EE 3613: Computer Organization
Chapter 5: Processor: Datapath & Control - 2
Verilog Tutorial

Avinash Karanth
Department of Electrical Engineering & Computer Science
Ohio University, Athens, Ohio 45701
E-mail: karanth@ohio.edu
Website:

Acknowledgement: Srinivasan Ramasubramanian

Verilog Language

Describe a system by a set of modules (equivalent to functions in
Q)

Keywords e.g. module, are reserved and in all lower case letters
Operators (some examples)

o Arithmetic: +, -, %,/

° Binary operators: &, |, ~,!

o Shift: << >>

o Relational: <, <=, >, => ===

° Logical: &&, ||

Comments start with “//”” for one line or /* to */ across lines

10/10/2020

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Number Representation

* Numbers are specified in the traditional form as a series of digits
with or without a sign but also in the following form

e <size><base format><number>
o <size> contains number of bits (optional)

o <base format>:is a single character ‘ followed by one of the following
characters b, d, o and h, which stand for binary, decimal, octal and hex

° <number> contains digits which are legal for the <base format>

Declaration | _____________ Commens __|

549 Decimal number

‘h 8FF Hexadecimal number

‘o0 765 Octal number

4b 11 4-bit binary number 001 |

3’b 10x 3-bit binary number with least significant bit unknown
5d3 5-bit decimal number

-4b 11 4-bit 2’s complement of 001 | or equivalently 1101

Physical Data Types

Modeling wires (wire) and registers (reg)

Register values store the last value that was procedurally assigned

Wire variables represent physical connections between structural
entities such as gates

The reg and wire data objects may have the following values:

0 Logical zero or false

| Logical one or true

X Unknown logical value

z High-impedance of tri-state gate
e reg variables are initialized to 0 at the start of simulation

e wire variable not connected to something has the x value

10/10/2020

10/10/2020

Program Structure

A digital system as a set of modules

e Each module has an interface to other module (connectivity)

* Good Practice: Place one module per file (not a requirement)

e Modules may run concurrently

e Usually a top-level module which invokes instances of other
modules

Module

e Represent bits of hardware ranging from simpler gates to
complete systems i.e. microprocessor

e Specified behaviorally or structurally or a combination of two

e The structure of a module is the following:
module <module name> (<port list>);
<declarations>

<module items>

endmodule
Declaration Comments
<module name> is an identifier that uniquely names the module
<port list> is a list of input, output ports which are used to connect to other modules
<declarations> section specifies data objects as registers, memories, and wires as well as

procedural constructs such as functions and tasks

<module items> maybe initial constructs, always constructs, continous assignments, or
instances of modules

Behavioral Example

e Here is a behavioral specification of module NAND

// Behavioral model of a NAND gate
module NAND (inl, in2, out);

input inl, in2;

output out;

// continuous assignment statement
assign out = ~(inl & in2);

endmodule

e All undeclared variables are wires and are one bit wide
e Declare ALL variables!

Explanation of NAND Module

e The ports inl, in2, and out are wires

e The continuous assignment statement “assign” continuously watches
for changes to variables in its right-hand side and whenever that
happens, the right hand side is re-evaluated and the result is
immediately propagated to the left hand side (out)

e The continuous assignment statement is used to model combinational
circuits where the outputs change when one wiggles the input

// Behavioral model of a NAND gate
module NAND (inl, in2, out);

input inl, in2;

output out;

// continuous assignment statement
assign out = ~(inl & in2);

endmodule

10/10/2020

Instance of a Module

The general form to invoke an instance of a module is:

<module name> <parameter list> <instance name> (<port list>);
o <parameter list> are values of parameters passed to the instance

° <instance name> identifies the specific instance of the module

An example parameter passed would be the delay of the gate

> Need not be used while designing for this course!

For our purposes, to invoke an instance of a module

<module name> <instance name> (<port list>);

9
L]
Structural Example:AND Gate
in2 out
// Behavioral model of a AND gate from two NAND gates
module AND(inl, in2, out):;
input inl, in2;
output out;
wire wl;
// two instances of the module NAND
NAND NAND1 (inl, in2, wl);
NAND NAND2 (wl,wl,out) ;
endmodule
¢ This module has two instances of the NAND module called NANDI
and NAND?2 connected together by an internal wire wl
10

10/10/2020

More Structural Examples

module SRLatch(S, R, Q, Qbar);
input S, R;
output Q, Qbar;
NAND nandl (S, Qbar, Q)
NAND nand2 (R, Q, Qbar)
endmodule

7
7

module DLatch (Clk, D, Q, Qbar);
input Clk, D;

D output Q, Qbar;

wire S, R;
NAND nandl (D, Clk, S);
NAND nand2 (~D, Clk, R);

SRLatch srlatchl (S, R, Q, Qbar)

endmodule

module DFlipFlop(Clk, D, Q, Qbar);
input Clk, D;

D output Q, Qbar;
wire Qint, Qbarint;
Dlatch dlatchl (Clk, D, Qint, Qbarint);
Dlatch dlatch2 (~Clk, Qint, Q, Qbar);
Clk endmodule

11

Continuous vs. Procedural Assignment

e Continuous statement is used to model combinational logic
o Continuous assignments drive wire variables

o Evaluated and updated whenever an input operand changes value

e Procedural assighment changes the state of a register
o Used for sequential logic or that are clock controlled

> All procedural statements must be within “always” block

reg A;

always begin
B & C;

end

12

10/10/2020

Events

e The execution of a procedural statement is triggered
° Value change on a wire or register
o Occurence of a named event
always @r begin // controlled by any value change in the register r

A =B & C;
end

always @ (po S k) // controlled by positive edge of the Clk
&

(
A =B

always @ (n
B

end

13

Behavioral Model: D-Flip Flop

e What is the behavioral model of D-flipflop designed earlier?

o During every positive edge, the input is transferred to the output

module DFlipFlop(Clk, D, Q, QObar);
input Clk, D;
output Q, Qbar;

reg Qint;

// Always is a procedural c
// any assignment maybe ma

always @ (posedge Clk)
Qint = D;

assign Q = Qint;
assign Qbar =

endmodule

14

10/10/2020

Register Size and Assignments

e Size of a register or wire in the declaration

reg [0:7] A, B; // A and B are 8-bit wide with the most significant bit as 0

wire [0:3] Dataout; // Dataout is a 4-bit wide wire

reg [7:0] C; // C is a 8-bit register with the most significant bit as the 7

e Assignments and concatenations

8’b 010110
{A[0:3] | A 4’b 0000}

- B is set to the first 4 bits of A bitwise or-ed with the last 4 bits of A and then concatenated
with 0000, B now holds a value of | 1110000

- {} brackets means the bits of 2 or more arguments separated by commas are concatenated

15
Control Constructs
e 2 constructs are available
case (A)
If (A == 4) : begin
begin B
end
end
else if (A == 2) : begin
begin
end
end
else default:
begin
end
endcase
16

10/10/2020

Control Statement Examples

2 to | Multiplexor

module muxlbit2tol (a,
input a, b, s;
output out;

assign out

endmodule

module muxlbit2tol (a, b, s, out)

input a, b, s;

output out;

reg out; // used in procedural statement

always if (s == 0) out = a;
else out = b;

endmodule

8-bit 4 to | Multiplexor

module mux8bit4tol (a,b,c,d,s,out)
input [7:0] a,b,c,d;

input [1:0] s;

output [7:0] out;

2'b 0

2'b 0

2'b 10: out =

2'’b 11: out
endcase

endmodule

17
¢ Blocking assignment // testing blocking and non-
statement (= operator) acts // blocking assignment
. . oge module blocking(Clk, A, B);
much like in traditional input Clk;
programming languages output [7:0] A, B;
o The whole statement is done before . .
| passes on to the next ey IOl Ry B
control p // as these will be used in
statement. // procedural statements
. reg [7:0] C, D
¢ Non-blocking (<= operator) // two internal registers
evaluates all the right-hand
sides for the current time unit .
. . signment
and assigns the left-hand sides
at the end of the time unit
o Example: During every clock cycle // non-blocking procedural
* Ais ahead of C by | // assignmer
+ Bissameas D D<=D + 1;
B <=D + 1;
end
endmodule
18

10/10/2020

Some Tips

Can be downloaded from Xilinx (the webpage is given on the
class webpage under tools) or MaxPlus from Altera

Declare all variables, and one variable (especially input/output)
per line

Write your own test cases — see the example along with Xilinx
distribution and help pages

All the modules must follow the port list defined in the
assignment

19

10/10/2020

10

