EE 3613: Computer Organization
Chapter 4:The Processor: Datapath & Control - 3

Avinash Karanth
Department of Electrical Engineering & Computer Science
Ohio University, Athens, Ohio 45701
E-mail: karanth@ohio.edu
Website:

Acknowledgement: Srinivasan Ramasubramanian, UofA, Mary |. Irwin, PSU

Course Administration

¢ All lecture notes (including Verilog tutorial) available

e Homework 3 will be made available later today; this is due in two
parts:

o PartA is due this Friday, Oct |6
o Part B (Verilog) is due on Monday Oct 26

10/11/2020

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Datapath and Control

* We will design a simplified MIPS processor
e The instructions supported are
o Memory-reference instructions: lw, sw
o Arithmetic-logical instructions: add, sub, and, or, slt
o Control-flow instructions: beq, j

e Generic Implementation

o Use the program counter (PC) to supply the instruction address and fetch
the instruction from memory (and update the PC)

o Decode the instruction (and read the registers)

o Execute the instruction

e All instructions (except j) use the ALU after reading the registers

o How?! Memory-reference ? Arithmetic ? Control-flow ?

Clocking Methodologies

e The clocking methodology defines when signals can be read and when
they can be written

o An edge triggered methodology
e Typical execution
o Read contents of state elements
o Send values through combinational logic
o Write results to one or more state elements

State P State
Combinational
— | element logic element —>
| 2

one clock cycle

e Assumes that state elements are written on every clock cycle; if not,
need explicit write control signal

° Writes occur only when both the write control is asserted and clock edge
occurs

10/11/2020

What blocks do we need?

e We need an ALU — already designed a 4 function (ADD/SUB, OR,AND, SLT)

and BRANCH

4 Function

N

— 5 zero
L result

b+/

— overflow

Bn

7 a0—> ‘aarry in

gate
o]

bO- ALU 0

peration

Less

iy

7 a2 5 “arryin

carry out

al—> Yaarryin
bl—> ALUO

0——> Less

carry out

b2 ALUO

0——> Less

carty out

!

a3l—> cal\"l/ry in >
b3—> ALUO Set
Less
— {—> Overflow

carry out

A Static Memory Cell

dy “Ryw Enable

!_!—D—'C

e Tri-state Logic: The output of a gate can be in one of three states —

one, zero or not connected

10/11/2020

4-bit Register

dy “Ryw Enable

What more blocks do we need?

¢ We need memory to store instructions and data
° Instruction memory takes address and supplies instructions
o Data memory takes address and supply data (eg. load)

o Data memory takes address and data and write into memory

S
oA 4x16
: A Decoder
A3

/Address

Instruction
Memory

Instruction—s

MemWrite

(Address

Data
Memory

B

\Write Data

: —
Enables !

Read Datafep

f

MemRead

10/11/2020

10/11/2020

Sample 4 x 3 Memory

Word 0 Word 1 Word 2 Word 3
—D
DQ D Q DQ
IE=D = —— Ouy
i/ Out.
5 S
- o -
Iy — Ig=; =1)— = ﬁ*
0

Word 0 Word 1 Word 2 Word 3
Select Select Select Select
o,

http://www.sci.brooklyn.cuny.edu/~jones/cisc33 1 0/Null%20&%20Lobur%20Figures.htm

9
Other Blocks?
* We need register file to include 32 registers
o 2 port read for a register file
RegVVrite Read Reg |
R
Register 0
—*[Read Reg | Read Register |
Register " 2¢—> M
—>Read Reg2 Datal u Read Data |
) File Register n - 2
—Write Reg Rea d_» Register n - |
—\Write Dat Data 2 —
rite Data
Read Reg 2
R
N
L)
— :I Read Data 2
X
L
10

Other Blocks?

* We need register file to include 32 registers

o Implement write port with write control

RegWrite RegWrite

—>iRead Reg |
Register Read
—>{Read Reg 2 ata |
File

—Write Reg

Read
Data 2| Reg
—

Write Data Number

Reg

C

Register 0

C

Decoder

Register |

Register n - 2

o0l

D

Data

Register n - |

11

Any other blocks!?

e PC (program counter)

e Add support for J, JR, JAL

e Add support for immediate class of instructions

12

10/11/2020

Fetching Instructions

* Fetching instructions involves

° reading the instruction from the Instruction Memory
o updating the PC to hold the address of the next instruction

Instruction
Memory

Read
(Address

Instructionm—s

o PC is updated every cycle, so it does not need an explicit write control signal

° Instruction memory is read every cycle, so it doesn’t need an explicit read
control signal

13
Decoding Instructions
e Decoding instructions involves
o sending the fetched instruction’s opcode and function field bits to the control
unit
Read Reg |
Register Read_>
i Read Reg 2 Data |
Instruction
N File
\Write Reg Read
Data 2
Write Data
o reading two values from the Register File
* Register File addresses are contained in the instruction
14

10/11/2020

10/11/2020

Executing R Format Operations

e R format operations (add, sub, slt, and, or)
31 25 20 15 10 5 0

R-type:

op rs rt rd shamt] funct

o perform the (op and funct) operation on values in rs and rt
o store the result back into the Register File (into location rd)
RegWrite ALU control

}

Read Reg |

Register
Read Reg2 Datal —> overflow

Instruction

—]
|
—>Write Rz:e ALU[Zere
—]

Write Data

The Register File is not written every cycle (e.g. sw), so we need an
explicit write control signal for the Register File

15
¢ Load and store operations involves
° compute memory address by adding the base register (read from the Register
File during decode) to the |16-bit signed-extended offset field in the instruction
° load value, read from the Data Memory, written to the Register File
RegWrite ALU control MemWrite
i overflow l
Read Reg | zero
Register Read |Address
Instruction Read Reg 2 Data | Data
—) File Memory Read Data f——
Write Reg Read
Data 2 =—>Write Data
—>Write Data
@ MemRead
16 @ 2
16

10/11/2020

Executing Store Operation

¢ Load and store operations involves

° compute memory address by adding the base register (read from the Register
File during decode) to the |6-bit signed-extended offset field in the instruction

o store value (read from the Register File during decode) written to the Data

Memory
RegWrite ALU control MemWrite
i overflow l
Read Reg | zero
Regi Read (Address
R egister Data |
Instruction ead Reg 2 Data
— File Memory Read Data f—
Write Reg Read
Data 2! (Write Data
= Write Data | I

@ MemRead
6 W 32

17
¢ Branch operations involves
o compare the operands read from the Register File during decode for equality (zero ALU
output) compute the branch target address by adding the updated PC to the |6-bit signed-
extended offset field in the instruction
Add Branch
4 Add target
@ address
ALU control
PC
Read Reg | zero (to branch
Register DRemIi control logic)
Instruction Read Ref:'? an
— e
Write Reg Read ALU
Data 2
Write Data
18

Executing Jump Operations

e Jump operation involves

° replace the lower 28 bits of the PC with the lower 26 bits of the
fetched instruction shifted left by 2 bits

Add

Jump
Instruction
address
Memory
28
Read

Instruction

Address 26

19

Creating a Single Datapath from the Parts

e Assemble the datapath segments and add control lines and
multiplexors as needed

e Single cycle design — fetch, decode, and execute each instructions

in one cycle

o

o

no datapath resource can be used more than once per instruction, so some
must be duplicated (Eg. separate Instruction Memory and Data Memory,
several adders)

multiplexors needed at the input of shared elements with the control lines
to do the selection

write signals to control writing to the Register File and Data Memory

e Cycle time is determined by length of the longest path

20

10/11/2020

10

Fetch, R,and Memory Access Portions

RegWrite ALUSrc ALU control MemWrite MemtoReg

i —

R
Instruction dReg |

Memory Register Read Address
Read Reg 2 Data | Data
Read Instructiont—] File — Memory Read Data
Address —> Write Reg Read

Write Data
Write Data

MemRead

21

Adding the Control

e Selecting the operations to perform (ALU, Register File, Memory
read/write)

o Select the registers to be read (always two)
o Select the 2" ALU input
o Select the operation to be performed

o Select the data memory to be written

e Controlling the flow of data (multiplexor inputs)

22

10/11/2020

11

Adding the Control

31 25 20 15 10 5 0
R-type: | op rs rt rd shamt| funct

3 "5. —— "0. —— 5 0
I-Type: | op rs rt address offset

1 B : 2
J-type: | op target address

¢ Observations

- op field always in bits 31-26

address of registers to be read are always specified by the rs field (bits 25-21)

and rt field (bits 20-16); for Iw and sw, rs is the base register

addr. of register to be written is in one of two places — in rt (bits 20-16) for Iw;

in rd (bits I5-11) for R-type instructions

offset for beq, Iw, and sw always in bits 15-0

23
Single Cycle Datapath with
Control Unit
| 0
Ad
Ad |
4
PCSrc
ALUO Branch
MemRead
Instr[Control | MemtoReg
Unit | MemWrite
/ ALUSrc
RegWrite
RegDst
ovf
| . nstr[25:21],{Read Addr | t
nstruction Read Add
Memor Register ea ress
Y nstr[20416],) pead Addr 2 Data | zero Data
Read .
Instr[31-0]~+) File I Memory Read Data
Address Write Addr R ALU 4
I ead) 0 \Write D
Data 2 rite Data
I"s"EII] —»VVrite Data -|- / r
Linstr{15-41 i ALU
16 Extend contro
Instr[5-0]
)
24

10/11/2020

12

Load Word Instruction Data/Control Flow

| 0
Ad
Ad |
4
PCSrc
ALUO Branch
MemRead
Instr[Control | MemtoReg
Unit | MemVVrite
/ ALUSrc
RegWrite
RegDst
ovf
| . nstr[25:211, 1R ead Addr | t
nstruction Read Add
Memor Register e ress
y nstr[20416] Read Addr 2 Data | zero Data
Read .
Instr[31-0]=H 0 File = Read Dat:
Address "0 Write Addr ALY Memory fead=em
I Read 0
Data 2| Write Data
I"S"EII] —>\Write Data L1 r
Linstr{15-41 ALU
16 Extend contro
Instr[5-0]
)
25
Branch Instruction Data/Control Flow
Ad
4
PCSrc
ALUO Branch
MemRead
Instr[Control | MemtoReg
Unit | MemWrite
/ ALUSrc
RegWrite
RegDst
ovf
| . nstr[25:21],{Read Addr | t
nstruction Read Add
M Register ea ress
emory nstr[20416],) pead Addr 2 Data | zero Data
Read .
Instr[31-0]=H) File = Read Dat:
Address "0 Write Addr ALU Memory Tead=em
I Read 0
Data 2| Write Data
I"s"EII] —»VVrite Data / r
Linstr{15-41 ALU
16 Extend contro
Instr[5-0]
)
26

10/11/2020

13

Adding the Jump Operation

| 0
Ad
Ad |
4
PCSrc
ALUO Branch
MemRead
Instr[Control | MemtoReg
Unit | MemVVrite
/ ALUSrc
RegWrite
RegDst
ovf
. nstr[25:211, 1R ead Addr | t
Instruction Read Add
M Register e ress
emory nstr[20416] Read Addr 2 Data | zero Data
Read .
Instr[31-0]r~+ 0 File I Memory Read Data
Address Write Addr R ALY Y
I ead 0 Write B
Data 2 rite Data
I"S"EII] —>\Write Data L1 r
Linstr{15-41 ALU
16 | Extend contro
Instr[5-0]

27

10/11/2020

14

