NewIport(id,sz) /* Creates and returns a pointer to a new iport */
OPORT *NewOPort(id,sz) /* Creates and returns a pointer to a new oport */
void NetworkConnect(source, dest, src_index, dest_index) /* Connects two modules */

Network Delay Operations

void NetworkSetCycleTime(x) /* Sets the cycle time. All other times a multiple of it */
void NetworkSetFlitDelay(d) /* Sets the flit delay */
void NetworkSetMuxDelay(d) /* Sets the MUX delay */
void NetworkSetArbDelay(d) /* Sets the multiplexer arbitration time */
void NetworkSetDemuxDelay(d) /* Sets the demultplexer routing delay */
void NetworkSetPktDelay(d) /* Sets the packet delay */

Network Threshold Operations

void NetworkSetThresh(i) /* Sets buffer threshold */
void NetworkSetWFT(t) /* Sets wait-for-tail flag: t = WAIT or NOWAIT */

Packet Operations

PACKET *NewPacket(seqno,msgptr,sz,src,dest) /* Creates & returns a ptr to a packet */
double PacketSend(pkt,port) /* Sends a packet through a network input port */
PACKET *PacketReceive(port) /* Receives a packet from a network output port */
PKTDATA *PacketGetData(pkt) /* Returns a pointer to a packet's user accessible data */
void PacketFree(pkt) /* Returns a packet to the pool of free packets */

Packet Synchronization Operations

SEMAPHORE *IPortSemaphore(iptr) /* Returns a pointer to an iport's PortReady sema */
int IPortSpace(port) /* Returns # of free packet spaces in an iport */
int IPortGetId(port) /* Returns user assigned id of an iport */
SEMAPHORE *OPortSemaphore(optr) /* Returns a pointer to an oport's semaphore */
int OPortPackets(port) /* Returns # of packets available in an oport */
int OPortGetId(port) /* Returns the user assigned ID of an oport */

Network Statistics Operations

void NetworkCollectStats(type,histflg,nbin,low,high) /* Activates automatic statistics collection for the network*/
void NetworkResetStats() /* Resets all network statistics records */
STATREC *NetworkStatPtr(type) /* Returns a pointer to a network statistics record */
void NetworkStatRept() /* Prints a report of network statistics */

2 0

APPENDIX 3: ALPHABETICAL OPERATION LIST

IportGetId(port) 10
IPortSemaphore(port) 10
IportSpace(port) 10
NetworkCollectStats(type,histflg,nbin,lowbin,highbin) 12
NetworkConnect(src, dest, src_index, dest_index) 7
NetworkResetStats() 12
NetworkSetArbDelay(d) 8
NetworkSetCycleTime(x) 7
NetworkSetDemuxDelay(d) 8
NetworkSetFlitDelay(d) 7
NetworkSetMuxDelay(d) 8
NetworkSetPktDelay(d) 8
NetworkSetThresh(t) 8
NetworkSetWFT(i) 8
NetworkStatPtr(type) 12
NetworkStatRept() 12
NewBuffer(id, size) 6
NewDemux(id, fanout, routingfcn) 6
NewIPort(id, size) 7
NewMux(id, fanin) 6
NewOPort(id, size) 7
NewPacket(seqno, msgptr, size, src, dest) 9
OportGetIdport) 11
OportPackets(port) 10
OPortSemaphore(port) 10
PacketFree(pkt) 10
PacketGetData(pkt) 9
PacketReceive(port) 9
PacketSend(pkt, port) 9

