
9/10/2020

1

EE 3613: Computer Organization
Arithmetic for Computers – 1

Number Representation & ALU

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website: http://oucsace.cs.ohiou.edu/~avinashk/classes/ee461a/ee461a.htm

Acknowledgement: Srinivasan Ramasubramanian, Mary J. Irwin, PSU

Course Administration

 Get started with Qt-SPIM ☺

 All lecture slides (including ISA) are posted

 Assignment 2 is posted – split into two parts

◦ Part A is due next Friday, Sept 18

◦ Part B is due the following Friday, Sept 25

1

2

http://oucsace.cs.ohiou.edu/~avinashk/ee461a.htm

9/10/2020

2

Arithmetic

 Where we have been

◦ Performance (seconds, cycles, instructions)

 Abstractions

◦ Instruction Set Architecture

◦ Assembly Language and Machine Language (SPIM)

 What’s up ahead?

◦ Implementing the architecture (Chapter 3)

Operation

result

b

a

32

32

Numbers

 Bits are just bits (no inherent meaning)
◦ Conventions define relationship between bits and numbers

 Binary numbers (base 2)
◦ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1000

◦ Decimal 0….2n - 1

 Of course it gets more complicated
◦ Numbers are finite (overflow)

◦ Fractions and real numbers

◦ Negative numbers

 How do we represent negative numbers?
◦ i.e. which bit pattern will represent which numbers?

3

4

9/10/2020

3

Possible Representations

Code Signed

Magnitude

One’s

Complement

Two’s

Complement

000 +0 +0 0

001 +1 +1 +1

010 +2 +2 +2

011 +3 +3 +3

100 -0 -3 -4

101 -1 -2 -3

110 -2 -1 -2

111 -3 -0 -1

 Issues: balance, number of zeros, ease of operation

 Which one is best? Why?

Number Representation

 32 bit signed numbers

◦ 0000 0000 0000 0000 0000 0000 0000 0000 = 0

◦ 0000 0000 0000 0000 0000 0000 0000 0001 = +1

◦ 0000 0000 0000 0000 0000 0000 0000 0010 = +2

◦ ……

◦ 0111 1111 1111 1111 1111 1111 1111 1110 = +2, 147,483, 646

◦ 0111 1111 1111 1111 1111 1111 1111 1111 = +2, 147,483, 647

◦ 1000 0000 0000 0000 0000 0000 0000 0000 = -2, 147, 483, 648

◦ 1000 0000 0000 0000 0000 0000 0000 0001 = -2, 147, 483, 647

◦ 1000 0000 0000 0000 0000 0000 0000 0010 = -2, 147, 483, 646

◦ ……

◦ 1111 1111 1111 1111 1111 1111 1111 1110 = -2

◦ 1111 1111 1111 1111 1111 1111 1111 1111 = -1

5

6

9/10/2020

4

Two’s Complement Operations

 Representing positive and negative numbers

◦ (b31× -231) + (b30 × 230) + (b29 × 229) + … + (b1 ×21) + (b0 × 20)

 Negating a two’s complement number: invert all bits and add 1

◦ Remember: “negate” and “invert” are quite different

 Converting n bits numbers into numbers with more than n bits

◦ MIPS 16 bit immediate gets converted to 32 bits for arithmetic

◦ Copy the most significant bit (sign bit) into the other bits

◦ 0010 → 0000 0010

◦ 1010 → 1111 1010

2’s Complement Binary Representation

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 723 - 1 =

-(23 - 1) =

-23 =

1010

complement all the bits

1011

and add a 1

• Note: negate and
invert are different!

• Negate

7

8

9/10/2020

5

Addition and Subtraction

 Just like in high school (carry/borrow 1s)

 Add 610 to 710

 Subtract 610 from 710

 Subtract 610 from 710 (in two’s complement)

 Overflow (result too large for finite computer word)

◦ Eg. Adding two n-bit numbers does not yield an n-bit numbers

0 1 1 1

0 1 1 0 +

1 1 0 1

0 1 1 1

0 1 1 0 -

0 0 0 1

0 1 1 1

1 0 1 0 +

0 0 0 1

Adder: Boolean Algebra

A B Carry In Carry Out SUM

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

 Carry Out =

 SUM =

A.B + B.C + A.C

A.B.C + A’.B’.C + A’.B.C’ + A.B’.C’

9

10

9/10/2020

6

Review: Boolean Algebra and Gates

 Problem: Consider a logic function

with 3 inputs: A, B and C

 Output D is true if atleast one input

is true

 Output E is true if exactly two

inputs are true

 Output F is true if all three inputs

are true

◦ Show the truth table for these

three functions

◦ Show the Boolean equations for

these three functions

◦ Show an implementation consisting

of inverters, OR and AND gates

A B C D E F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

D =

E =

F =

One-bit Adder

 Takes three input bits and generates two output bits

 Multiple bits can be cascaded

result

carry in

carry out

a

b

carry in

a

b

carry out

(1) (1) (0)

0 1 1 1

1 1 1 0

(1) 0 (1) 1 (1) 0 (0) 1

11

12

9/10/2020

7

 Overflow: the result is too large to represent in 32 bits

 Overflow occurs when

◦ adding two positives yields a negative

◦ or, adding two negatives gives a positive

◦ or, subtract a negative from a positive gives a negative

◦ or, subtract a positive from a negative gives a positive

 On your own: Prove you can detect overflow by:

◦ Carry into MSB xor Carry out of MSB, ex for 4 bit signed numbers

1

1

1 10

1

0

1

1

0

0 1 1 1

0 0 1 1+

7

3

0

1

– 6

1 1 0 0

1 0 1 1+

–4

– 5

71

0

Detecting Overflow

Effects of Overflow

 An exception (interrupt) occurs

◦ Control jumps to predefined address for exception

◦ Interrupted address is saved for possible resumption

 Details based on software system/language

 Don’t always want to detect overflow

◦ New MIPS instructions: addu, addiu, subu

13

14

9/10/2020

8

An ALU (Arithmetic Logic Unit)

 Let’s build an ALU to support and and or instructions

◦ We will build a 1-bit ALU and use 32 of them

 Possible Implementation (sum-of-products)

◦ Not easy to decide the “best” way to build something

result

carry in

a

b

Op A B Result

Building a 32-bit ALU

(AND, OR and ADD)

carry in

a

b

Result

+

0

1

2

operation

carry out

carry in

carry in

ALU 0

carry out

a0

b0
result 0

carry in

ALU 1

carry out

a1

b1
result 1

carry in

ALU 2

carry out

a2

b2
result 2

carry in

ALU 31

carry out

a31

b31
result 31

operation

15

16

9/10/2020

9

What about subtraction?

 Two’s complement approach

◦ Negate b and add

carry in

b

Result

+

0

1

2

operation

carry out

a

0

1

Binvert

 NOR implementation

◦ (a + b) = a . b

carry in

b

Result

+

0

1

2

operation

carry out

a

0

1

Binvert

0

1

Ainvert

Supporting slt and Overflow Detection

 Can you figure out the idea?

carry out

carry in

b

Result

+

0

1

2

operation

a

0

1

Binvert

0

1

Ainvert

3Less

carry in

b

Result

+

0

1

2

operation

a

0

1

Binvert

0

1

Ainvert

3Less

Overflow

Detection

Set

17

18

9/10/2020

10

A 32-Bit ALU

 A ripple carry ALU

 Two bits to decide

◦ ADD/SUB

◦ AND

◦ OR

◦ LESS

 A carry-in bit

◦ Combine with Binvert to obtain
Bnegate

 Bit 31 generates set and
overflow

 How to implement branch
instructions?

carry in

carry in

ALU 0

Less

carry out

a0
b0 result 0

carry in

ALU 1

Less

carry out

a1
b1 result 1

carry in

ALU 2

Less

carry out

a2
b2 result 2

carry in

ALU 31

Less

carry out

a31
b31

result 31

operation

0

0

0 Overflow
Set

B invert

Test for Equality

 Notice the control

lines

◦ 000 = AND

◦ 001 = OR

◦ 010 = ADD

◦ 110 = SUBTRACT

◦ 111 = SLT

carry in

ALU 0

Less

carry out

a0
b0

carry in

ALU 1

Less

carry out

a1
b1

carry in

ALU 2

Less

carry out

a2
b2

carry in

ALU 31

Less

carry out

a31
b31

operation

0

0

0 Overflow
Set

B negate

Zero

19

20

9/10/2020

11

Conclusions

 We can build ALU to support the MIPS instruction set

◦ Key Idea: Use multiplexor to select the output we want

◦ Efficiently perform subtraction using two’s complement

◦ Replicate 1-bit ALU to produce a 32-bit ALU

 Important points about hardware

◦ All of the gates are always working

◦ The speed of the gate is affected by the number of inputs to the gate

◦ The speed of a circuit is affected by the number of gates in series (on the

critical path” or the “deepest level of logic”)

21

