
8/23/2020

1

Fall 2020

EE 3613: Computer Organization

Chapter 1: Performance

Avinash Karanth

Department of Electrical Engineering & Computer Science

Ohio University, Athens, Ohio 45701

E-mail: karanth@ohio.edu

Website:
http://oucsace.cs.ohiou.edu/~avinashk/classes/ee461a/ee461a.htm

Outline

 Performance Factors

 Power Wall

 Amdahl’s Law

1

2

8/23/2020

2

Performance Metrics

 Purchasing perspective

◦ Given a collection of machines, which has the best performance?

◦ Best cost/performance ratio?

 Design perspective

◦ Faced with a set of design options, which has the

 Best performance?

 Best performance improvement?

Airplane Capacity Range Speed

Boeing 777 375 4630 610

Boeing 747 470 4150 610

BAC/Sud

Concorde

132 4000 1350

Douglas DC-

8-50

146 8750 544

Passenger Throughput

(Speed x Capacity)

228750

286700

178200

79424

Computer Performance: TIME

 Response Time (Latency)

◦ How long does it take for my job to run ?

◦ How long does it take to execute a job ?

◦ How long should I wait for the database query?

 Throughput

◦ How many jobs can run at once on the machine ?

◦ What is the average execution time ?

◦ How much work is getting done ?

 If we upgrade a processor with a faster processor, what do we

decrease?

 If we add a new machine, what do we improve?

3

4

8/23/2020

3

CPU Clock Cycles

 Wall clock time, Elapsed time, or Response time

◦ Counts everything (disk, memory, I/O)

◦ A useful number, but often not good for comparison

 CPU Time

◦ Doesn’t count I/O or time spent by other programs

◦ Can be broken up into system and user time

 Our Focus: User CPU Time

◦ Time spent executing the lines of codes that are “in” our program

Defining Performance

 Reducing response time

◦ To maximize performance, need to minimize response time

 If performance of X is greater than Y by a factor of “n”

(x) Time Execution

1
 (x) ePerformanc =

n==
(X) Time Execution

(Y) Time Execution

(Y) ePerformanc

(X) ePerformanc

 Decreasing the response time mostly increases the

throughput

5

6

8/23/2020

4

Performance Factors

 Another way of reporting the execution time is to use cycles

 Clock “ticks” indicate when to start an activity

 Cycle time = time between ticks = seconds per cycle

 Clock rate (frequency) = cycles per second

CPU execution time # CPU clock cycles

for a program for a program= x clock cycle time

CPU execution time # CPU clock cycles for a program

for a program clock rate
= ---

Improving Performance

 Said another way,

 So we can improve performance (everything being equal) in the

following way:

◦ ____________ # of required cycles for a program

◦ ____________ the clock cycle time,

◦ ____________ the clock rate

cycle

seconds

 program

cycles

program

seconds
=

 Improve performance by reducing either the length of the clock

cycle or the number of clock cycles required for a program

7

8

8/23/2020

5

Cycles Required for a Program

 Can we assume number of cycles = number of instructions ?

 This assumption is incorrect, different instructions take different

amounts of time on different machines, Why?

◦ Remember that these are machine instructions, not lines of C code

◦ Multiplication takes more time than addition

◦ Floating point operations take more time than integers

◦ Accessing memory takes more time than accessing registers

◦ NOTE: Changing the cycle time often changes the number of

cycles required for various instructions

Example Problem

 Our favorite program runs in 10 seconds on computer A, which

has a 4 GHz clock. We are trying to help a computer designer

build a new machine B, that will run this program in 6 seconds.

The designer can use new (or perhaps more expensive)

technology to substantially increase the clock rate, but has

informed us that this increase will affect the rest of the CPU

design, causing machine B to require 1.2 times as many clock

cycles as machine A for the same program. What clock rate

should we tell the designer to target?"

9

10

8/23/2020

6

Effective CPI

 Computing the overall effective CPI is done by summing the

different instructions and their individual clock cycles

 The overall effective CPI varies by instruction mix – a measure of

dynamic frequency of instructions across many programs

Where ICi is the count of the number of instructions of class i
executed

CPIi is the (average) number of clock cycles per instruction for that
instruction class

n is the number of instruction classes

IC is the total instruction count

𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 𝑪𝑷𝑰 =
σ𝒊=𝟏
𝒏 𝑪𝑷𝑰𝒊 × 𝑰𝑪𝒊

𝑰𝑪

CPI Example

Code

Sequence

Instruction count for instruction class

A B C

1 2 1 2

2 4 1 1

CPI for this instruction class

A B C

CPI 1 2 3

 Which code sequence executes the most instructions? Which

will be faster?

11

12

8/23/2020

7

Performance Equation

 Our basic performance equation becomes

 These factors separate three factors that affect performance

◦ Can measure CPU execution time (run the program)

◦ Clock rate is given

◦ Can measure the overall instruction count using profilers/simulators

◦ CPI varies by the instruction type and implementation details

Cycle Clock x CPICount x nInstructio Time Execution CPU =

Rate Clock

CPI Count nInstructio
 Time Execution CPU

=

Determines CPU Performance

CPU time = Instruction_count x CPI x clock_cycle

Instruction_
count

CPI clock_cycle

Algorithm

Programming
language

Compiler

ISA

Processor
organization

Technology

13

14

8/23/2020

8

The Power Wall

FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over eight generations and 25 years. The

Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The Prescott thermal

problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler pipeline with lower

clock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.

Quantify Power

16

 For CMOS chips, traditional dominant energy

consumption has been in switching transistors, called

dynamic power

 For fixed task, slowing clock rate (frequency

switched) reduces power, but not energy

Frequency Voltage Load Capacitive
2

1
 Power

2

Dy namic =

2

Dy namic Voltage Load Capacitive
2

1
 Energy =

15

16

8/23/2020

9

Quantify Power

17

 Capacitive load is a function of the number of transistors

connected to the output and technology
 Determines capacitance of wires and transistors

 Dropping voltage helps both, so went from 5 V to 1 V

 To save energy and dynamic power, most CPUs now turn off the

clock of inactive modules (Eg: Floating Point Unit)

 Problem: Suppose 15% reduction in voltage results in a 15%

reduction in frequency and the new processor has the capacitance

load of 85% of the more complex old processor, then what is the

impact on dynamic power?

Growth in Microprocessor Performance

17

18

8/23/2020

10

Multi-Cores, Clock Rate and Power

 The Sea Change: From uniprocessor designs to multicores!

Amdahl’s Law

(Law of Diminishing Returns)

 Every improvement typically affects a fraction of the program

 Execution time is generally divided into two classes: affected class

and unaffected class

Factort Improvemen

(affected) T
 d)(unaffecte T t)improvemenT(after +=

t)improvemen(after T

t)improvemen (before T
 Speedup =

• Example: Suppose a program runs in 100 seconds and multiply is

responsible for 80 seconds of this time. How much do we have to improve

the speed of multiplication if we want the program to run 4 times faster?

• How about making it 5 times faster?

19

20

8/23/2020

11

MIPS (Million Instructions Per Second)

6
10 Time Execution

Count nInstructio
 MIPS

=

 MIPS rating misleading

 Execution time is the only valid and unimpeachable measure of

performance

CPU time = Instruction count x CPI x clock cycle

cycle clock

seconds

nInstructio

cycle Clock

 program

nsInstructio

program

seconds
=

Summary

 Performance is specific to a particular program

◦ Total execution time is a consistent summary of performance

 For a given architecture, performance comes from

◦ Increases the clock rate (without adversely affecting CPI)

◦ Improvements in processor organization that lower the CPI

◦ Compiler enhancements that lower CPI and/or instruction count

 Pitfall

◦ Expecting improvement in one aspect of a machine’s performance to affect

the total performance

21

22

