

Code	Signed Magnitude	One's Complement	Two's Complement
000	+0	+0	0
001	+1	+1	+1
010	+2	+2	+2
011	+3	+3	+3
100	-0	-3	-4
101	-1	-2	-3
110	-2	-1	-2
111	-3	-0	-1
Issues: balance,	number of zeros, ease	e of operation	

radifiber Representation								
	2 bit s	signed	d num	bers				
0	0000	0000	0000	0000	0000	0000	0000	0000 = <mark>0</mark>
0	0000	0000	0000	0000	0000	0000	0000	0001 = +1
0	0000	0000	0000	0000	0000	0000	0000	0010 = +2
0								
0	0111	$\Pi \Pi \Pi$			$\boldsymbol{\Pi} \boldsymbol{\Pi}$	$\Pi \Pi \Pi$		1110 = +2, 147,483,646
0	0111		1111	1111	1111	1111	1111	= +2, 47,483,647
0	1000	0000	0000	0000	0000	0000	0000	0000 = -2, 147, 483, 648
0	1000	0000	0000	0000	0000	0000	0000	0001 = -2, 147, 483, 647
0	1000	0000	0000	0000	0000	0000	0000	0010 = -2, 147, 483, 646
0								
0	$\boldsymbol{\Pi} \boldsymbol{\Pi}$	1110 = -2						
0			1111	1111		1111		= -

Α	В	Carry In	Carry Out	SUM				
0	0	0	0	0				
0	0	I.	0	I				
0	l. I	0	0	I				
0	I.	I.	1	0				
I	0	0	0	I				
L	0	I.	I.	0				
L	I	0	I	0				
I	I	I	I	I				
Carry Out = $A.B + B.C + A.C$ SUM = $A.B.C + A'.B'.C + A'.B.C' + A.B'.C'$								

- Problem: Consider a logic function with 3 inputs: A, B and C
- Output D is true if atleast one input is true
- Output E is true if exactly two inputs are true
- Output F is true if all three inputs are true
 - Show the truth table for these three functions
 - Show the Boolean equations for these three functions
 - Show an implementation consisting of inverters, OR and AND gates

			-					
Α	В	С	D	Е	F			
0	0	0						
0	0	I						
0	I	0						
0	- I	I						
Т	0	0						
Ι	0	I						
Ι	1	0						
Ι	1	I						
D =								
E =								
F =	=							

Conclusions

- We can build ALU to support the MIPS instruction set
 - Key Idea: Use multiplexor to select the output we want
 - Efficiently perform subtraction using two's complement
 - Replicate 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
 - All of the gates are always working
 - $\circ\;$ The speed of the gate is affected by the number of inputs to the gate
 - The speed of a circuit is affected by the number of gates in series (on the critical path" or the "deepest level of logic")