
9/28/2020

1

EE 3613: Computer Organization
Arithmetic for Computers – 3

Multiplication, Division and Floating Point

Representation

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

Acknowledgement: Srinivasan Ramasubramanian

Course Administration

 All lecture slides covered so far are online (except this set)

 Homework 2B is due this Friday Sept 25 by 11:59 PM EST. Recall the

instructions on homework 2B (zipped, single file, naming convention)

 Exam 1 is scheduled for Friday Oct 2 via blackboard (proctortrack)

◦ Review on Wed Sept 30

◦ Topics are Performance Metrics, Instruction Set Architecture and Computer

Arithmetic

◦ Homework 2 graded material and solutions will be available next week

◦ On-boarding needed for those who have not completed it (from now to next

Monday); everyone needs to complete the on-boarding by Sept 28th

1

2

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

9/28/2020

2

Multiplication

 More complicated than addition

◦ Accomplished via shifting and addition

 More time and area

 Lets look at 3 versions based on grade school

0010 (multiplicand)

X 0011 (multiplier)

 Negative numbers: convert and multiply

 Other technique like Booth’s encoding can be better

Multiplication Implementation

Multiplicand

Shift Left

Product

Write

Control

Test

Multiplier

Shift Right

64 bits

64 bits

32 bits

64-bit ALU

Start

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register

left 1 bit

3. Shift the Multiplier register

right 1 bit

32nd

Repetition?

1. Test

Multipler0

Multiplier0 = 1 Multiplier0 = 0

Done

Yes

No

3

4

9/28/2020

3

Second Version

Multiplicand

Product

Write

Control

Test

Multiplier

Shift Right

32 bits

64 bits

32 bits

32-bit ALU

1a. Add multiplicand to the left half of

the product and place the result in

left half of the Product register

2. Shift the product register

right 1 bit

Start

1. Test

Multipler0

Multiplier0 = 1 Multiplier0 = 0

3. Shift the Multiplier register

right 1 bit

32nd

Repetition?

Done

Yes

No

Shift right

Final Version

Multiplicand

Product

Write

Control

Test

32 bits

64 bits

32-bit ALU

1a. Add multiplicand to the left half of

the product and place the result in

left half of the Product register

2. Shift the product register

right 1 bit

Start

1. Test

Product0

Product0 = 1 Product0 = 0

32nd

Repetition?

Done

Yes

No

Shift right

5

6

9/28/2020

4

Multiplication Example: 0010 x 0011
Iteration Step Multiplier Multiplicand Product

0 Initial values 0011 0000 0010 0000 0000

1

1a: Prod = Prod + Mcand 0011 0000 0010 0000 0010

2: Shift left Multiplicand 0011 0000 0100 0000 0010

3: Shift right Multiplier 0001 0000 0100 0000 0010

2

1a: Prod = Prod + Mcand 0001 0000 0100 0000 0110

2: Shift left Multiplicand 0001 0000 1000 0000 0110

3: Shift right Multiplier 0000 0000 1000 0000 0110

3

1a: 0 ➔ No Operation 0000 0000 1000 0000 0110

2: Shift left Multiplicand 0000 0001 0000 0000 0110

3: Shift right Multiplier 0000 0001 0000 0000 0110

4

1a: 0 ➔ No Operation 0000 0001 0000 0000 0110

2: Shift left Multiplicand 0000 0010 0000 0000 0110

3: Shift right Multiplier 0000 0010 0000 0000 0110

Division

 Even more complicated

 Can be accomplished via shifting and addition/subtraction

 1001010 ÷ 1000

 We will look at ONE version! Others refer to book

 Negative numbers are more difficult

◦ There are better techniques, we will not be looking at them

7

8

9/28/2020

5

Division Implementation

Divisor

Shift Right

Remainder

Write

Control

Test

Quotient

Shift Left

64 bits

64 bits

32 bits

64-bit ALU

2b. Restore the original value by adding

the Divisor to the Remainder register and

place the sum in the Remainder register.

Also, shift the Quotient register to the left,

setting the new rightmost bit to 0

2a. Shift the Quotient

register to the left, setting

the new rightmost bit to 1

Start

Test

Remainder

Remainder ≥ 0 Remainder < 0

33rd

Repetition?

Done

Yes

1. Subtract the Divisor register from the

Remainder register and place the result in the

the Remainder register

No

3. Shift the Divisor register right 1 bit

Example: 7 ÷ 2 or 0000 0111 ÷ 0010
Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1

1: Rem = Rem - Div 0000 0010 0000 1110 0111

2b: Rem < 0 ➔ +Div, sll Q, Q0 = 0 0000 0010 0000 0000 0111

3: Shift Div right 0000 0001 0000 0000 0111

2

1: Rem = Rem - Div 0000 0001 0000 1111 0111

2b: Rem < 0 ➔ +Div, sll Q, Q0 = 0 0000 0001 0000 0000 0111

3: Shift Div right 0000 0000 1000 0000 0111

3

1: Rem = Rem - Div 0000 0000 1000 1111 1111

2b: Rem < 0 ➔ +Div, sll Q, Q0 = 0 0000 0000 1000 0000 0111

3: Shift Div right 0000 0000 0100 0000 0111

4

1: Rem = Rem - Div 0000 0000 0100 0000 0011

2b: Rem ≥ 0 ➔ sll Q, Q0 = 1 0001 0000 0100 0000 0011

3: Shift Div right 0001 0000 0010 0000 0011

5

1: Rem = Rem - Div 0001 0000 0010 0000 0001

2b: Rem ≥ 0 ➔ sll Q, Q0 = 1 0011 0000 0010 0000 0001

3: Shift Div right 0011 0000 0001 0000 0001

9

11

9/28/2020

6

Floating Point Numbers

 Used to represent

◦ Numbers with fractions Eg. 3.1416

◦ Very small numbers Eg. 0.00000001

◦ Very large numbers Eg. 3.15576 x 109

 Representation

◦ Sign, exponent, significand: (-1)sign x (1+significand) x 2exponent-bias

◦ More bits for significand gives more accuracy

◦ More bits for exponent increases range

 IEEE 754 floating point standard

◦ Single precision: 8 bit exponent, 23 bit significand

◦ Double precision: 11 bit exponent, 52 bit significand

IEEE 754 Floating-Point Standard

 Sign bit: (0 is positive, 1 is negative)

 Significand/Mantissa: (store 23 most significant bits after the

decimal point), leading 1 is implicit

 Exponent: used biased base 127 encoding

◦ Add 127 to the value of the exponent to encode

12

13

9/28/2020

7

Examples

 (-1)sign x (1 + Significand) x 2 (exponent-bias)

 Convert -.7510 to binary

 Convert 10.62510 to binary

 Convert 1 1000 0001 010000000000000000000002 to decimal

31 29 28 ….. 24 23 22 … 1 0

Sign

8bits - Exponent 23bits - Significand

Conversion Procedure

 The rules for converting a decimal number into floating point
are as follows:

◦ A. Convert the absolute value of the number into binary, perhaps with a
fractional part after the binary point

◦ B. Append x 20 to the end of the binary number (which does not change
the value)

◦ C. Normalize the number. Move the binary point so that it is one bit from
the left. Adjust the exponent of two so that the value does not change.

◦ D. Place the mantissa into the mantissa field of the number. Omit the
leading one, and fill with zeros on the right.

◦ E. Add the bias to the exponent of two and place it in the exponent field.
The bias is 2k-1 - 1, where k is the number of bits in the exponent field. For
IEEE 32-bit, k = 8, so the bias is 28-1 - 1 = 127.

◦ F. Set the sign bit, 1 for negative, 0 for positive, according to the sign of the
original number.

14

15

9/28/2020

8

Example: Convert 2.62510

 A) The integral part is easy, 210 = 102. The fractional part can be converted by multiplication.
(This is the inverse of the division method.)

◦ 0.625 × 2 = 1.25 1

◦ 0.25 × 2 = 0.5 0

◦ 0.5 × 2 = 1.0 1

 So 0.62510 = 0.1012, and 2.62510 = 10.1012

 B) Add an exponent part: 10.1012 = 10.1012 × 20

 C) Normalize: 10.1012 × 20 = 1.01012 × 21

 D) Mantissa: 0101

 E) Exponent: 1 + 127 = 128 = 1000 00002.

 F) Sign is 0.

 RESULT → 0 1000 0000 01010000000000000000000 → 0x40280000

Reverse Conversion

 0 1000 0000 01010000000000000000000

 (-1)sign x (1 + Significand) x 2 (exponent – bias)

 Exponent: 1000 00002 = 128

 Significand: 0 x 2-1 + 1 x 2-2 + 0 x 2-3 + 1 x 2-4 = 0.25 + 0.0625

 (-1)0 x (1 + 0.3125) x 2(128 – 127) = 1 x 1.3125 x 2 = 2.62510

16

17

9/28/2020

9

Floating-Point Addition

 Consider a 4-digit decimal example
◦ 9.999 × 101 + 1.610 × 10–1

 Align decimal points
◦ Shift number with smaller exponent

◦ 9.999 × 101 + 0.016 × 101

 Add significands
◦ 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 Normalize result & check for over/underflow
◦ 1.0015 × 102

 Round and renormalize if necessary
◦ 1.002 × 102

Floating-Point Addition

 Now consider a 4-digit binary example
◦ 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

 Align binary points
◦ Shift number with smaller exponent

◦ 1.0002 × 2–1 + –0.1112 × 2–1

 Add significands
◦ 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 Normalize result & check for over/underflow
◦ 1.0002 × 2–4, with no over/underflow

 Round and renormalize if necessary
◦ 1.0002 × 2–4 (no change) = 0.0625

18

19

9/28/2020

10

FP Adder Hardware

 Much more complex than integer adder

 Doing it in one clock cycle would take too long

◦ Much longer than integer operations

◦ Slower clock would penalize all instructions

 FP adder usually takes several cycles

◦ Can be pipelined

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

20

21

9/28/2020

11

Floating Point Complexities

 Operations are somewhat complicated

◦ Overflow and underflow

◦ IEEE 754 keeps two extra bits, guard and round

◦ Four rounding modes

◦ Positive divide by zero yields “infinity”

◦ Zero divide by zero yields “NaN – not a number’

◦ Other complexities

 Implementing the standard can be tricky

 We will not be doing floating point multiplication or division –
try on your own ☺

Summary

 Computer arithmetic is constrained by limited precision

 Bit patterns have no inherent meaning but standards do exist

 Computer instructions determine “meaning” of bit patterns

 Performance and accuracy are important so there are many
complexities in real machines (algorithms and implementations)

 We designed an ALU to carry out 4 functions

 Multiplication, Division and floating point representation

22

23

