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Course Administration

 All lecture notes (including Verilog tutorial) available

 Homework 3 will be made available later today; this is due in two 

parts:

◦ Part A is due this Friday, Oct 16

◦ Part B (Verilog) is due on Monday Oct 26
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Datapath and Control

 We will design a simplified MIPS processor

 The instructions supported are

◦ Memory-reference instructions: lw, sw

◦ Arithmetic-logical instructions: add, sub, and, or, slt

◦ Control-flow instructions: beq, j

 Generic Implementation

◦ Use the program counter (PC) to supply the instruction address and fetch 

the instruction from memory (and update the PC)

◦ Decode the instruction (and read the registers)

◦ Execute the instruction

 All instructions (except j) use the ALU after reading the registers

◦ How? Memory-reference ? Arithmetic ? Control-flow ?

Clocking Methodologies

 The clocking methodology defines when signals can be read and when 
they can be written
◦ An edge triggered methodology

 Typical execution
◦ Read contents of state elements

◦ Send values through combinational logic

◦ Write results to one or more state elements

 Assumes that state elements are written on every clock cycle; if not, 
need explicit write control signal
◦ Writes occur only when both the write control is asserted and clock edge 

occurs
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What blocks do we need?

 We need an ALU – already designed a 4 function (ADD/SUB, OR, AND, SLT) 
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What more blocks do we need?

 We need memory to store instructions and data

◦ Instruction memory takes address and supplies instructions

◦ Data memory takes address and supply data (eg. load)

◦ Data memory takes address and data and write into memory
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Sample 4 x 3 Memory

http://www.sci.brooklyn.cuny.edu/~jones/cisc3310/Null%20&%20Lobur%20Figures.htm

Other Blocks?

 We need register file to include 32 registers

◦ 2 port read for a register file
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Other Blocks?

 We need register file to include 32 registers

◦ Implement write port with write control
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Any other blocks?

 PC (program counter)

 Add support for immediate class of instructions

 Add support for J, JR, JAL
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Fetching Instructions
 Fetching instructions involves

◦ reading the instruction from the Instruction Memory

◦ updating the PC to hold the address of the next instruction

◦ PC is updated every cycle, so it does not need an explicit write control signal

◦ Instruction memory is read every cycle, so it doesn’t need an explicit read 
control signal
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Decoding Instructions

 Decoding instructions involves

◦ sending the fetched instruction’s opcode and function field bits to the control 
unit

◦ reading two values from the Register File

 Register File addresses are contained in the instruction
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Executing R Format Operations
 R format operations (add, sub, slt, and, or)

◦ perform the (op and funct) operation on values in rs and rt

◦ store the result back into the Register File (into location rd)
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• The Register File is not written every cycle (e.g. sw), so we need an 

explicit write control signal for the Register File

Executing Load Operation
 Load and store operations involves

◦ compute memory address by adding the base register (read from the Register 

File during decode) to the 16-bit signed-extended offset field in the instruction

◦ load value, read from the Data Memory, written to the Register File
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Executing Store Operation
 Load and store operations involves

◦ compute memory address by adding the base register (read from the Register 

File during decode) to the 16-bit signed-extended offset field in the instruction

◦ store value (read from the Register File during decode) written to the Data 

Memory
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Executing Branch Operations
 Branch operations involves

◦ compare the operands read from the Register File during decode for equality (zeroALU 

output) compute the branch target address by adding the updated PC to the 16-bit signed-

extended offset field in the instruction 
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Executing Jump Operations

 Jump operation involves
◦ replace the lower 28 bits of the PC with the lower 26 bits of the 

fetched instruction shifted left by 2 bits
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Creating a Single Datapath from the Parts

 Assemble the datapath segments and add control lines and 

multiplexors as needed

 Single cycle design – fetch, decode, and execute each instructions 

in one cycle

◦ no datapath resource can be used more than once per instruction, so some 

must be duplicated (Eg. separate Instruction Memory and Data Memory, 

several adders)

◦ multiplexors needed at the input of shared elements with the control lines 

to do the selection

◦ write signals to control writing to the Register File and Data Memory

 Cycle time is determined by length of the longest path
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Fetch, R, and Memory Access Portions

MemtoReg

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

ALUSrc

Adding the Control

 Selecting the operations to perform (ALU, Register File, Memory 

read/write) 

◦ Select the registers to be read (always two)

◦ Select the 2nd ALU input

◦ Select the operation to be performed

◦ Select the data memory to be written

 Controlling the flow of data (multiplexor inputs)
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Adding the Control

 Observations

◦ op field always in bits 31-26

◦ address of registers to be read are always specified by the rs field (bits 25-21) 
and rt field (bits 20-16); for lw and sw, rs is the base register

◦ addr. of register to be written is in one of two places – in rt (bits 20-16) for lw; 
in rd (bits 15-11) for R-type instructions

◦ offset for beq, lw, and sw always in bits 15-0

I-Type: op rs rt address offset

31 25 20 15 0

R-type:

31 25 20 15 5 0

op rs rt rd functshamt
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Load Word Instruction Data/Control Flow
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Adding the Jump Operation 
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