
10/10/2020

1

EE 3613: Computer Organization
Chapter 5: Processor: Datapath & Control - 2

Verilog Tutorial

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Acknowledgement: Srinivasan Ramasubramanian

Verilog Language

 Describe a system by a set of modules (equivalent to functions in

C)

 Keywords e.g. module, are reserved and in all lower case letters

 Operators (some examples)

◦ Arithmetic: +, -, *, /

◦ Binary operators: &, |, ^, ~, !

◦ Shift: << >>

◦ Relational: <, <=, >, =>, ==, !=

◦ Logical: &&, ||

 Comments start with “//” for one line or /* to */ across lines

1

2

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

10/10/2020

2

Number Representation
 Numbers are specified in the traditional form as a series of digits

with or without a sign but also in the following form

 <size><base format><number>

◦ <size> contains number of bits (optional)

◦ <base format>: is a single character ‘ followed by one of the following

characters b, d, o and h, which stand for binary, decimal, octal and hex

◦ <number> contains digits which are legal for the <base format>

Declaration Comments

549 Decimal number

‘h 8FF Hexadecimal number

‘o 765 Octal number

4’b 11 4-bit binary number 0011

3’b 10x 3-bit binary number with least significant bit unknown

5’d 3 5-bit decimal number

-4’b 11 4-bit 2’s complement of 0011 or equivalently 1101

Physical Data Types

 Modeling wires (wire) and registers (reg)

 Register values store the last value that was procedurally assigned

 Wire variables represent physical connections between structural

entities such as gates

 The reg and wire data objects may have the following values:

 reg variables are initialized to 0 at the start of simulation

 wire variable not connected to something has the x value

Value Meaning

0 Logical zero or false

1 Logical one or true

x Unknown logical value

z High-impedance of tri-state gate

3

4

10/10/2020

3

Program Structure

 A digital system as a set of modules

 Each module has an interface to other module (connectivity)

 Good Practice: Place one module per file (not a requirement)

 Modules may run concurrently

 Usually a top-level module which invokes instances of other

modules

Module

 Represent bits of hardware ranging from simpler gates to

complete systems i.e. microprocessor

 Specified behaviorally or structurally or a combination of two

 The structure of a module is the following:
module <module name> (<port list>);

<declarations>

<module items>

endmodule

Declaration Comments

<module name> is an identifier that uniquely names the module

<port list> is a list of input, output ports which are used to connect to other modules

<declarations> section specifies data objects as registers, memories, and wires as well as

procedural constructs such as functions and tasks

<module items> maybe initial constructs, always constructs, continous assignments, or

instances of modules

5

6

10/10/2020

4

Behavioral Example

 Here is a behavioral specification of module NAND

 All undeclared variables are wires and are one bit wide

 Declare ALL variables!

// Behavioral model of a NAND gate

module NAND(in1, in2, out);

input in1, in2;

output out;

// continuous assignment statement

assign out = ~(in1 & in2);

endmodule

Explanation of NAND Module

 The ports in1, in2, and out are wires

 The continuous assignment statement “assign” continuously watches

for changes to variables in its right-hand side and whenever that

happens, the right hand side is re-evaluated and the result is

immediately propagated to the left hand side (out)

 The continuous assignment statement is used to model combinational

circuits where the outputs change when one wiggles the input

// Behavioral model of a NAND gate

module NAND(in1, in2, out);

input in1, in2;

output out;

// continuous assignment statement

assign out = ~(in1 & in2);

endmodule

7

8

10/10/2020

5

Instance of a Module

 The general form to invoke an instance of a module is:

 <module name> <parameter list> <instance name> (<port list>);

◦ <parameter list> are values of parameters passed to the instance

◦ <instance name> identifies the specific instance of the module

 An example parameter passed would be the delay of the gate

◦ Need not be used while designing for this course!

 For our purposes, to invoke an instance of a module

 <module name> <instance name> (<port list>);

Structural Example: AND Gate

 This module has two instances of the NAND module called NAND1
and NAND2 connected together by an internal wire w1

// Behavioral model of a AND gate from two NAND gates

module AND(in1, in2, out);

input in1, in2;

output out;

wire w1;

// two instances of the module NAND

NAND NAND1(in1, in2, w1);

NAND NAND2(w1,w1,out);

endmodule

in1

in2
out

9

10

10/10/2020

6

More Structural Examples

R

S Q

Q

R

S Q

Q

D

Clk

module SRLatch(S, R, Q, Qbar);

input S, R;

output Q, Qbar;

NAND nand1(S, Qbar, Q);

NAND nand2(R, Q, Qbar);

endmodule

module DLatch(Clk, D, Q, Qbar);

input Clk, D;

output Q, Qbar;

wire S, R;

NAND nand1(D, Clk, S);

NAND nand2(~D, Clk, R);

SRLatch srlatch1(S, R, Q, Qbar)

endmodule

module DFlipFlop(Clk, D, Q, Qbar);

input Clk, D;

output Q, Qbar;

wire Qint, Qbarint;

Dlatch dlatch1(Clk, D, Qint, Qbarint);

Dlatch dlatch2(~Clk, Qint, Q, Qbar);

endmodule

D

C

Q D

C

Q

Clk

D
Q

Qbar

Continuous vs. Procedural Assignment

 Continuous statement is used to model combinational logic

◦ Continuous assignments drive wire variables

◦ Evaluated and updated whenever an input operand changes value

 Procedural assignment changes the state of a register

◦ Used for sequential logic or that are clock controlled

◦ All procedural statements must be within “always” block

reg A;

always begin

A = B & C;

end

11

12

10/10/2020

7

Events

 The execution of a procedural statement is triggered

◦ Value change on a wire or register

◦ Occurence of a named event

always @r begin // controlled by any value change in the register r

A = B & C;

end

always @(posedge Clk) // controlled by positive edge of the Clk

A = B & C;

end

always @(negedge Clk) // controlled by negative edge of the Clk

A = B & C;

end

Behavioral Model: D-Flip Flop

 What is the behavioral model of D-flipflop designed earlier?

◦ During every positive edge, the input is transferred to the output

module DFlipFlop(Clk, D, Q, Qbar);

input Clk, D;

output Q, Qbar;

reg Qint;

// Always is a procedural construct

// any assignment maybe made only to registers

always @(posedge Clk)

Qint = D;

assign Q = Qint;

assign Qbar = ~Qint;

endmodule

13

14

10/10/2020

8

Register Size and Assignments

 Size of a register or wire in the declaration

 Assignments and concatenations

reg [0:7] A, B; // A and B are 8-bit wide with the most significant bit as 0

wire [0:3] Dataout; // Dataout is a 4-bit wide wire

reg [7:0] C; // C is a 8-bit register with the most significant bit as the 7

The last convention will be used in the class!

A = 8’b 01011010;

B = {A[0:3] | A[4:7], 4’b 0000}

- B is set to the first 4 bits of A bitwise or-ed with the last 4 bits of A and then concatenated

with 0000, B now holds a value of 11110000

- {} brackets means the bits of 2 or more arguments separated by commas are concatenated

Control Constructs

 2 constructs are available

If (A == 4)

begin

B = 2;

end

else if (A == 2)

begin

B = 1;

end

else

begin

B = 4;

end

case (A)

4: begin

B = 2;

end

2: begin

B = 1;

end

default: begin

B = 4;

end

endcase

15

16

10/10/2020

9

Control Statement Examples

module mux1bit2to1(a, b, s, out)

input a, b, s;

output out;

assign out = (~s & a) | (s & b);

endmodule

2 to 1 Multiplexor

module mux1bit2to1(a, b, s, out)

input a, b, s;

output out;

reg out; // used in procedural statement

always if (s == 0) out = a;

else out = b;

endmodule

OR

8-bit 4 to 1 Multiplexor

module mux8bit4to1(a,b,c,d,s,out)

input [7:0] a,b,c,d;

input [1:0] s;

output [7:0] out;

reg [7:0] out;

always case(s)

2’b 00: out = a;

2’b 01: out = b;

2’b 10: out = c;

2’b 11: out = d;

endcase

endmodule

Blocking/Non-Blocking

Procedural Statements

 Blocking assignment
statement (= operator) acts
much like in traditional
programming languages

◦ The whole statement is done before
control passes on to the next
statement.

 Non-blocking (<= operator)
evaluates all the right-hand
sides for the current time unit
and assigns the left-hand sides
at the end of the time unit

◦ Example: During every clock cycle

 A is ahead of C by 1

 B is same as D

// testing blocking and non-

// blocking assignment

module blocking(Clk, A, B);

input Clk;

output [7:0] A, B;

reg [7:0] A, B;

// as these will be used in

// procedural statements

reg [7:0] C, D

// two internal registers

always @(posedge Clk) begin

// blocking procedural assignment

C = C + 1;

A = C + 1;

// non-blocking procedural

// assignment

D <= D + 1;

B <= D + 1;

end

endmodule

17

18

10/10/2020

10

Some Tips

 Can be downloaded from Xilinx (the webpage is given on the

class webpage under tools) or MaxPlus from Altera

 Declare all variables, and one variable (especially input/output)

per line

 Write your own test cases – see the example along with Xilinx

distribution and help pages

 All the modules must follow the port list defined in the

assignment

19

