
11/20/2020

1

EE 3613: Computer Organization
Chapter 5: Large and Fast: Exploiting Memory

Hierarchy - 2

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: Karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Acknowledgement: Mary J. Irwin, PSU; Srinivasan Ramasubramanian, UofA

Course Administration

 Homework 6 is posted – 11/20/2020

◦ Due Dec 2 by 11:59 PM

 Final exam is scheduled for Monday December 7th

(asynchronous) – exam will be available from 6 AM to 11:30 PM

◦ Bypass Proctortrack; exam will be for 2.5 hours via blackboard

◦ Same rules as before (open book, scratch paper upload, etc)

◦ All topics included; more emphasis on topics after exam-2

1

2

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

11/20/2020

2

Virtual Memory
 Use main memory as a “cache” for secondary memory

◦ Allows efficient and safe sharing of memory among multiple programs

◦ Provides the ability to easily run programs larger than the size of

physical memory

◦ Simplifies loading a program for execution by providing for code

relocation (i.e., the code can be loaded anywhere in main memory)

 What makes it work? – again the Principle of Locality

◦ A program is likely to access a relatively small portion of its address

space during any period of time

 Each program is compiled into its own address space – a

“virtual” address space

◦ During run-time each virtual address must be translated to a physical

address (an address in main memory)

Two Programs Sharing Physical Memory

Program 1

virtual address space

main memory

• A program’s address space is divided into pages (all one fixed

size) or segments (variable sizes)

The starting location of each page (either in main memory or in

secondary memory) is contained in the program’s page table

Program 2

virtual address space

3

4

11/20/2020

3

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

 So each memory request first requires an address translation
from the virtual space to the physical space

◦ A virtual memory miss (i.e., when the page is not in physical memory)
is called a page fault

• A virtual address is translated to a physical address by a

combination of hardware and software

Address Translation Mechanisms

Physical page

base addr

Main memory

Disk storage

Virtual page #

V
1

1

1

1

1

1

0

1

0

1

0

Page Table

(in main memory)

Offset

Physical page #

Offset

5

6

11/20/2020

4

Virtual Addressing with a Cache

 Thus it takes an extra memory access to translate a VA to a
PA

CPU
Trans-

lation
Cache

Main

Memory

VA PA miss

hit

data

• This makes memory (cache) accesses very expensive (if every

access was really two accesses)

• The hardware fix is to use a Translation Lookaside Buffer

(TLB) – a small cache that keeps track of recently used

address mappings to avoid having to do a page table lookup

Making Address Translation Fast

Physical page

base addr

Main memory

Disk storage

Virtual page #

V
1

1

1

1

1

1

0

1

0

1

0

1

1

1

0

1

Tag

Physical page

base addrV

TLB

Page Table

(in physical memory)

7

8

11/20/2020

5

Translation Lookaside Buffers (TLBs)

 Just like any other cache, the TLB can be organized as fully
associative, set associative, or direct mapped

V Virtual Page # Physical Page # Dirty Ref Access

• TLB access time is typically smaller than cache access time

(because TLBs are much smaller than caches)

TLBs are typically not more than 128 to 256 entries even on high end

machines

A TLB in the Memory Hierarchy

 A TLB miss – is it a page fault or merely a TLB miss?

◦ If the page is loaded into main memory, then the TLB miss can be
handled (in hardware or software) by loading the translation information
from the page table into the TLB

 Takes 10’s of cycles to find and load the translation info into the TLB

◦ If the page is not in main memory, then it’s a true page fault

 Takes 1,000,000’s of cycles to service a page fault

 TLB misses are much more frequent than true page faults

CPU
TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Trans-

lation

hit

miss

¾ t¼ t

9

10

11/20/2020

6

Some Virtual Memory Design

Parameters

Paged VM TLBs

Total size 16,000 to

250,000 words

16 to 512

entries

Total size (KB) 250,000 to

1,000,000,000

0.25 to 16

Block size (B) 4000 to 64,000 4 to 32

Miss penalty (clocks) 10,000,000 to

100,000,000

10 to 1000

Miss rates 0.00001% to

0.0001%

0.01% to

2%

Two Machines’ Cache Parameters
Intel P4 AMD Opteron

TLB organization 1 TLB for instructions

and 1TLB for data

Both 4-way set

associative

Both use ~LRU

replacement

Both have 128 entries

TLB misses handled in

hardware

2 TLBs for instructions and

2 TLBs for data

Both L1 TLBs fully

associative with ~LRU

replacement

Both L2 TLBs are 4-way set

associative with round-robin

LRU

Both L1 TLBs have 40

entries

Both L2 TLBs have 512

entries

TBL misses handled in

hardware

11

12

11/20/2020

7

TLB Event Combinations

TLB Page

Table

Cache Possible? Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/

Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not

checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data

not in cache

Yes – page fault

Impossible – TLB translation not possible if

page is not present in memory

Impossible – data not allowed in cache if

page is not in memory

Why Not a Virtually Addressed Cache?
 A virtually addressed cache would only require address

translation on cache misses

data

CPU
Trans-

lation

Cache

Main

Memory

VA

hit

PA

but

Two different virtual addresses can map to the same physical address

(when processes are sharing data), i.e., two different cache entries hold

data for the same physical address – synonyms

- Must update all cache entries with the same physical address or the

memory becomes inconsistent

14

15

11/20/2020

8

The Hardware/Software Boundary

 What parts of the virtual to physical address translation is

done by or assisted by the hardware?

◦ Translation Lookaside Buffer (TLB) that caches the recent translations

 TLB access time is part of the cache hit time

 May allot an extra stage in the pipeline for TLB access

◦ Page table storage, fault detection and updating

 Page faults result in interrupts (precise) that are then handled by the OS

 Hardware must support (i.e., update appropriately) Dirty and Reference

bits (e.g., ~LRU) in the Page Tables

◦ Disk placement

 Bootstrap (e.g., out of disk sector 0) so the system can service a limited

number of page faults before the OS is even loaded

Summary

 The Principle of Locality:

◦ Program likely to access a relatively small portion of the address

space at any instant of time.

 Temporal Locality: Locality in Time

 Spatial Locality: Locality in Space

 Caches, TLBs, Virtual Memory all understood by examining

how they deal with the four questions

1. Where can block be placed?

2. How is block found?

3. What block is replaced on miss?

4. How are writes handled?

 Page tables map virtual address to physical address
◦ TLBs are important for fast translation

16

17

