
10/19/2020

1

EE 3613: Computer Organization
Chapter 4: Pipelining - 2

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Acknowledgement: Mary J. Irwin, PSU; Srinivasan Ramasubramanian, UofA,

Course Administration

1

2

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

10/19/2020

2

Review: MIPS Pipeline Data and

Control Paths

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

RegWrite

MemWriteMemRead

MemtoReg

RegDst

ALUOp

ALUSrc

Branch

PCSrc

Control Settings

EX Stage MEM Stage WB Stage

RegDst ALU
Op1

ALU
Op0

ALUS
rc

Brch MemR
ead

Mem
Write

RegWr
ite

Mem
toReg

R 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

3

4

10/19/2020

3

stall

stall

Review: One Way to “Fix” a Data Hazard

I

n

s

t

r.

O

r

d

e

r

add $1,

A
L

UIM Reg DM Reg

sub $4,$1,$5

and $6,$7,$1

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

Fix data hazard

by waiting – stall

– but impacts

CPI

Review: Another Way to “Fix” a Data Hazard

I

n

s

t

r.

O

r

d

e

r

add $1,

A
L

UIM Reg DM Reg

sub $4,$1,$5

and $6,$7,$1

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

Fix data hazards by

forwarding results

as soon as they are

available to where

they are needed

sw $4,4($1)

or $8,$1,$1

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

5

6

10/19/2020

4

Data Forwarding (aka Bypassing)

 Take the result from the earliest point that it exists in any of
the pipeline state registers and forward it to the functional
units (e.g., the ALU) that needs it in that cycle

 For ALU functional unit: the inputs can come from any pipeline
register rather than just from ID/EX by

◦ adding multiplexors to the inputs of the ALU

◦ connecting the Rd write data in EX/MEM or MEM/WB to either (or
both) of the EX’s stage Rs and Rt ALU mux inputs

◦ adding the proper control hardware to control the new muxes

 Other functional units may need similar forwarding logic (e.g.,
the DM)

 With forwarding can achieve a CPI of 1 even in the presence of
data dependencies

Data Forwarding Control Conditions

1. EX/MEM hazard:
if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

Forwards the

result from the

previous instr. to

either input of

the ALU

Forwards the

result from the

second previous

instr. to either

input of the ALU

2. MEM/WB hazard:
if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

7

8

10/19/2020

5

Forwarding Illustration

I

n

s

t

r.

O

r

d

e

r

add $1,

sub $4,$1,$5

and $6,$7,$1

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

EX/MEM hazard

forwarding

MEM/WB hazard

forwarding

Yet Another Complication!

I

n

s

t

r.

O

r

d

e

r

add $1,$1,$2

A
L

UIM Reg DM Reg

add $1,$1,$3

add $1,$1,$4

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

 Another potential data hazard can occur when there is a

conflict between the result of the WB stage instruction and

the MEM stage instruction – which should be forwarded?

9

10

10/19/2020

6

I

n

s

t

r.

O

r

d

e

r

add $1,$1,$2

A
L

UIM Reg DM Reg

add $1,$1,$3

add $1,$1,$4

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

Yet Another Complication!

 Another potential data hazard can occur when there is a

conflict between the result of the WB stage instruction and

the MEM stage instruction – which should be forwarded?

Corrected Data Forwarding Control

Conditions

2. MEM/WB hazard:
if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (EX/MEM.RegisterRd != ID/EX.RegisterRs)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (EX/MEM.RegisterRd != ID/EX.RegisterRt)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

11

12

10/19/2020

7

Datapath with Forwarding Hardware
PCSrc

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

Branch

Forward

Unit

Datapath with Forwarding Hardware
PCSrc

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

Branch

Forward

Unit

ID/EX.RegisterRt

ID/EX.RegisterRs

EX/MEM.RegisterRd

MEM/WB.RegisterRd

13

14

10/19/2020

8

Memory-to-Memory Copies

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

A
L

UIM Reg DM Reg

sw $1,4($3)

A
L

UIM Reg DM Reg

 For loads immediately followed by stores (memory-to-
memory copies) can avoid a stall by adding forwarding
hardware from the MEM/WB register to the data memory
input.

◦ Would need to add a Forward Unit and a mux to the memory access
stage

Forwarding with Load-use Data Hazards

I

n

s

t

r.

O

r

d

e

r

lw $1,4($2)

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
L

UIM Reg DM Reg

A
L

UIM Reg DM

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Regsub $4,$1,$5

15

16

10/19/2020

9

stall

Forwarding with Load-use Data Hazards

I

n

s

t

r.

O

r

d

e

r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A

L
UIM Reg DM Reg

A
L

UIM Reg DM

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg
sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

Load-use Hazard Detection Unit

 Need a Hazard detection Unit in the ID stage that inserts a
stall between the load and its use

2. ID Hazard Detection
if (ID/EX.MemRead

and ((ID/EX.RegisterRt = IF/ID.RegisterRs)

or (ID/EX.RegisterRt = IF/ID.RegisterRt)))

stall the pipeline

• The first line tests to see if the instruction now in the EX
stage is a lw; the next two lines check to see if the destination

register of the lw matches either source register of the

instruction in the ID stage (the load-use instruction)

• After this one cycle stall, the forwarding logic can handle the

remaining data hazards

17

18

10/19/2020

10

Stall Hardware

 Along with the Hazard Unit, we have to implement the stall

 Prevent the instructions in the IF and ID stages from
progressing down the pipeline – done by preventing the PC
register and the IF/ID pipeline register from changing

◦ Hazard detection Unit controls the writing of the PC (PC.write) and
IF/ID (IF/ID.write) registers

 Insert a “bubble” between the lw instruction (in the EX stage)
and the load-use instruction (in the ID stage) (i.e., insert a
noop in the execution stream)

◦ Set the control bits in the EX, MEM, and WB control fields of the ID/EX
pipeline register to 0 (noop). The Hazard Unit controls the mux that
chooses between the real control values and the 0’s.

 Let the lw instruction and the instructions after it in the
pipeline (before it in the code) proceed normally down the
pipeline

Adding the Hazard Hardware

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

Branch

PCSrc

Forward

Unit

Hazard

Unit
0

1

19

20

10/19/2020

11

Adding the Hazard Hardware

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

Branch

PCSrc

Forward

Unit

Hazard

Unit
0

1

ID/EX.RegisterRt

0

ID/EX.MemRead

21

