EE 3613: Computer Organization

Arithmetic for Computers – 3
Multiplication, Division and Floating Point
Representation

Avinash Karanth

Department of Electrical Engineering & Computer Science
Ohio University, Athens, Ohio 4570 I

E-mail: karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm
Acknowledgement: Srinivasan Ramasubramanian

1

Course Administration

- All lecture slides covered so far are online (except this set)
- Homework 2B is due this Friday Sept 25 by 11:59 PM EST. Recall the instructions on homework 2B (zipped, single file, naming convention)
- Exam I is scheduled for Friday Oct 2 via blackboard (proctortrack)
 - Review on Wed Sept 30
 - Topics are Performance Metrics, Instruction Set Architecture and Computer Arithmetic
 - $\,^\circ\,$ Homework 2 graded material and solutions will be available next week
 - On-boarding needed for those who have not completed it (from now to next Monday); everyone needs to complete the on-boarding by Sept 28th

Multiplication

- More complicated than addition
 - · Accomplished via shifting and addition
- More time and area
- Lets look at 3 versions based on grade school 0010 (multiplicand)
 X 0011 (multiplier)
- · Negative numbers: convert and multiply
- Other technique like Booth's encoding can be better

3

Multiplication Example: 0010 x 0011

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
	Ia: Prod = Prod + Mcand	0011	0000 0010	0000 0010
'	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0100 0000
2	Ia: Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	000 0	0000 1000	0000 0110
3	Ia:0 → No Operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	000 0	0001 0000	0000 0110
4	Ia: 0 → No Operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

7

Division

- Even more complicated
- Can be accomplished via shifting and addition/subtraction
- 1001010 ÷ 1000
- We will look at ONE version! Others refer to book
- Negative numbers are more difficult
 - $\circ~$ There are better techniques, we will not be looking at them

9

Example: 7 ÷ 2 or 0000 0111 ÷ 0010

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
I	I: Rem = Rem - Div	0000	0010 0000	11100111
	2b: Rem < 0 → +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	I: Rem = Rem - Div	0000	0001 0000	1111 0111
	2b: Rem < 0 → +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	I: Rem = Rem - Div	0000	0000 1000	11111111
	2b: Rem < 0 → +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	I: Rem = Rem - Div	0000	0000 0100	0 000 0011
	2b: Rem ≥ 0 → sll Q, Q0 = I	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	I: Rem = Rem - Div	0001	0000 0010	0 000 000 I
	2b: Rem ≥ 0 → sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Floating Point Numbers

- Used to represent
 - Numbers with fractions Eg. 3.1416
 - ∘ Very small numbers Eg. 0.00000001
 - $^{\circ}$ Very large numbers Eg. 3.15576 x 10^9
- Representation
 - ∘ Sign, exponent, significand: (-1)^{sign} x (1+significand) x 2^{exponent-bias}
 - More bits for significand gives more accuracy
 - More bits for exponent increases range
- IEEE 754 floating point standard
 - Single precision: 8 bit exponent, 23 bit significand
 - Double precision: I I bit exponent, 52 bit significand

12

IEEE 754 Floating-Point Standard

- Sign bit: (0 is positive, I is negative)
- Significand/Mantissa: (store 23 most significant bits after the decimal point), leading 1 is implicit
- Exponent: used biased base 127 encoding
 - $^{\circ}\,$ Add 127 to the value of the exponent to encode

Examples

• (-1)sign x (1 + Significand) x 2 (exponent-bias)

- Convert -.75₁₀ to binary
- Convert 10.625₁₀ to binary

14

Conversion Procedure

- The rules for converting a decimal number into floating point are as follows:
 - A. Convert the absolute value of the number into binary, perhaps with a fractional part after the binary point
 - $^{\circ}\,$ B. Append x 2^{0} to the end of the binary number (which does not change the value)
 - C. Normalize the number. Move the binary point so that it is one bit from the left. Adjust the exponent of two so that the value does not change.
 - D. Place the mantissa into the mantissa field of the number. Omit the leading one, and fill with zeros on the right.
 - E. Add the bias to the exponent of two and place it in the exponent field. The bias is 2^{k-1} I, where k is the number of bits in the exponent field. For IEEE 32-bit, k = 8, so the bias is 2^{8-1} I = 127.
 - $\,^\circ\,$ F. Set the sign bit, I for negative, 0 for positive, according to the sign of the original number.

Example: Convert 2.625₁₀

- A) The integral part is easy, 2₁₀ = 10₂. The fractional part can be converted by multiplication. (This is the inverse of the division method.)
 - 0.625 × 2 = 1.25
 0.25 × 2 = 0.5
 0.5 × 2 = 1.0
 - So $0.625_{10} = 0.101_2$, and $2.625_{10} = 10.101_2$
- B) Add an exponent part: 10.101₂ = 10.101₂ × 2⁰
- C) Normalize: 10.101₂ × 2⁰ = 1.0101₂ × 2¹
- D) Mantissa: 0101
- E) Exponent: I + I27 = I28 = I000 0000₂.
- F) Sign is 0.

16

Reverse Conversion

- 0 1000 0000 0101000000000000000000
- (-1)sign x (1 + Significand) x 2 (exponent bias)
- Exponent: $1000\ 0000_2 = 128$
- Significand: $0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} = 0.25 + 0.0625$
- $(-1)^0 \times (1 + 0.3125) \times 2^{(128 127)} = 1 \times 1.3125 \times 2 = 2.625_{10}$

Floating-Point Addition

- Consider a 4-digit decimal example
 - \circ 9.999 × 10¹ + 1.610 × 10⁻¹
- Align decimal points
 - Shift number with smaller exponent
 - \circ 9.999 × 10¹ + 0.016 × 10¹
- Add significands
 - \circ 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- Normalize result & check for over/underflow
 - \circ 1.0015 × 10²
- Round and renormalize if necessary
 - \circ 1.002 × 10²

18

Floating-Point Addition

- Now consider a 4-digit binary example
 - \circ 1.000₂ × 2⁻¹ + -1.110₂ × 2⁻² (0.5 + -0.4375)
- Align binary points
 - Shift number with smaller exponent
 - \circ 1.000₂ × 2⁻¹ + -0.111₂ × 2⁻¹
- Add significands
 - \circ 1.000₂ × 2⁻¹ + -0.111₂ × 2⁻¹ = 0.001₂ × 2⁻¹
- Normalize result & check for over/underflow
 - \circ 1.000₂ × 2⁻⁴, with no over/underflow
- Round and renormalize if necessary
 - \circ 1.000₂ × 2⁻⁴ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - · Can be pipelined

20

Floating Point Complexities

- Operations are somewhat complicated
 - Overflow and underflow
 - IEEE 754 keeps two extra bits, guard and round
 - Four rounding modes
 - Positive divide by zero yields "infinity"
 - · Zero divide by zero yields "NaN not a number"
 - Other complexities
- Implementing the standard can be tricky
- We will not be doing floating point multiplication or division try on your own ©

22

Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
- Computer instructions determine "meaning" of bit patterns
- Performance and accuracy are important so there are many complexities in real machines (algorithms and implementations)
- We designed an ALU to carry out 4 functions
- Multiplication, Division and floating point representation