
10/11/2020

1

EE 3613: Computer Organization
Chapter 4: The Processor: Datapath & Control - 3

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Acknowledgement: Srinivasan Ramasubramanian, UofA, Mary J. Irwin, PSU

Course Administration

 All lecture notes (including Verilog tutorial) available

 Homework 3 will be made available later today; this is due in two

parts:

◦ Part A is due this Friday, Oct 16

◦ Part B (Verilog) is due on Monday Oct 26

1

2

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

10/11/2020

2

Datapath and Control

 We will design a simplified MIPS processor

 The instructions supported are

◦ Memory-reference instructions: lw, sw

◦ Arithmetic-logical instructions: add, sub, and, or, slt

◦ Control-flow instructions: beq, j

 Generic Implementation

◦ Use the program counter (PC) to supply the instruction address and fetch

the instruction from memory (and update the PC)

◦ Decode the instruction (and read the registers)

◦ Execute the instruction

 All instructions (except j) use the ALU after reading the registers

◦ How? Memory-reference ? Arithmetic ? Control-flow ?

Clocking Methodologies

 The clocking methodology defines when signals can be read and when
they can be written
◦ An edge triggered methodology

 Typical execution
◦ Read contents of state elements

◦ Send values through combinational logic

◦ Write results to one or more state elements

 Assumes that state elements are written on every clock cycle; if not,
need explicit write control signal
◦ Writes occur only when both the write control is asserted and clock edge

occurs

State

element

1

State

element

2

Combinational

logic

clock

one clock cycle

3

4

10/11/2020

3

What blocks do we need?

 We need an ALU – already designed a 4 function (ADD/SUB, OR, AND, SLT)

and BRANCH

carry in

ALU 0

Less

carry out

a0

b0

carry in

ALU 0

Less

carry out

a1

b1

carry in

ALU 0

Less

carry out

a2

b2

carry in

ALU 0

Less

carry out

a31

b31

operation

0

0

0 Overflow

Set

B negate

Zero

4 Function

result

b

a

32

32

zero

overflow

A Static Memory Cell

 Tri-state Logic: The output of a gate can be in one of three states –
one, zero or not connected

D

C

Q

d0 R/W Enable

5

6

10/11/2020

4

D

C

Q
D

C

Q
D

C

Q

4-bit Register

D

C

Q

d0 R/W Enable

d3

What more blocks do we need?

 We need memory to store instructions and data

◦ Instruction memory takes address and supplies instructions

◦ Data memory takes address and supply data (eg. load)

◦ Data memory takes address and data and write into memory

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

4 x 16

Decoder

A0

A1

A2

A3

d0

Enables

Read

Address
Instruction

Instruction

Memory

7

8

10/11/2020

5

Sample 4 x 3 Memory

http://www.sci.brooklyn.cuny.edu/~jones/cisc3310/Null%20&%20Lobur%20Figures.htm

Other Blocks?

 We need register file to include 32 registers

◦ 2 port read for a register file

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

RegWrite

Register 0

Register 1

….

Register n - 2

Register n - 1

M

u

x

M

u

x

Read Reg 1

Read Reg 2

Read Data 1

Read Data 2

9

10

10/11/2020

6

Other Blocks?

 We need register file to include 32 registers

◦ Implement write port with write control

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

RegWrite

Register 0

Register 1

….

Register n - 2

Register n - 1

C

C

C

C

D

D

D

D

0

1

n - 2

n – 1

Decoder

RegWrite

Reg

Number

Reg

Data

Any other blocks?

 PC (program counter)

 Add support for immediate class of instructions

 Add support for J, JR, JAL

11

12

10/11/2020

7

Fetching Instructions
 Fetching instructions involves

◦ reading the instruction from the Instruction Memory

◦ updating the PC to hold the address of the next instruction

◦ PC is updated every cycle, so it does not need an explicit write control signal

◦ Instruction memory is read every cycle, so it doesn’t need an explicit read
control signal

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Decoding Instructions

 Decoding instructions involves

◦ sending the fetched instruction’s opcode and function field bits to the control
unit

◦ reading two values from the Register File

 Register File addresses are contained in the instruction

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

Control

Unit

13

14

10/11/2020

8

Executing R Format Operations
 R format operations (add, sub, slt, and, or)

◦ perform the (op and funct) operation on values in rs and rt

◦ store the result back into the Register File (into location rd)

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

R-type:

31 25 20 15 5 0

op rs rt rd functshamt

10

• The Register File is not written every cycle (e.g. sw), so we need an

explicit write control signal for the Register File

Executing Load Operation
 Load and store operations involves

◦ compute memory address by adding the base register (read from the Register

File during decode) to the 16-bit signed-extended offset field in the instruction

◦ load value, read from the Data Memory, written to the Register File

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Sign

Extend

MemWrite

MemRead

16 32

15

16

10/11/2020

9

Executing Store Operation
 Load and store operations involves

◦ compute memory address by adding the base register (read from the Register

File during decode) to the 16-bit signed-extended offset field in the instruction

◦ store value (read from the Register File during decode) written to the Data

Memory

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Sign

Extend

MemWrite

MemRead

16 32

Executing Branch Operations
 Branch operations involves

◦ compare the operands read from the Register File during decode for equality (zeroALU

output) compute the branch target address by adding the updated PC to the 16-bit signed-

extended offset field in the instruction

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

zero

ALU control

Sign

Extend16 32

Shift

left 2

Add

4
Add

PC

Branch

target

address

(to branch

control logic)

17

18

10/11/2020

10

Executing Jump Operations

 Jump operation involves
◦ replace the lower 28 bits of the PC with the lower 26 bits of the

fetched instruction shifted left by 2 bits

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Shift

left 2

Jump

address

26

4

28

Creating a Single Datapath from the Parts

 Assemble the datapath segments and add control lines and

multiplexors as needed

 Single cycle design – fetch, decode, and execute each instructions

in one cycle

◦ no datapath resource can be used more than once per instruction, so some

must be duplicated (Eg. separate Instruction Memory and Data Memory,

several adders)

◦ multiplexors needed at the input of shared elements with the control lines

to do the selection

◦ write signals to control writing to the Register File and Data Memory

 Cycle time is determined by length of the longest path

19

20

10/11/2020

11

Fetch, R, and Memory Access Portions

MemtoReg

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

ALUSrc

Adding the Control

 Selecting the operations to perform (ALU, Register File, Memory

read/write)

◦ Select the registers to be read (always two)

◦ Select the 2nd ALU input

◦ Select the operation to be performed

◦ Select the data memory to be written

 Controlling the flow of data (multiplexor inputs)

21

22

10/11/2020

12

Adding the Control

 Observations

◦ op field always in bits 31-26

◦ address of registers to be read are always specified by the rs field (bits 25-21)
and rt field (bits 20-16); for lw and sw, rs is the base register

◦ addr. of register to be written is in one of two places – in rt (bits 20-16) for lw;
in rd (bits 15-11) for R-type instructions

◦ offset for beq, lw, and sw always in bits 15-0

I-Type: op rs rt address offset

31 25 20 15 0

R-type:

31 25 20 15 5 0

op rs rt rd functshamt

10

J-type:

31 25 0

op target address

Single Cycle Datapath with

Control Unit

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

23

24

10/11/2020

13

Load Word Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Branch Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

25

26

10/11/2020

14

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Adding the Jump Operation

27

