EE 36I3: Computer Organization Arithmetic for Computers - 3 Multiplication, Division and Floating Point Representation

Avinash Karanth
Department of Electrical Engineering \& Computer Science
Ohio University, Athens, Ohio 45701
E-mail: karanth@ohio.edu
Website: http://oucsace.cs.ohiou.edu/~avinashk/ee46 la.htm
Acknowledgement: Srinivasan Ramasubramanian

1

Course Administration

- All lecture slides covered so far are online (except this set)
- Homework 2B is due this Friday Sept 25 by II:59 PM EST. Recall the instructions on homework 2B (zipped, single file, naming convention)
- Exam I is scheduled for Friday Oct 2 via blackboard (proctortrack)
- Review on Wed Sept 30
- Topics are Performance Metrics, Instruction Set Architecture and Computer Arithmetic
- Homework 2 graded material and solutions will be available next week
- On-boarding needed for those who have not completed it (from now to next Monday); everyone needs to complete the on-boarding by Sept $28^{\text {th }}$

Multiplication

- More complicated than addition
- Accomplished via shifting and addition
- More time and area
- Lets look at 3 versions based on grade school 0010 (multiplicand)
X 0011 (multiplier)
- Negative numbers: convert and multiply
- Other technique like Booth's encoding can be better

3

Multiplication Implementation

Second Version

5

Final Version

Multiplication Example: 0010×0011

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	00000010	00000000
1	I : Prod = Prod + Mcand	0011	00000010	00000010
	2: Shift left Multiplicand	0011	00000100	00000010
	3: Shift right Multiplier	0001	00000100	00000010
2	Ia: Prod = Prod + Mcand	0001	00000100	00000110
	2: Shift left Multiplicand	0001	00001000	00000110
	3: Shift right Multiplier	0000	00001000	00000110
3	Ia: $0 \rightarrow$ No Operation	0000	00001000	00000110
	2: Shift left Multiplicand	0000	00010000	00000110
	3: Shift right Multiplier	0000	0001 0000	00000110
4	$1 \mathrm{a}: 0 \rightarrow$ No Operation	0000	0001 0000	00000110
	2: Shift left Multiplicand	0000	00100000	00000110
	3: Shift right Multiplier	0000	00100000	00000110

7

Division

- Even more complicated
- Can be accomplished via shifting and addition/subtraction
- $1001010 \div 1000$
- We will look at ONE version! Others refer to book
- Negative numbers are more difficult
- There are better techniques, we will not be looking at them

Division Implementation

9

Example: $7 \div 2$ or $00000111 \div 0010$

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	00100000	00000111
1	I: Rem = Rem - Div	0000	00100000	11100111
	2b: Rem $<0 \rightarrow+$ Div, sll Q, Q0 $=0$	0000	00100000	00000111
	3: Shift Div right	0000	0001 0000	00000111
2	I: Rem = Rem - Div	0000	00010000	11110111
	2b: Rem $<0 \rightarrow+$ Div, sll Q, Q0 $=0$	0000	0001 0000	00000111
	3: Shift Div right	0000	00001000	00000111
3	I: Rem = Rem - Div	0000	00001000	1111 1111
	2b: Rem < $0 \rightarrow+$ Div, sll Q, Q0 = 0	0000	00001000	0000 0111
	3: Shift Div right	0000	00000100	0000 0111
4	I: Rem = Rem - Div	0000	00000100	00000011
	2 b : Rem $\geq 0 \rightarrow$ sll Q, Q0 = 1	0001	00000100	00000011
	3: Shift Div right	0001	00000010	00000011
5	I: Rem = Rem - Div	0001	00000010	00000001
	$2 \mathrm{~b}:$ Rem $\geq 0 \rightarrow$ sll Q, Q0 $=1$	0011	00000010	00000001
	3: Shift Div right	0011	0000 0001	00000001

Floating Point Numbers

- Used to represent
- Numbers with fractions Eg. 3.1416
- Very small numbers Eg. 0.00000001
- Very large numbers Eg. 3.15576×10^{9}
- Representation
- Sign, exponent, significand: $(-I)^{\text {sign }} \times(I+$ significand $) \times 2^{\text {exponent-bias }}$
- More bits for significand gives more accuracy
- More bits for exponent increases range
- IEEE 754 floating point standard
- Single precision: 8 bit exponent, 23 bit significand
- Double precision: II bit exponent, 52 bit significand

IEEE 754 Floating-Point Standard

- Sign bit: (0 is positive, I is negative)
- Significand/Mantissa: (store 23 most significant bits after the decimal point), leading I is implicit
- Exponent: used biased base 127 encoding
- Add 127 to the value of the exponent to encode

Examples

- $(-I)^{\text {sign }} \times(I+$ Significand $) \times 2$ (exponent-bias)

31	29	28	$\ldots .$.	24	23	22	\ldots	I	0						
Sign															
	8bits - Exponent												23bits - Significand		

- Convert -. 75_{10} to binary
- Convert 10.625_{10} to binary
- Convert I $1000000101000000000000000000000_{2}$ to decimal

Conversion Procedure

- The rules for converting a decimal number into floating point are as follows:
- A. Convert the absolute value of the number into binary, perhaps with a fractional part after the binary point
- B. Append $\times 2^{0}$ to the end of the binary number (which does not change the value)
- C. Normalize the number. Move the binary point so that it is one bit from the left.Adjust the exponent of two so that the value does not change.
- D. Place the mantissa into the mantissa field of the number. Omit the leading one, and fill with zeros on the right.
- E. Add the bias to the exponent of two and place it in the exponent field. The bias is $2^{k-1}-I$, where k is the number of bits in the exponent field. For IEEE 32 -bit, $k=8$, so the bias is $2^{8-1}-I=127$.
- F. Set the sign bit, I for negative, 0 for positive, according to the sign of the original number.

Example: Convert 2.625 ${ }_{10}$

- A) The integral part is easy, $2_{10}=10_{2}$. The fractional part can be converted by multiplication. (This is the inverse of the division method.)
- $0.625 \times 2=1.25 \quad 1$
- $0.25 \times 2=0.50$
- $0.5 \times 2=1.0 \quad 1$
- So $0.625_{10}=0.10 \mathrm{I}_{2}$, and $2.625_{10}=10.10 \mathrm{I}_{2}$
- B) Add an exponent part: $10.10 \mathrm{I}_{2}=10.10 \mathrm{I}_{2} \times 2^{0}$
- C) Normalize: $10.10 \mathrm{I}_{2} \times 2^{0}=1.0 \mathrm{IOI}_{2} \times 2^{1}$
- D) Mantissa:0101
- E) Exponent: $I+127=128=10000000_{2}$.
- F) Sign is 0 .
- RESULT $\rightarrow 01000000001010000000000000000000 \rightarrow 0 \times 40280000$

Reverse Conversion

- 01000000001010000000000000000000
- $(-I)^{\text {sign }} \times(I+$ Significand $) \times 2^{\text {(exponent }- \text { bias })}$
- Exponent: $10000000_{2}=128$
- Significand: $0 \times 2^{-1}+I \times 2^{-2}+0 \times 2^{-3}+I \times 2^{-4}=0.25+0.0625$
- $(-I)^{0} \times(I+0.3 I 25) \times 2^{(128-127)}=I \times I .3 I 25 \times 2=2.625_{10}$

Floating-Point Addition

- Consider a 4-digit decimal example
- $9.999 \times 10^{1}+1.610 \times 10^{-1}$
- Align decimal points
- Shift number with smaller exponent
$-9.999 \times 10^{1}+0.016 \times 10^{1}$
- Add significands
- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$
- Normalize result \& check for over/underflow
- 1.0015×10^{2}
- Round and renormalize if necessary
- 1.002×10^{2}

Floating-Point Addition

- Now consider a 4-digit binary example
- $1.000_{2} \times 2^{-1}+-1.11 O_{2} \times 2^{-2}(0.5+-0.4375)$
- Align binary points
- Shift number with smaller exponent
- $1.000_{2} \times 2^{-1}+-0.1 I_{2} \times 2^{-1}$
- Add significands
- $1.000_{2} \times 2^{-1}+-0.1 I_{2} \times 2^{-1}=0.00 I_{2} \times 2^{-1}$
- Normalize result \& check for over/underflow
- $1.000_{2} \times 2^{-4}$, with no over/underflow
- Round and renormalize if necessary
- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
- Much longer than integer operations
- Slower clock would penalize all instructions
- FP adder usually takes several cycles
- Can be pipelined

FP Adder Hardware

Floating Point Complexities

- Operations are somewhat complicated
- Overflow and underflow
- IEEE 754 keeps two extra bits, guard and round
- Four rounding modes
- Positive divide by zero yields "infinity"
- Zero divide by zero yields " NaN - not a number'
- Other complexities
- Implementing the standard can be tricky
- We will not be doing floating point multiplication or division try on your own $;$

Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
- Computer instructions determine "meaning" of bit patterns
- Performance and accuracy are important so there are many complexities in real machines (algorithms and implementations)
- We designed an ALU to carry out 4 functions
- Multiplication, Division and floating point representation

