
10/10/2020

1

EE 3613: Computer Organization
Chapter 5: Processor: Datapath & Control - 2

Verilog Tutorial

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Acknowledgement: Srinivasan Ramasubramanian

Verilog Language

 Describe a system by a set of modules (equivalent to functions in

C)

 Keywords e.g. module, are reserved and in all lower case letters

 Operators (some examples)

◦ Arithmetic: +, -, *, /

◦ Binary operators: &, |, ^, ~, !

◦ Shift: << >>

◦ Relational: <, <=, >, =>, ==, !=

◦ Logical: &&, ||

 Comments start with “//” for one line or /* to */ across lines

1

2

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

10/10/2020

2

Number Representation
 Numbers are specified in the traditional form as a series of digits

with or without a sign but also in the following form

 <size><base format><number>

◦ <size> contains number of bits (optional)

◦ <base format>: is a single character ‘ followed by one of the following

characters b, d, o and h, which stand for binary, decimal, octal and hex

◦ <number> contains digits which are legal for the <base format>

Declaration Comments

549 Decimal number

‘h 8FF Hexadecimal number

‘o 765 Octal number

4’b 11 4-bit binary number 0011

3’b 10x 3-bit binary number with least significant bit unknown

5’d 3 5-bit decimal number

-4’b 11 4-bit 2’s complement of 0011 or equivalently 1101

Physical Data Types

 Modeling wires (wire) and registers (reg)

 Register values store the last value that was procedurally assigned

 Wire variables represent physical connections between structural

entities such as gates

 The reg and wire data objects may have the following values:

 reg variables are initialized to 0 at the start of simulation

 wire variable not connected to something has the x value

Value Meaning

0 Logical zero or false

1 Logical one or true

x Unknown logical value

z High-impedance of tri-state gate

3

4

10/10/2020

3

Program Structure

 A digital system as a set of modules

 Each module has an interface to other module (connectivity)

 Good Practice: Place one module per file (not a requirement)

 Modules may run concurrently

 Usually a top-level module which invokes instances of other

modules

Module

 Represent bits of hardware ranging from simpler gates to

complete systems i.e. microprocessor

 Specified behaviorally or structurally or a combination of two

 The structure of a module is the following:
module <module name> (<port list>);

<declarations>

<module items>

endmodule

Declaration Comments

<module name> is an identifier that uniquely names the module

<port list> is a list of input, output ports which are used to connect to other modules

<declarations> section specifies data objects as registers, memories, and wires as well as

procedural constructs such as functions and tasks

<module items> maybe initial constructs, always constructs, continous assignments, or

instances of modules

5

6

10/10/2020

4

Behavioral Example

 Here is a behavioral specification of module NAND

 All undeclared variables are wires and are one bit wide

 Declare ALL variables!

// Behavioral model of a NAND gate

module NAND(in1, in2, out);

input in1, in2;

output out;

// continuous assignment statement

assign out = ~(in1 & in2);

endmodule

Explanation of NAND Module

 The ports in1, in2, and out are wires

 The continuous assignment statement “assign” continuously watches

for changes to variables in its right-hand side and whenever that

happens, the right hand side is re-evaluated and the result is

immediately propagated to the left hand side (out)

 The continuous assignment statement is used to model combinational

circuits where the outputs change when one wiggles the input

// Behavioral model of a NAND gate

module NAND(in1, in2, out);

input in1, in2;

output out;

// continuous assignment statement

assign out = ~(in1 & in2);

endmodule

7

8

10/10/2020

5

Instance of a Module

 The general form to invoke an instance of a module is:

 <module name> <parameter list> <instance name> (<port list>);

◦ <parameter list> are values of parameters passed to the instance

◦ <instance name> identifies the specific instance of the module

 An example parameter passed would be the delay of the gate

◦ Need not be used while designing for this course!

 For our purposes, to invoke an instance of a module

 <module name> <instance name> (<port list>);

Structural Example: AND Gate

 This module has two instances of the NAND module called NAND1
and NAND2 connected together by an internal wire w1

// Behavioral model of a AND gate from two NAND gates

module AND(in1, in2, out);

input in1, in2;

output out;

wire w1;

// two instances of the module NAND

NAND NAND1(in1, in2, w1);

NAND NAND2(w1,w1,out);

endmodule

in1

in2
out

9

10

10/10/2020

6

More Structural Examples

R

S Q

Q

R

S Q

Q

D

Clk

module SRLatch(S, R, Q, Qbar);

input S, R;

output Q, Qbar;

NAND nand1(S, Qbar, Q);

NAND nand2(R, Q, Qbar);

endmodule

module DLatch(Clk, D, Q, Qbar);

input Clk, D;

output Q, Qbar;

wire S, R;

NAND nand1(D, Clk, S);

NAND nand2(~D, Clk, R);

SRLatch srlatch1(S, R, Q, Qbar)

endmodule

module DFlipFlop(Clk, D, Q, Qbar);

input Clk, D;

output Q, Qbar;

wire Qint, Qbarint;

Dlatch dlatch1(Clk, D, Qint, Qbarint);

Dlatch dlatch2(~Clk, Qint, Q, Qbar);

endmodule

D

C

Q D

C

Q

Clk

D
Q

Qbar

Continuous vs. Procedural Assignment

 Continuous statement is used to model combinational logic

◦ Continuous assignments drive wire variables

◦ Evaluated and updated whenever an input operand changes value

 Procedural assignment changes the state of a register

◦ Used for sequential logic or that are clock controlled

◦ All procedural statements must be within “always” block

reg A;

always begin

A = B & C;

end

11

12

10/10/2020

7

Events

 The execution of a procedural statement is triggered

◦ Value change on a wire or register

◦ Occurence of a named event

always @r begin // controlled by any value change in the register r

A = B & C;

end

always @(posedge Clk) // controlled by positive edge of the Clk

A = B & C;

end

always @(negedge Clk) // controlled by negative edge of the Clk

A = B & C;

end

Behavioral Model: D-Flip Flop

 What is the behavioral model of D-flipflop designed earlier?

◦ During every positive edge, the input is transferred to the output

module DFlipFlop(Clk, D, Q, Qbar);

input Clk, D;

output Q, Qbar;

reg Qint;

// Always is a procedural construct

// any assignment maybe made only to registers

always @(posedge Clk)

Qint = D;

assign Q = Qint;

assign Qbar = ~Qint;

endmodule

13

14

10/10/2020

8

Register Size and Assignments

 Size of a register or wire in the declaration

 Assignments and concatenations

reg [0:7] A, B; // A and B are 8-bit wide with the most significant bit as 0

wire [0:3] Dataout; // Dataout is a 4-bit wide wire

reg [7:0] C; // C is a 8-bit register with the most significant bit as the 7

The last convention will be used in the class!

A = 8’b 01011010;

B = {A[0:3] | A[4:7], 4’b 0000}

- B is set to the first 4 bits of A bitwise or-ed with the last 4 bits of A and then concatenated

with 0000, B now holds a value of 11110000

- {} brackets means the bits of 2 or more arguments separated by commas are concatenated

Control Constructs

 2 constructs are available

If (A == 4)

begin

B = 2;

end

else if (A == 2)

begin

B = 1;

end

else

begin

B = 4;

end

case (A)

4: begin

B = 2;

end

2: begin

B = 1;

end

default: begin

B = 4;

end

endcase

15

16

10/10/2020

9

Control Statement Examples

module mux1bit2to1(a, b, s, out)

input a, b, s;

output out;

assign out = (~s & a) | (s & b);

endmodule

2 to 1 Multiplexor

module mux1bit2to1(a, b, s, out)

input a, b, s;

output out;

reg out; // used in procedural statement

always if (s == 0) out = a;

else out = b;

endmodule

OR

8-bit 4 to 1 Multiplexor

module mux8bit4to1(a,b,c,d,s,out)

input [7:0] a,b,c,d;

input [1:0] s;

output [7:0] out;

reg [7:0] out;

always case(s)

2’b 00: out = a;

2’b 01: out = b;

2’b 10: out = c;

2’b 11: out = d;

endcase

endmodule

Blocking/Non-Blocking

Procedural Statements

 Blocking assignment
statement (= operator) acts
much like in traditional
programming languages

◦ The whole statement is done before
control passes on to the next
statement.

 Non-blocking (<= operator)
evaluates all the right-hand
sides for the current time unit
and assigns the left-hand sides
at the end of the time unit

◦ Example: During every clock cycle

 A is ahead of C by 1

 B is same as D

// testing blocking and non-

// blocking assignment

module blocking(Clk, A, B);

input Clk;

output [7:0] A, B;

reg [7:0] A, B;

// as these will be used in

// procedural statements

reg [7:0] C, D

// two internal registers

always @(posedge Clk) begin

// blocking procedural assignment

C = C + 1;

A = C + 1;

// non-blocking procedural

// assignment

D <= D + 1;

B <= D + 1;

end

endmodule

17

18

10/10/2020

10

Some Tips

 Can be downloaded from Xilinx (the webpage is given on the

class webpage under tools) or MaxPlus from Altera

 Declare all variables, and one variable (especially input/output)

per line

 Write your own test cases – see the example along with Xilinx

distribution and help pages

 All the modules must follow the port list defined in the

assignment

19

