
9/10/2020

1

EE 3613: Computer Organization

Chapter 2: Instruction Set Architecture

– 1/3

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website:

http://oucsace.cs.ohiou.edu/~avinashk/classes/ee461a/ee461a.htm

Course Administration

 Lecture Notes 1 (Introduction), 2 (Performance) and 3

(Instruction Set Architecture) posted

 Homework #1 posted, due next Sept 9, 2020 in-class

1

2

mailto:kodi@ohio.edu

9/10/2020

2

(Von Neumann) Processor Organization

 Control needs to

◦ Input instructions from memory

◦ Issue signals to control the information

flow between datapath components and to

control what operations they perform

◦ Control instruction sequencing

 Datapath needs to have the

◦ Components – the functional units and

storage needed to execute instructions

◦ Interconnects – components connected so

that instructions can be routed, and data

loaded from and stored into memory

CPU Memory Devices

control

Datapath

input

output

Fetch

DecodeExec

Where do ISA fit in a computing system?

Application Software

Compiler

Architecture – (Instruction Set Architecture)

- Platform Specific

- a limited number of assembly language commands

understood by the hardware (ADD, LOAD, etc)

Microarchitecture (Hardware Implementation of

ISA)

- Pentium IV implements x86 ISA

- Motorola G4 implements the Power PC ISA

Circuits

Devices

Software

Hardware

3

4

9/10/2020

3

Instruction Set Design (1/2)

 What instructions should be included?

◦ Add, Multiply, Divide, Srqt [functions]

◦ Branch [flow control]

◦ Load/store [storage management]

 What storage locations?

◦ How many registers?

◦ How much memory?

 How should instructions be formatted?

◦ 0, 1, 2 or more operands

◦ Immediate operands

Instruction Set Design (2/2)

 How to encode instructions?

◦ RISC (Reduced Instruction Set Computer)

 All instructions are the same length (Eg: MIPS, PowerPC, Sun UltraSparc, XAP

Processor, ARM processor)

◦ CISC (Complex Instruction Set Computer)

 Instructions can vary in size (Eg. VAX, Intel x86)

 What instructions can access memory?

◦ For MIPS, only load/store can access memory (load-store architecture)

◦ We will be working with MIPS architecture set

5

6

9/10/2020

4

Software Program to Machine Code

main()

{

int a, *b, c;

c = a + b;

}

.text

.global main

lw $s1, 100($0)

add $s1, $s2, $s3

0x7456

0xA16B

Compile Assemble

C Program Assembly code Machine code

Unsigned Binary Representation
Hex Binary Decimal

0x00000000 0…0000 0

0x00000001 0…0001 1

0x00000002 0…0010 2

0x00000003 0…0011 3

0x00000004 0…0100 4

0x00000005 0…0101 5

0x00000006 0…0110 6

0x00000007 0…0111 7

0x00000008 0…1000 8

0x00000009 0…1001 9

…

0xFFFFFFFC 1…1100

0xFFFFFFFD 1…1101

0xFFFFFFFE 1…1110

0xFFFFFFFF 1…1111 232 - 1

232 - 2

232 - 3

232 - 4

232 - 1

1 1 1 . . . 1 1 1 1 bit

31 30 29 . . . 3 2 1 0 bit position

231 230 229 . . . 23 22 21 20 bit weight

1 0 0 0 . . . 0 0 0 0 - 1

7

8

9/10/2020

5

ASCII: Beyond Numbers

 American Std Code for Info Interchange (ASCII): 8-bit bytes

representing characters
ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char

0 Null 32 space 48 0 64 @ 96 ` 112 p

1 33 ! 49 1 65 A 97 a 113 q

2 34 “ 50 2 66 B 98 b 114 r

3 35 # 51 3 67 C 99 c 115 s

4 EOT 36 $ 52 4 68 D 100 d 116 t

5 37 % 53 5 69 E 101 e 117 u

6 ACK 38 & 54 6 70 F 102 f 118 v

7 39 ‘ 55 7 71 G 103 g 119 w

8 bksp 40 (56 8 72 H 104 h 120 x

9 tab 41) 57 9 73 I 105 i 121 y

10 LF 42 * 58 : 74 J 106 j 122 z

11 43 + 59 ; 75 K 107 k 123 {

12 FF 44 , 60 < 76 L 108 l 124 |

15 47 / 63 ? 79 O 111 o 127 DEL

Architecture Specification

 Data Types

◦ Bit, byte, signed/unsigned, logical, floating point, character

 Operations

◦ Data movement, arithmetic, shift/rotate, conversion, input/output, control,

system calls

 # of operands

◦ 3, 2, 1, or 0 operands

 Registers

◦ Integer, floating point, control

 Storage for Operands

◦ Registers, memory locations, stack locations, fixed registers, fixed location

9

10

9/10/2020

6

Assembly Code

 a.k.a. Register-transfer-language (RTL)

 Fields

◦ Opcode – what instruction to perform

◦ Source – input operand specifiers

◦ Destination – output operand specifiers

 What data to perform operation on

 Translation – value of $s1 added to $s2 put in $t0

ADD $t0 $s1 $s2

Opcode Destination Source 1 Source 2

MIPS Arithmetic Instructions

 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic statement performs only one operation

 Each arithmetic instruction fits in 32 bits and specifies exactly

three operands

 Those operands are all contained in the datapath’s register file

($t0, $s1, $s2) – indicated by $

 Operand order is fixed (destination first)

Design Principle 1: Simplicity favors regularity

11

12

9/10/2020

7

Machine Language – Add Instruction

 Instructions like registers and words of data are all 32 bits long

 Arithmetic instruction Format (R Format): add $t0, $s1, $s2

op: 6 bits – opcode that specifies the instruction

rs: 5 bits – register file address of the first source operand

rt: 5 bits – register file address of the second operand

rd: 5 bits – register file address of the result’s destination

shamt 5 bits – shift amount (for shift instructions)

funct 6 bits – function code augmenting the opcode

op rs rt rd shamt funct

Assembly Code Example

 What are the contents of the registers after executing the given

assembly code?

Program: add $s1, $s2, $s3
multi $s3, $s3, 3

sub $s2, $s3, $s2

Initial

Register

File

$s1 25

$s2 -4

$s3 57

$s1

$s2

$s3

$s1

$s2

$s3

$s1

$s2

$s3

add $s1, $s2, $s3 multi $s3, $s3, 3 sub $s2, $s3, $s2

13

14

9/10/2020

8

Assembly Instruction Encoding

 Since EDSAC (1949), almost all computers stored program
instructions the same way as they store data

 Each instruction is encoded as a number

 m bits can encode 2m different values

 n values can be encoded in [log2(n)] bits

 For above example, we can have __ opcodes and __ registers

 And for the above example, the code is ________ in
hexadecimals

ADD $s1 $s2 $t0 0 32

000000 10001 10010 01000 00000 100100

Storage Architecture

 Registers

◦ Fast and small (and useful)

 Immediate values

◦ Specifying constants in instructions

 Memory

◦ Big and complex (and useful)

15

16

9/10/2020

9

MIPS Register Storage

 Holds thirty-two 32-bit registers
◦ 2 read ports, 1 write port

 Registers are
◦ Faster than main memory

 But register files with more locations are

slower

 Read/write port increase impacts speed

quadratically

◦ Easier for a compiler to use
 Eg: (A – B) – (C x D) – (E x F) can do multiplies in any order

◦ Can hold variables so that
 Code density improves (since registers are named with fewer bits than a memory

location

Register File

src1 addr

src2 addr

dest addr

32 bits

src1
data

src2
data

32
locations

write control

write data

32

32

32

5

5

5

Design Principle 2: Smaller is faster

Immediate Values

 Small constant values placed in instructions

 They are stored in memory only because all instructions are in
memory (traditionally, not in MIPS)

 In MIPS, constants are built into the instruction having a single operand

◦ Example: ptr++; → addi $s1, $s1, #4

◦ Useful for branch instructions

 → target address is often immediate in the instruction

 Size of the immediate is usually determined by how many bits are left
in the instruction format

Design Principle 3: Make the common case fast

17

18

9/10/2020

10

Memory Storage

 Large array of storage accessed using memory addresses

◦ A machine with a 32 bit addresses can reference memory locations starting

from 0 to 232 – 1 (or 4,294, 967, 295)

◦ A machine with a 64 bit address can reference memory locations starting

from 0 to 264 – 1 (or 18,446,744,073, 709, 551, 615)

 Lots of different ways to calculate the addresses

Memory Architecture:

The MIPS Memory Image

Stack

Heap Data

Static Data

Text

Reserved

Activation Records: local variables, parameters, etc

Dynamically allocated data (new or malloc())

Global data and static local data

Machine code instructions (and some constants)

Reserved for operating system

19

20

9/10/2020

11

MIPS Memory Access Instructions

 MIPS has two basic data transfer instructions to access memory

lw $t0, 4($s3) # load word from memory

sw $t0, 8($s3) # store word to memory

 The data is loaded into (lw) or stored from (sw) a register in the

register file – a 5-bit address

 The memory address – a 32-bit address – is formed by adding

the contents of the base address register to the offset value

◦ A 16-bit field meaning access is limited to memory locations within a region

of ±213 or 8,192 words (±215 or 32,768 bytes) of address in the base

register

◦ Note that offset can be positive or negative

Machine Language – Load Instruction

 Load/Store Instruction Format (I format): lw $t0,24($s2)

Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2

0x12004094

2410 + $s2 =

. . . 0001 1000

+ . . . 1001 0100

. . . 1010 1100 =

0x120040ac

0x120040ac$t0

op rs rt 16-bit Offset

0x12004094

21

22

