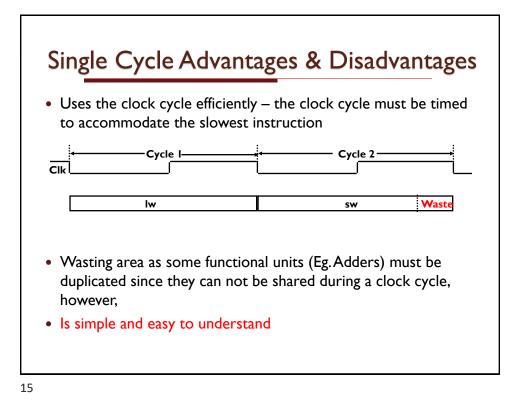
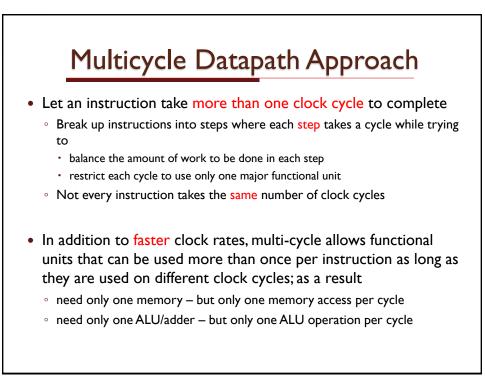


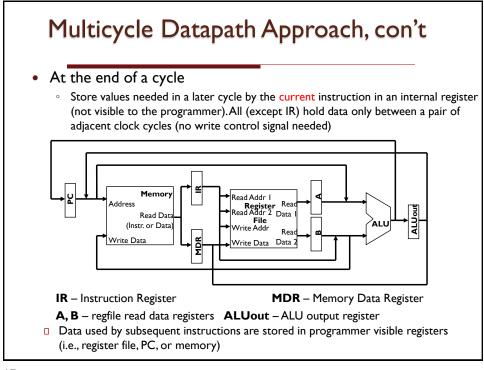
Control Signal Values									
Instruction	RegDst	ALUSrc	Memto Reg	Reg Write	Mem Read	Mem Write	Branch	ALUOpI	ALUOp2
R-Type	I	0	0	I	0	0	0	I	0
LW	0	I	I.	I	I	0	0	0	0
SW	Х	I.	Х	0	0	I.	0	0	0
BEQ	Х	0	Х	0	0	0	I	0	I

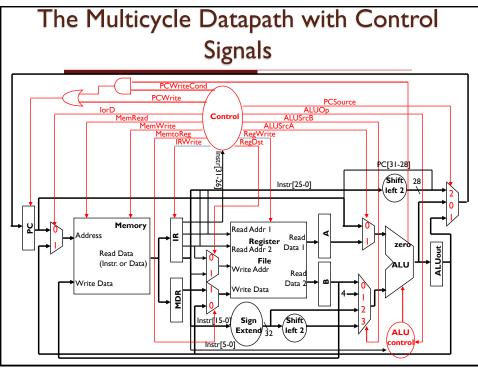
_	ALU Control									
	 ALU's operation is based on instruction type and function code Eg.What should the ALU do with any instruction? 									
• Examp	• Example: 1w \$t0, 32(\$s2)									
	35 18 8 32									
	ор	rs	rt	l 6-bit Offset						
• ALU C	Control									
° 000	А	ND								
• 00 I	0	R								
· 010	Α	DD								
• 110	∘ IIO SUB									
• 										

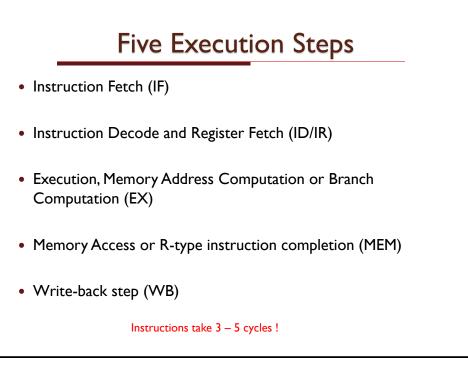
 Setting the ALU Control ALUOp 00 = lw, sw; 01 = beq; 10 = arithmetic; 11 = Jump 									
Instruction	ALUOp	Instruction Operation	Function Field	Desired ALU function	ALU Control				
LVV	00	Load word	XXXXXX	ADD	010				
SW	00	Store word	XXXXXX	ADD	010				
BEQ	01	Branch if Equal	XXXXXX	SUB	110				
R – Туре	10	ADD	100000	ADD	010				
R – Туре	10	SUB	100010	SUB	110				
R – Туре	10	AND	100100	AND	000				
R – Туре	10	OR	100101	OR	001				
R – Туре	10	Set if less than	101010	Set if less than	111				

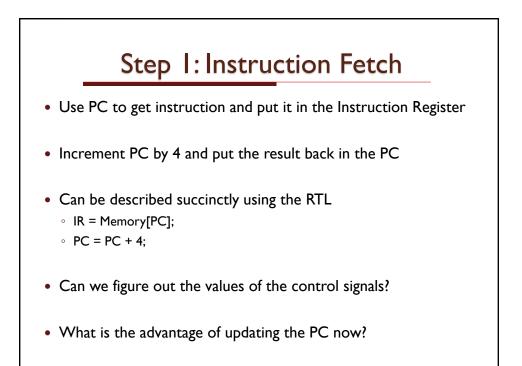

Truth Table for ALU Control								
ALUOp Function Field ALU Control								
ALUOpI	ALUOp2	F5	F4	F3	F2	FI	F0	
0	0	х	х	х	х	х	х	010
0	0	Х	Х	х	Х	Х	Х	010
0	I	х	х	х	х	х	Х	110
I	0	I	0	0	0	0	0	010
L	0	I	0	0	0	T	0	110
I	0	I	0	0	I.	0	0	000
L	0	T	0	0	Т	0	I	001
L	0	I	0	I.	0	I	0	111

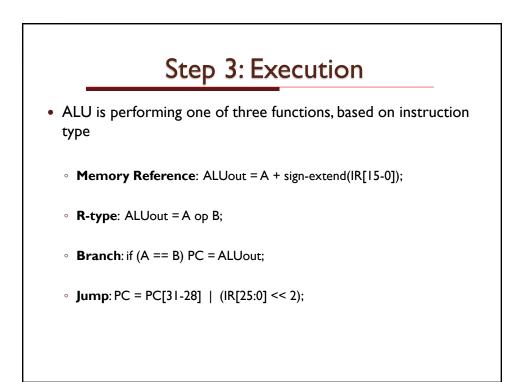


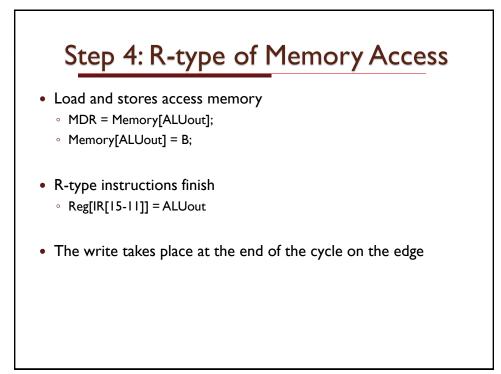

Functional Units used by an Instruction Class								
Instruction	Fu	nctional Unit	s used by the	instruction cla	iss			
R-type	Instruction Fetch	Register Access	ALU	Register Access				
LW	Instruction Fetch	Register Access	ALU	Register Access	Register Access			
sw	Instruction Fetch	Register Access	ALU	Register Access				
BEQ	Instruction Fetch	Register Access	ALU	0	0			
Jump	Instruction Fetch							

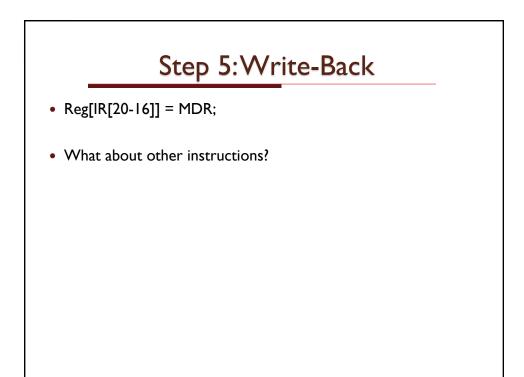

Timing for single cycle implementation (psec)

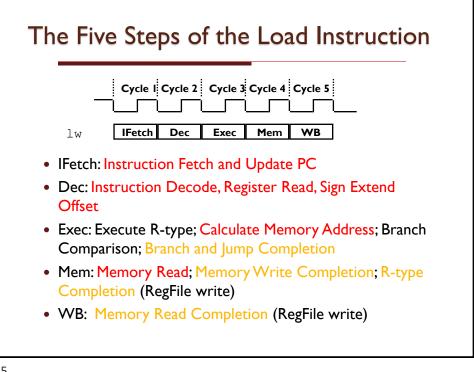

Instruction Class	Instruction Memory	Register Read	ALU Operation	Data Memory	Register Write
R-type	200	50	100		50
LW	200	50	100	200	50
sw	200	50	100	200	
BEQ	200	50	100		
Jump	200				








• Read registers rs and rt in case we need them


• Compute the branch address in case the instruction is a branch

- RTL
 - A = Reg[IR[25-21];
 - B = Reg[IR[20-16];
 - o ALUout = PC + (sign-extend(IR[15-0]) << 2);</pre>
- We aren't setting any control lines based on the instruction type
 - $\circ\;$ The instruction is still being decoded in the control logic

