EE 36I3: Computer Organization
 Arithmetic for Computers - 2 Carry Look Ahead Adder

Avinash Karanth
Department of Electrical Engineering \& Computer Science Ohio University, Athens, Ohio 4570 I

E-mail: karanth@ohio.edu
Website: http://oucsace.cs.ohiou.edu/~avinashk/ee46 la.htm

1

Problem: Ripple Carry Adder is Slow!

- Propagation time of the carry bit takes time - Sequential operation

- ci+l $=$ ai.bi $+b i . c i+$ ai.ci
s2
- si = ai'.bi'.ci + ai'.bi.ci' + ai.bi'.ci' + ai.bi.ci
- How many gate delays are required for a n-bit sum?
- $2(\mathrm{n}-\mathrm{I})+3$

| st Try: Carry Look Ahead (CLA) Adder

- Lets start again
- ci+l $=(\mathrm{bi} . \mathrm{ci})+(\mathrm{ai} . \mathrm{ci})+(\mathrm{ai} . \mathrm{bi})$

$$
=(a i \cdot b i)+(a i+b i) \cdot c i
$$

- $\mathrm{cl}=(\mathrm{a} 0 . \mathrm{b} 0)+(\mathrm{aO}+\mathrm{b} 0) . \mathrm{c} 0$
- $c 2=(a l . b l)+(a l+b l) \cdot((a 0 . b 0)+(a 0+b 0) \cdot c 0)$
- Repeated use of (ai . bi) and (ai + bi) in the formula
- Generate (gi) and Propagate (pi)
- gi = ai . bi [a carry is always generated]
- pi $=$ ai + bi $\left[\right.$ if $(i-I)^{\text {th }}$ bit has a carry, it will be propagated to $(i+1)^{\text {th }}$ bit]
- ci+l = gi + pi.ci

3

> |st Try: CLA
> - $\mathrm{cl}=\mathrm{g} 0+\mathrm{p} 0 . \mathrm{c} 0$
> - $\mathrm{c} 2=\mathrm{g}=\mathrm{pl} . \mathrm{cl}=g \mathrm{~g}+\mathrm{pl} .(g 0+p 0 . c 0)=g l+p l . g 0+p l . p 0 . c 0$
> - $\mathrm{c} 3=\mathrm{g} 2+\mathrm{p} 2 . \mathrm{c} 2=\mathrm{g} 2+\mathrm{p} 2 .(g 1+\mathrm{pl} . g 0+\mathrm{pl} . \mathrm{p} 0 . c 0)=g 2+p 2 . g 1+p 2 . p 1 . g 0+$ p2.pl.p0.c0

- Number of gate delays for n-bit adder? $(1+2+3=6)$
- Feasible?

$2^{\text {nd }}$ Try:Two-level CLA

- Combine few bits (say $0,1,2$ and 3) to generate c4
- Then ripple it through to the next block (4,5,6 and 7) to generate c8
- Total gate delay for a " n " bit adder $=1+2(n / 4)+3$

5

$3^{\text {rd }}$ Try: $2^{\text {nd }}$ level Generate and Propagate

- PO = p3.p2.pl.p0
- If all 4 bits in a block propagate, the block propagates a carry
- $G 0=g 3+p 3 . g 2+p 3 . p 2 . g 1+p 3 . p 2 . p l . g 0$
- If atleast I bit generates carry and is propagated, the block generates a carry
- $\mathrm{c} 4=(\mathrm{g} 3+\mathrm{p} 3 . g 2+\mathrm{p} 3 . \mathrm{p} 2 . g 1+\mathrm{p} 3 . \mathrm{p} 2 . \mathrm{pl} . g 0)+(p 3 . \mathrm{p} 2 . \mathrm{p} 1 . p 0) . \mathrm{c} 0$

$$
=\mathrm{G} 0+\mathrm{PO} . \mathrm{c} 0
$$

- PI = p7.p6.p5.p4
- GI = g7 + p7.g6 + p7.p6.g5 + p7.p6.p5.g4
- $\mathrm{c} 8=\mathrm{GI}+\mathrm{PI} . \mathrm{c} 4=\mathrm{GI}+\mathrm{PI}(\mathrm{G} 0+\mathrm{P} 0 . \mathrm{c} 0)$
= GI + PI.G0 + PI.P0.co
- $\mathrm{cl} 2=\mathrm{G} 2+\mathrm{P} 2 . \mathrm{c} 8$
- $\mathrm{cl} 6=\mathrm{G} 3+\mathrm{P} 3 . \mathrm{cl} 2$
- Total gate delay for a " n " bit adder $=1+2+2(\mathrm{n} / 16)+3$

Conclusion

- Reducing the gate delays enables faster addition
- Can recursively increase the number of levels from 2 to 3
- Gate delay?
- Divide and conquer - break into smaller blocks and then ripple (2 ${ }^{\text {nd }}$ try)
- Or use "SUPER" generates and propagates - (3 $3^{\text {rd }}$ try)

