
10/11/2020

1

EE 3613: Computer Organization
Chapter 4: The Processor: Datapath & Control - 3

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Acknowledgement: Srinivasan Ramasubramanian, UofA, Mary J. Irwin, PSU

Course Administration

 All lecture notes (including Verilog tutorial) available

 Homework 3 will be made available later today; this is due in two

parts:

◦ Part A is due this Friday, Oct 16

◦ Part B (Verilog) is due on Monday Oct 26

1

2

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

10/11/2020

2

Datapath and Control

 We will design a simplified MIPS processor

 The instructions supported are

◦ Memory-reference instructions: lw, sw

◦ Arithmetic-logical instructions: add, sub, and, or, slt

◦ Control-flow instructions: beq, j

 Generic Implementation

◦ Use the program counter (PC) to supply the instruction address and fetch

the instruction from memory (and update the PC)

◦ Decode the instruction (and read the registers)

◦ Execute the instruction

 All instructions (except j) use the ALU after reading the registers

◦ How? Memory-reference ? Arithmetic ? Control-flow ?

Clocking Methodologies

 The clocking methodology defines when signals can be read and when
they can be written
◦ An edge triggered methodology

 Typical execution
◦ Read contents of state elements

◦ Send values through combinational logic

◦ Write results to one or more state elements

 Assumes that state elements are written on every clock cycle; if not,
need explicit write control signal
◦ Writes occur only when both the write control is asserted and clock edge

occurs

State

element

1

State

element

2

Combinational

logic

clock

one clock cycle

3

4

10/11/2020

3

What blocks do we need?

 We need an ALU – already designed a 4 function (ADD/SUB, OR, AND, SLT)

and BRANCH

carry in

ALU 0

Less

carry out

a0

b0

carry in

ALU 0

Less

carry out

a1

b1

carry in

ALU 0

Less

carry out

a2

b2

carry in

ALU 0

Less

carry out

a31

b31

operation

0

0

0 Overflow

Set

B negate

Zero

4 Function

result

b

a

32

32

zero

overflow

A Static Memory Cell

 Tri-state Logic: The output of a gate can be in one of three states –
one, zero or not connected

D

C

Q

d0 R/W Enable

5

6

10/11/2020

4

D

C

Q
D

C

Q
D

C

Q

4-bit Register

D

C

Q

d0 R/W Enable

d3

What more blocks do we need?

 We need memory to store instructions and data

◦ Instruction memory takes address and supplies instructions

◦ Data memory takes address and supply data (eg. load)

◦ Data memory takes address and data and write into memory

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

4 x 16

Decoder

A0

A1

A2

A3

d0

Enables

Read

Address
Instruction

Instruction

Memory

7

8

10/11/2020

5

Sample 4 x 3 Memory

http://www.sci.brooklyn.cuny.edu/~jones/cisc3310/Null%20&%20Lobur%20Figures.htm

Other Blocks?

 We need register file to include 32 registers

◦ 2 port read for a register file

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

RegWrite

Register 0

Register 1

….

Register n - 2

Register n - 1

M

u

x

M

u

x

Read Reg 1

Read Reg 2

Read Data 1

Read Data 2

9

10

10/11/2020

6

Other Blocks?

 We need register file to include 32 registers

◦ Implement write port with write control

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

RegWrite

Register 0

Register 1

….

Register n - 2

Register n - 1

C

C

C

C

D

D

D

D

0

1

n - 2

n – 1

Decoder

RegWrite

Reg

Number

Reg

Data

Any other blocks?

 PC (program counter)

 Add support for immediate class of instructions

 Add support for J, JR, JAL

11

12

10/11/2020

7

Fetching Instructions
 Fetching instructions involves

◦ reading the instruction from the Instruction Memory

◦ updating the PC to hold the address of the next instruction

◦ PC is updated every cycle, so it does not need an explicit write control signal

◦ Instruction memory is read every cycle, so it doesn’t need an explicit read
control signal

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Decoding Instructions

 Decoding instructions involves

◦ sending the fetched instruction’s opcode and function field bits to the control
unit

◦ reading two values from the Register File

 Register File addresses are contained in the instruction

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

Control

Unit

13

14

10/11/2020

8

Executing R Format Operations
 R format operations (add, sub, slt, and, or)

◦ perform the (op and funct) operation on values in rs and rt

◦ store the result back into the Register File (into location rd)

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

R-type:

31 25 20 15 5 0

op rs rt rd functshamt

10

• The Register File is not written every cycle (e.g. sw), so we need an

explicit write control signal for the Register File

Executing Load Operation
 Load and store operations involves

◦ compute memory address by adding the base register (read from the Register

File during decode) to the 16-bit signed-extended offset field in the instruction

◦ load value, read from the Data Memory, written to the Register File

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Sign

Extend

MemWrite

MemRead

16 32

15

16

10/11/2020

9

Executing Store Operation
 Load and store operations involves

◦ compute memory address by adding the base register (read from the Register

File during decode) to the 16-bit signed-extended offset field in the instruction

◦ store value (read from the Register File during decode) written to the Data

Memory

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Sign

Extend

MemWrite

MemRead

16 32

Executing Branch Operations
 Branch operations involves

◦ compare the operands read from the Register File during decode for equality (zeroALU

output) compute the branch target address by adding the updated PC to the 16-bit signed-

extended offset field in the instruction

Instruction

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

zero

ALU control

Sign

Extend16 32

Shift

left 2

Add

4
Add

PC

Branch

target

address

(to branch

control logic)

17

18

10/11/2020

10

Executing Jump Operations

 Jump operation involves
◦ replace the lower 28 bits of the PC with the lower 26 bits of the

fetched instruction shifted left by 2 bits

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Shift

left 2

Jump

address

26

4

28

Creating a Single Datapath from the Parts

 Assemble the datapath segments and add control lines and

multiplexors as needed

 Single cycle design – fetch, decode, and execute each instructions

in one cycle

◦ no datapath resource can be used more than once per instruction, so some

must be duplicated (Eg. separate Instruction Memory and Data Memory,

several adders)

◦ multiplexors needed at the input of shared elements with the control lines

to do the selection

◦ write signals to control writing to the Register File and Data Memory

 Cycle time is determined by length of the longest path

19

20

10/11/2020

11

Fetch, R, and Memory Access Portions

MemtoReg

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Write Data

Read Reg 1

Read Reg 2

Write Reg

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

ALUSrc

Adding the Control

 Selecting the operations to perform (ALU, Register File, Memory

read/write)

◦ Select the registers to be read (always two)

◦ Select the 2nd ALU input

◦ Select the operation to be performed

◦ Select the data memory to be written

 Controlling the flow of data (multiplexor inputs)

21

22

10/11/2020

12

Adding the Control

 Observations

◦ op field always in bits 31-26

◦ address of registers to be read are always specified by the rs field (bits 25-21)
and rt field (bits 20-16); for lw and sw, rs is the base register

◦ addr. of register to be written is in one of two places – in rt (bits 20-16) for lw;
in rd (bits 15-11) for R-type instructions

◦ offset for beq, lw, and sw always in bits 15-0

I-Type: op rs rt address offset

31 25 20 15 0

R-type:

31 25 20 15 5 0

op rs rt rd functshamt

10

J-type:

31 25 0

op target address

Single Cycle Datapath with

Control Unit

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

23

24

10/11/2020

13

Load Word Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Branch Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

25

26

10/11/2020

14

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Adding the Jump Operation

27

