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Review: MIPS Pipeline Data and 

Control Paths
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stall

stall

Review: One Way to “Fix” a Data Hazard
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Data Forwarding (aka Bypassing)

 Take the result from the earliest point that it exists in any of 
the pipeline state registers and forward it to the functional 
units (e.g., the ALU) that needs it in that cycle

 For ALU functional unit:  the inputs can come from any pipeline 
register rather than just from ID/EX by

◦ adding multiplexors to the inputs of the ALU

◦ connecting the Rd write data in EX/MEM or MEM/WB to either (or 
both) of the EX’s stage Rs and Rt ALU mux inputs

◦ adding the proper control hardware to control the new muxes

 Other functional units may need similar forwarding logic (e.g., 
the DM)

 With forwarding can achieve a CPI of 1 even in the presence of 
data dependencies

Data Forwarding Control Conditions

1. EX/MEM hazard: 
if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

Forwards the 

result from the 

previous instr. to 

either input of 

the ALU

Forwards the 

result from the 

second previous 

instr. to either 

input of the ALU

2. MEM/WB hazard:
if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01
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Forwarding Illustration
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Yet Another Complication!
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 Another potential data hazard can occur when there is a 

conflict between the result of the WB stage instruction and 

the MEM stage instruction – which should be forwarded?
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Yet Another Complication!

 Another potential data hazard can occur when there is a 

conflict between the result of the WB stage instruction and 

the MEM stage instruction – which should be forwarded?

Corrected Data Forwarding Control 

Conditions

2. MEM/WB hazard:
if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (EX/MEM.RegisterRd != ID/EX.RegisterRs)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (EX/MEM.RegisterRd != ID/EX.RegisterRt)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01
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Datapath with Forwarding Hardware
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Memory-to-Memory Copies

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

A
L

UIM Reg DM Reg

sw $1,4($3)

A
L

UIM Reg DM Reg

 For loads immediately followed by stores (memory-to-
memory copies) can avoid a stall by adding forwarding 
hardware from the MEM/WB register to the data memory 
input.

◦ Would need to add a Forward Unit and a mux to the memory access 
stage

Forwarding with Load-use Data Hazards
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stall

Forwarding with Load-use Data Hazards
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and $6,$1,$7

xor $4,$1,$5
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Load-use Hazard Detection Unit

 Need a Hazard detection Unit in the ID stage that inserts a 
stall between the load and its use

2. ID Hazard Detection
if (ID/EX.MemRead

and ((ID/EX.RegisterRt = IF/ID.RegisterRs)

or  (ID/EX.RegisterRt = IF/ID.RegisterRt)))

stall the pipeline

• The first line tests to see if the instruction now in the EX 
stage is a lw; the next two lines check to see if the destination 

register of the lw matches either source register of the 

instruction in the ID stage (the load-use instruction)

• After this one cycle stall, the forwarding logic can handle the 

remaining data hazards
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Stall Hardware

 Along with the Hazard Unit, we have to implement the stall

 Prevent the instructions in the IF and ID stages from 
progressing down the pipeline – done by preventing the PC 
register and the IF/ID pipeline register from changing

◦ Hazard detection Unit controls the writing of the PC (PC.write) and 
IF/ID (IF/ID.write) registers

 Insert a “bubble” between the lw instruction (in the EX stage) 
and the load-use instruction (in the ID stage) (i.e., insert a 
noop in the execution stream)

◦ Set the control bits in the EX, MEM, and WB control fields of the ID/EX 
pipeline register to 0 (noop). The Hazard Unit controls the mux that 
chooses between the real control values and the 0’s. 

 Let the lw instruction and the instructions after it in the 
pipeline (before it in the code) proceed normally down the 
pipeline

Adding the Hazard Hardware
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Adding the Hazard Hardware
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