
10/19/2020

1

EE 3613: Computer Organization
Chapter 4: The Processor: Datapath & Control - 4

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Acknowledgement: Srinivasan Ramasubramanian, UofA, Mary J. Irwin, PSU

Course Administration

 Homework 3A is due today Fri Oct 16

 Homework 3B is due on Mon Oct 26

1

2

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

10/19/2020

2

Single Cycle Datapath with

Control Unit

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

R-type Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

3

4

10/19/2020

3

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Load Word Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Branch Instruction Data/Control Flow

5

6

10/19/2020

4

Adding the Jump Operation

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Shift

left 2

0

1

Jump

32

Instr[25-0]

26
PC+4[31-28]

28

Control Signal Values

Instruction RegDst ALUSrc Memto

Reg

Reg

Write

Mem

Read

Mem

Write

Branch ALUOp1 ALUOp2

R-Type

LW

SW

BEQ

1 0 0 1 0 0 0 1 0

0 1 1 1 1 0 0 0 0

X 1 X 0 0 1 0 0 0

X 0 X 0 0 0 1 0 1

7

8

10/19/2020

5

ALU Control

 ALU’s operation is based on instruction type and function code

◦ Eg. What should the ALU do with any instruction?

 Example: lw $t0, 32($s2)

 ALU Control

◦ 000 AND

◦ 001 OR

◦ 010 ADD

◦ 110 SUB

◦ 111 Set-if-less-than

op rs rt 16-bit Offset

35 18 8 32

Setting the ALU Control

 ALUOp

◦ 00 = lw, sw; 01 = beq; 10 = arithmetic; 11 = Jump

Instruction ALUOp Instruction

Operation

Function

Field

Desired ALU

function

ALU

Control

LW 00 Load word xxxxxx ADD 010

SW 00 Store word xxxxxx ADD 010

BEQ 01 Branch if Equal xxxxxx SUB 110

R – Type 10 ADD 100000 ADD 010

R – Type 10 SUB 100010 SUB 110

R – Type 10 AND 100100 AND 000

R – Type 10 OR 100101 OR 001

R – Type 10 Set if less than 101010 Set if less than 111

9

10

10/19/2020

6

Truth Table for ALU Control

ALUOp Function Field ALU Control

ALUOp1 ALUOp2 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010

0 0 X X X X X X 010

0 1 X X X X X X 110

1 0 1 0 0 0 0 0 010

1 0 1 0 0 0 1 0 110

1 0 1 0 0 1 0 0 000

1 0 1 0 0 1 0 1 001

1 0 1 0 1 0 1 0 111

Implementation of Control
Simple combinational logic to realize the truth table

11

12

10/19/2020

7

Functional Units used by an

Instruction Class

Instruction Functional Units used by the instruction class

R-type Instruction

Fetch

Register

Access

ALU Register

Access

LW Instruction

Fetch

Register

Access

ALU Register

Access

Register

Access

SW Instruction

Fetch

Register

Access

ALU Register

Access

BEQ Instruction

Fetch

Register

Access

ALU 0 0

Jump Instruction

Fetch

Timing for single cycle implementation (psec)

Instruction

Class

Instruction

Memory

Register

Read

ALU

Operation

Data

Memory

Register

Write

R-type 200 50 100 50

LW 200 50 100 200 50

SW 200 50 100 200

BEQ 200 50 100

Jump 200

13

14

10/19/2020

8

Single Cycle Advantages & Disadvantages

 Uses the clock cycle efficiently – the clock cycle must be timed

to accommodate the slowest instruction

 Wasting area as some functional units (Eg. Adders) must be

duplicated since they can not be shared during a clock cycle,

however,

 Is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

Multicycle Datapath Approach

 Let an instruction take more than one clock cycle to complete

◦ Break up instructions into steps where each step takes a cycle while trying

to

 balance the amount of work to be done in each step

 restrict each cycle to use only one major functional unit

◦ Not every instruction takes the same number of clock cycles

 In addition to faster clock rates, multi-cycle allows functional

units that can be used more than once per instruction as long as

they are used on different clock cycles; as a result

◦ need only one memory – but only one memory access per cycle

◦ need only one ALU/adder – but only one ALU operation per cycle

15

16

10/19/2020

9

 At the end of a cycle
◦ Store values needed in a later cycle by the current instruction in an internal register

(not visible to the programmer). All (except IR) hold data only between a pair of

adjacent clock cycles (no write control signal needed)

IR – Instruction Register MDR – Memory Data Register

A, B – regfile read data registers ALUout – ALU output register

Multicycle Datapath Approach, con’t

Address

Read Data

(Instr. or Data)

Memory

P
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data
IR

M
D

R

A
B A

L
U

o
u

t

Data used by subsequent instructions are stored in programmer visible registers

(i.e., register file, PC, or memory)

The Multicycle Datapath with Control

Signals

Address

Read Data

(Instr. or Data)

Memory

P
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

Write Data

IR
M

D
R

A
B

A
L

U
o

u
t

Sign

Extend

Shift

left 2 ALU

control

Shift

left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1

0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

In
str[3

1
-2

6
]

32

28

17

18

10/19/2020

10

Five Execution Steps

 Instruction Fetch (IF)

 Instruction Decode and Register Fetch (ID/IR)

 Execution, Memory Address Computation or Branch

Computation (EX)

 Memory Access or R-type instruction completion (MEM)

 Write-back step (WB)

Instructions take 3 – 5 cycles !

Step 1: Instruction Fetch

 Use PC to get instruction and put it in the Instruction Register

 Increment PC by 4 and put the result back in the PC

 Can be described succinctly using the RTL

◦ IR = Memory[PC];

◦ PC = PC + 4;

 Can we figure out the values of the control signals?

 What is the advantage of updating the PC now?

19

20

10/19/2020

11

Step 2: Instruction Decode and

Register Fetch

 Read registers rs and rt in case we need them

 Compute the branch address in case the instruction is a branch

 RTL

◦ A = Reg[IR[25-21];

◦ B = Reg[IR[20-16];

◦ ALUout = PC + (sign-extend(IR[15-0]) << 2);

 We aren’t setting any control lines based on the instruction type

◦ The instruction is still being decoded in the control logic

Step 3: Execution

 ALU is performing one of three functions, based on instruction

type

◦ Memory Reference: ALUout = A + sign-extend(IR[15-0]);

◦ R-type: ALUout = A op B;

◦ Branch: if (A == B) PC = ALUout;

◦ Jump: PC = PC[31-28] | (IR[25:0] << 2);

21

22

10/19/2020

12

Step 4: R-type of Memory Access

 Load and stores access memory

◦ MDR = Memory[ALUout];

◦ Memory[ALUout] = B;

 R-type instructions finish

◦ Reg[IR[15-11]] = ALUout

 The write takes place at the end of the cycle on the edge

Step 5: Write-Back

 Reg[IR[20-16]] = MDR;

 What about other instructions?

23

24

10/19/2020

13

The Five Steps of the Load Instruction

 IFetch: Instruction Fetch and Update PC

 Dec: Instruction Decode, Register Read, Sign Extend

Offset

 Exec: Execute R-type; Calculate Memory Address; Branch

Comparison; Branch and Jump Completion

 Mem: Memory Read; Memory Write Completion; R-type

Completion (RegFile write)

 WB: Memory Read Completion (RegFile write)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw

Multicycle Advantages & Disadvantages

 Uses the clock cycle efficiently – the clock cycle is timed

to accommodate the slowest instruction step

 Multicycle implementations allow functional units to be

used more than once per instruction as long as they are

used on different clock cycles

but

 Requires additional internal state registers, more muxes,

and more complicated (FSM) control

Clk

Cycle 1

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

25

26

10/19/2020

14

Single Cycle vs. Multiple Cycle Timing

Clk Cycle 1

Multiple Cycle Implementation:

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

multicycle clock

slower than 1/5th of

single cycle clock due

to state register

overhead

 Multicycle datapath control signals are not determined solely

by the bits in the instruction

◦ e.g., op code bits tell what operation the ALU should be doing, but

not what instruction cycle is to be done next

 Must use a finite state machine (FSM) for control

◦ a set of states (current state stored in State Register)

◦ next state function (determined

by current state and the input)

◦ output function (determined by

current state and the input)

Multicycle Control Unit

Combinational

control logic

State Reg
Inst

Opcode

Datapath

control

points

Next State

. . .
. . .

. . .

27

28

