9/10/2020

EE 3613: Computer Organization
Arithmetic for Computers — |
Number Representation & ALU

Avinash Karanth
Department of Electrical Engineering & Computer Science
Ohio University, Athens, Ohio 45701
E-mail: karanth@ohio.edu
Website:

Acknowledgement: Srinivasan Ramasubramanian, Mary J. Irwin, PSU

Course Administration

e Get started with Qt-SPIM ©
e All lecture slides (including ISA) are posted

e Assignment 2 is posted — split into two parts
o PartA is due next Friday, Sept 18
o Part B is due the following Friday, Sept 25

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

9/10/2020

Arithmetic

¢ Where we have been

o Performance (seconds, cycles, instructions)

e Abstractions
° Instruction Set Architecture Operation
o Assembly Language and Machine Language (SPIM)

32
e What’s up ahead? a 4—>
° Implementing the architecture (Chapter 3) > result

32

o>

Numbers

Bits are just bits (no inherent meaning)
o Conventions define relationship between bits and numbers

Binary numbers (base 2)

o 0000 0001 0010 OOIl OI00 OIOI OO0 Olll 1000 1000
o Decimal 0....2" - |

Of course it gets more complicated
° Numbers are finite (overflow)

° Fractions and real numbers

> Negative numbers

How do we represent negative numbers?
° i.e. which bit pattern will represent which numbers?

Possible Representations

Code Signed One’s Two’s
Magnitude Complement Complement
000 +0 +0 0

001 +] +] +]
010 47) 47) 47)
011 +3 +3 +3
100 -0 3 -4
101 -l 2 3
110 2 - 2
i 3 -0 -l

e Issues: balance, number of zeros, ease of operation

¢ Which one is best? Why?

Number Representation

e 32 bit signed numbers
> 0000 0000 0000 0000 0000 0000 0000 0000 =0
> 0000 0000 0000 0000 0000 0000 0000 000l = +I
> 0000 0000 0000 0000 0000 0000 0000 0010 = +2
o OLLL FIEE THEE FREE PREE FEEE THEE 1110 = +2, 147,483, 646
e OLEL THEE THED FEEE TEEr rrer e 1l = +2, 147,483, 647

> 1000 0000 0000 0000 0000 0000 0000 0000 = -2, 147,483, 648
> 1000 0000 0000 0000 0000 0000 0000 0001 = -2, 147,483, 647
> 1000 0000 0000 0000 0000 0000 0000 0010 = -2, 147,483,646

o

fCree eeee e e e reer 1o = -2
Feer reee reee reer reer reer reer = -1

o

9/10/2020

Two’s Complement Operations

Representing positive and negative numbers

o (b31% -231) + (b30 x 23%) + (b29 x 22%) + ... + (bl x2') + (b0 x 29)

Negating a two’s complement number:invert all bits and add |

° Remember:“negate” and “invert” are quite different

Converting n bits numbers into numbers with more than n bits
o MIPS |6 bit immediate gets converted to 32 bits for arithmetic

o Copy the most significant bit (sign bit) into the other bits

° 0010 - 0000 0010
010> [I11 1010

o

2’s Complement Binary Representation

2’sc binary

decimal

* Negate s =

1000

-(23 - |) =

1001

1010

o

1011 D

1100

1011

1101

1110

and add a |

1111

1010

0000

0001

complement all the bits

0010

0011

0100

 Note: negate and\

(o101 D

invert are different!

0110

2. =

0111

Njo|a|rw N RO b b|lA|ld|e|N]| 6

9/10/2020

Addition and Subtraction

Just like in high school (carry/borrow ls)

0111
0110+
e Add6,,to0 7, 10T
0111
e Subtract 6,, from 7, 0110-
0001
e Subtract 6,, from 7, (in two’s complement) ?(') : (l)
+
0001

Overflow (result too large for finite computer word)

o Eg.Adding two n-bit numbers does not yield an n-bit numbers

9
Adder: Boolean Algebra
[A [B | caryim | cCarryout | sum |
0 0 0 0 0
0 0 | 0 |
0 | 0 0 |
0 | | | 0
| 0 0 0 |
| 0 | | 0
| | 0 | 0
| | | | |
e Carry Out = AB+BC+AC
¢ SUM = ABC+AB.C+ABC +ABR.C
10

9/10/2020

9/10/2020

Review: Boolean Algebra and Gates
¢ Problem: Consider a logic function “nnﬂn
0 0

with 3 inputs:A, B and C

0
e Output D is true if atleast one input 0
is true 0

e Output E is true if exactly two 0
inputs are true |

|

|

|

e Output F is true if all three inputs

0
|
|
0
0
are true |
|

— o — o — o —

o Show the truth table for these
three functions

o Show the Boolean equations for

these three functions o=

o Show an implementation consisting E=
of inverters, OR and AND gates

F=

11

One-bit Adder

e Takes three input bits and generates two output bits

e Multiple bits can be cascaded

carry in
carry in
a—> e
a
result
b—— I:: carry out
et
carry out

)) ©)

\

(1
(1

0
|
(1 o

12

Detecting Overflow

e Overflow: the result is too large to represent in 32 bits
e Overflow occurs when

° adding two positives yields a negative

° or,adding two negatives gives a positive

° o, subtract a negative from a positive gives a negative

° o, subtract a positive from a negative gives a positive

e On your own: Prove you can detect overflow by:
o Carry into MSB xor Carry out of MSB, ex for 4 bit signed numbers

+ | 0 |

o [o]
0 I\I\I 7 | | 0
+ 0 0 | 13
| 0 [0

-6 0 | |

13

Effects of Overflow

e An exception (interrupt) occurs

o Control jumps to predefined address for exception

° Interrupted address is saved for possible resumption
¢ Details based on software system/language

e Don’t always want to detect overflow

o New MIPS instructions: addu, addiu, subu

14

9/10/2020

An ALU (Arithmetic Logic Unit)

Let’s build an ALU to support and and or instructions
> We will build a |-bit ALU and use 32 of them

carry in

a—>
— result

Possible Implementation (sum-of-products)

° Not easy to decide the “best” way to build something

| Op | A | B | Result

15

Building a 32-bit ALU
(AND, OR and ADD)

operation
carry in
—T)
1)1 1°
r N |
J/ ——> Result
—
+ 2
carry out

carry in

| —

a0——> carryin
ALU 0
b0——> carry out

1

al——> aarryin
ALU |
bl—— carry out

1

a2——> aarryin
ALU 2
b2——> carry out

| —

a3|l——> aarryin
ALU 31
b3l—— aarry out

operation

————> result 0

—— > result |

—— > result 2

—— > result 31

16

9/10/2020

9/10/2020

What about subtraction!?
e Two’s complement approach ¢ NOR implementation
o Negate b and add c (a+b)=a.b
Binvert operation Binvert operation
carry jn Ainvert
[
*—> |
Result Result
b 1 + 2 b
K(o)—" Wo)—h
[l [
carry out carry out

17

Supporting slt and Overflow Detection

e Can you figure out the idea!?

Binvert operation

Binvert operation Ainvert carry i
Ainvert carry,in
t 2 0

*—> I

> Result
— Result

Set

carry out

18

A 32-BitALU

A ripple carry ALU

Two bits to decide
- ADD/SUB

> AND

> OR

o LESS

A carry-in bit

o Combine with Binvert to obtain
Bnegate

Bit 31 generates set and
overflow

How to implement branch
instructions?

B invert carry in
a0——> ‘arryin
b0—— ALUO

Less
carry out

al—— “arryin
bl—— ALUI

0— Less
carry out

a2— > “arryin

b2—— ALU2
0—> Less
carry out

!

a3b——> “carryin

b3F—— ALU3I
I Less
0 carry out

t— iy

operation

——— > result 0

—> result |

—r—> result 2

—— > result 31
| Set
—> Overflow

19

Test for Equality

Notice the control
lines

o 000 =AND

o 00l =OR

> 010=ADD

o |10 =SUBTRACT

o

I =SLT

B negate
a0——> crryin
b0—— ALUO

Less

carry out
¢

al——> Tarryin

operation

bl—> AWI

0— Less
carry out

a2— carry in

. et
g |

Zero

b2—> ALU2 :
0— Less E—
carly out
%
a3l——> Tcarryin
b3 > ALU3I >
S Less Set
0 carry out —> Overflow

20

9/10/2020

10

Conclusions

e We can build ALU to support the MIPS instruction set
o Key Idea: Use multiplexor to select the output we want
o Efficiently perform subtraction using two’s complement
o Replicate I-bit ALU to produce a 32-bit ALU

e |Important points about hardware
o All of the gates are always working
o The speed of the gate is affected by the number of inputs to the gate

o The speed of a circuit is affected by the number of gates in series (on the
critical path” or the “deepest level of logic”)

21

9/10/2020

11

